Advanced Computer Networks

Overlay Networks

Jianping Pan Summer 2007

Feedback on A1

- Project topics and ideas from students so far
 - vehicular area networks (Dandan)
 - directional antenna (Emad)
 - identifiable email (Justyn)
 - P2P with JXTA (Ryan)
 - multimedia over multi-link (Ming)
 - P2P file synchronization (Andy, Chun-Hung)
 - TCP congestion control (Hong-Yi)
 - Web media service (Leo)
 - sensor networks (Haoling)

What do we "have" so far?

- Internet design and architecture
 - store-and-forward packet switching
 - end-to-end arguments
 - smart end-hosts vs dumb networks
 - best-effort services
- Initially, the Internet was an "overlay"
 - over telephone networks
- By design, the Internet is a "peer-to-peer"
 - for all end-hosts

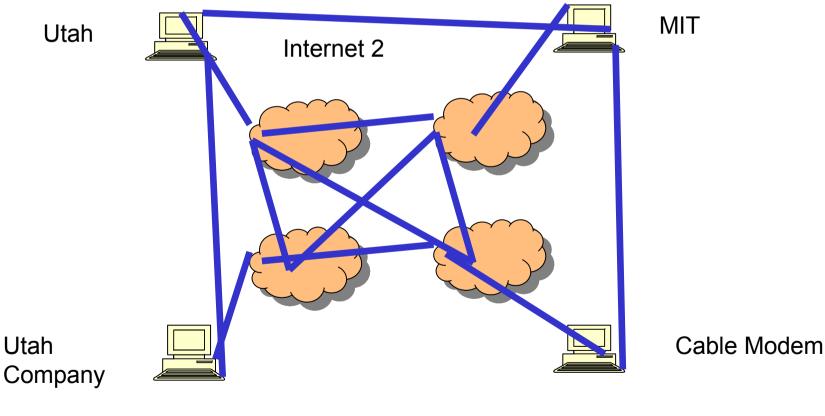
Reality check

- A network of service-provider's networks
 - still mostly packet switching, end-to-end, best-effort
- But hierarchical structures almost everywhere
 - tiered service provider networks
 - hierarchies in naming, addressing, routing, service provisioning, content delivery etc
 - the (only) way to deal with scalability
- Two sides of the story
 - a lot of details/redundancy invisible to externals

Examples

- Internet routing
 - routing pathologies
 - a considerable percentage of routes is affected
 - delayed convergence
 - after a fault, it takes tens of minutes to converge
 - extended recovery
 - some faults take hours to recover
- Dependable Internet?
 - not yet

Adding <u>???</u> into the network?


- Changing the infrastructure is difficult
 - in a competitive ISP market
 - only end-to-end counts
 - and not all applications need perfect ???
- Alternatives
 - application overlays
 - e.g., virtual private networks (VPN)
 - content delivery networks (CDN)
 - end-to-end or edge-to-edge

Resilient Overlay Networks

- http://nms.lcs.mit.edu/ron
 - [ABKM01] D. Anderson, H. Balakrishnan, F.
 Kaashoek, R. Morris, Resilient Overlay Networks, In Proc. of SOSP '01. [RON]
- Design goals
 - fast failure detection and recovery
 - active probing, re-routing
 - tighter integration with applications
 - application-specific, e.g., video conferencing
 - expressive policy routing
 - e.g., "no commercial traffic on Internet2"

Observations

• Network redundancy, invisible to applications

Ideas

Route around failures

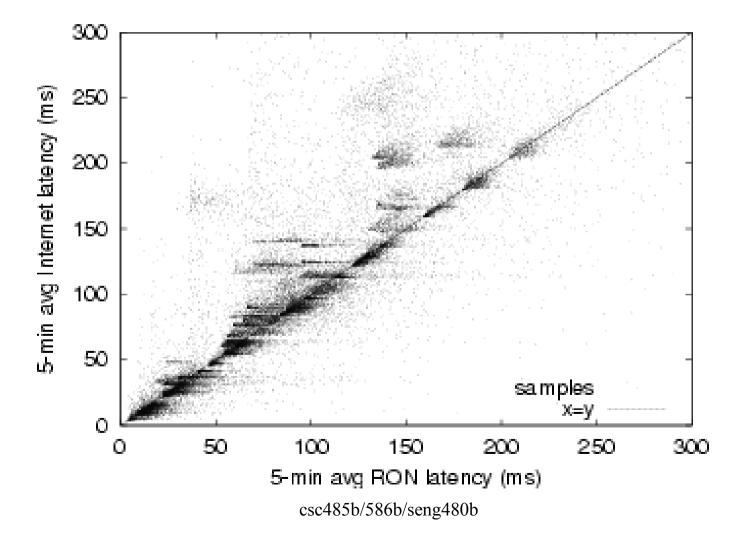
Approaches

- Characterize "links" between nodes
 - active probing: delay, loss
- Disseminate link characteristics
 - "link-state" advertisement
- Choose the "best" route
 - only at the entry node
 - with possibly one intermediate node
- Forward the packets
 - RON encapsulation

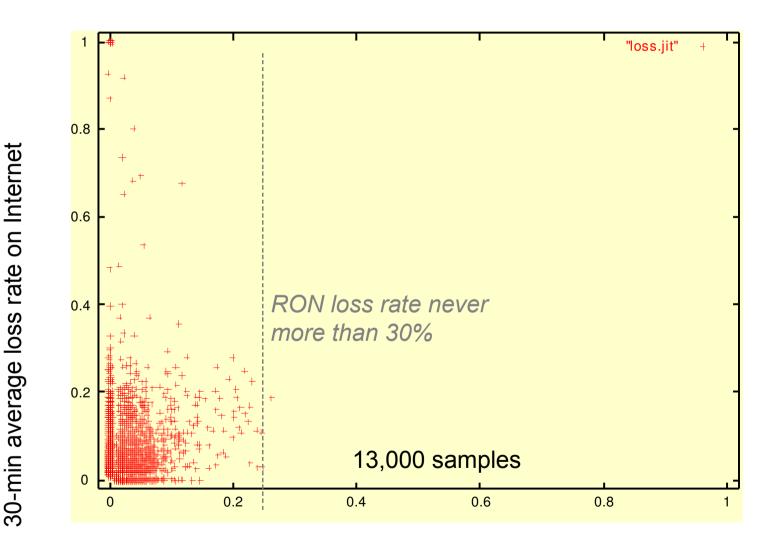
Design details

- Path selection
 - delay
 - exponentially weighted moving average (EWMA)
 - delay_{i+1} = a * delay_i + (1-a) * last_rtt, a = 0.9
 - loss: moving window average
 - window size: 100
 - throughput
 - TCP-like, proportional to 1/(rtt * sqrt(p))
 - application-specific
 - priority among delay, loss, throughput, etc

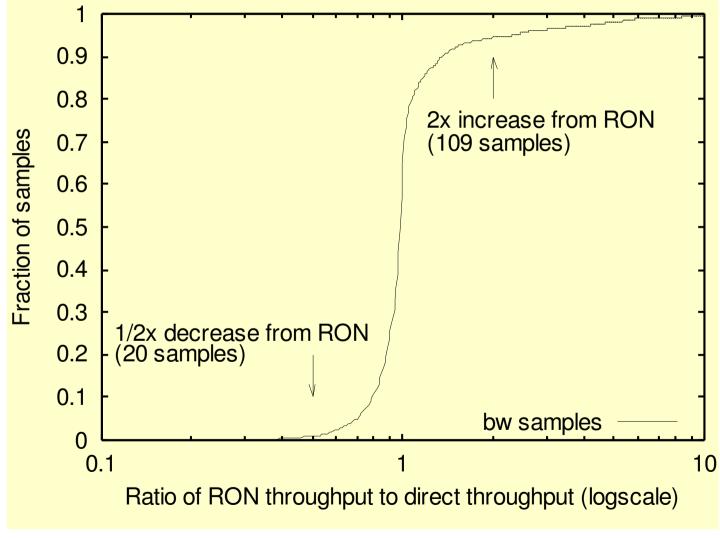
Membership management


- Static membership
 - load other peer nodes from a configuration file
- Announcement-based, soft-state membership
 - know at least one peer node
 - announce its existence by broadcast
 - soft-state
 - flood peer node list every 5 minutes
 - if a node is not heard for 60 minutes, the node has left
- Search?

Performance evaluation


csc485b/586b/seng480b

Reduced delay


5/23/07

Reduced loss

30-min average loss rate with RON

Improved throughput

Overhead

- Link probing
 - size: 69 bytes; interval: 12 seconds
- Link advertisement
 - size: 60+20*(N-1); interval: 14 seconds
- Recovery time: 12~25 seconds (N=50)

10 nodes	20 nodes	30 nodes	40 nodes	50 nodes
1.8 Kbps	5.9 Kbps	12 Kbps	21 Kbps	32 Kbps

More discussion

- One hop?
- Route stability
 - hysteresis
- Path selection
 - tradeoff between delay, loss, etc
- Routing policy
- Scalability
- NAT (network address translator)

More overlay networks

- Planet-lab network testbed
- Peer-to-peer applications
 - Napster: with centralized directory server
 - Gnutella: distributed flooding search (ERS)
 - KaZaA: hierarchy introduced; supernode
 - BitTorrent: trackers; files in chunks; tit-for-tat
 - Skype
 - Structured P2P
 - Distributed Hash Table (HDT): Chord, CAN, Pastry, etc

Student presentation

- Hong-Yi Wang: Chord
 - [SMKKB01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, Hari Balakrishnan,
 "Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications," Proceedings of the 2001 ACM SIGCOMM Conference, August 2001. [Chord]

Next lectures

- More DHT
 - Required reading
 - [RFHKS01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A scalable content-addressable network. In SIGCOMM," Aug. 2001. [CAN]
 - [RD01] Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing for largescale peerto-peer systems," Proc. 18th IFIP/ACM Int'l. Conf. Distributed Systems Platforms (Middleware), 2001. [Pastry]
- Gnutella, BitTorrent, Skype