Advanced Computer Networks

P2P Swarming

Jianping Pan Summer 2007

Feedback on project proposals

- Give your project a name!
 - "TCP congestion control" (Hong-Yi)
 - XON: Xbox overlay network (Justyn and Dale)
 - "large amount of data transfer" (Leo and Ching-Chang)
 - "vehicular area networks" (Dandan)
 - Multimedia over multi-link (Ming)
 - "Directional antenna" (Emad)
 - "JXTA vs ..." (Ryan)
 - "Collaborate Whiteboard" (Andy and Chun-Hung)
 - "mobility detection in WSN" (Haoling)
- Individual feedback handed out in class
- Build project web at google and use as a log book

Review: going P2P

- Client-server
 - server is well-known and serves all client requests
 - scalability issue
- Peer-to-peer
 - structured or unstructured
 - every peer is a (potential) server
 - search is a challenge
 - one request is still served by one peer
 - until the peer fails, then try to use another peer

Napster and Gnutella

- Napster
 - centralized directory server
 - list uploading and query handling
 - peer-to-peer file download
- Gnutella
 - fully distributed
 - scoped flooding search
 - peer-to-peer file download
- Improving Gnutella
 - node hierarchy
 - non-flooding search

6/4/07

More design choices

- If more than one peer can serve, why do they not serve the same request together?
- Benefit
 - more resilient to node dynamic
 - does not rely on any particular peer
 - fit better with the asymmetric access link
 - higher download bandwidth than upload
- Overhead
 - how to get served from multiple peers
 - work together constructively

The BitTorrent approach

- Chop a file into small, fixed-size pieces
 - e.g., pieces (usually 256 KB each)
 - and then into blocks (usually 16 KB each)
- .torrent
 - meta information about the file
 - out-of-band retrieval
- Tracker
 - return a list of peers may have some pieces
- Seed and leecher/downloader
 - peers have the complete/incomplete file

.bittorrent

- Tracker URL
- File info
 - name, length
- Piece info
 - length, hash
- Other info
 - date, comment, etc
- Bencoding
 - strings, integers, lists, directories
 - e.g., 4:spam, i3e, I4:spam4:eggse, d4:spaml1:a1:bee

Tracker protocol

- HTTP GET request
 - info_hash: to identify the file
 - peer_id: of the requesting peer
 - client address and port: to respond to incoming requests
 - bytes uploaded, downloaded, left, etc
 - numwant: the number of peers in the response list
- Tracker response
 - failure reason, if any
 - contact interval
 - peer list and stat (seed and leecher, etc)
- Tracker-less mode (on Kademlia DHT)

Tit-for-tat

- Download while upload: tit-for-tat
 - upload to whom from which download: trading pieces
 - prevent free-riding
 - fairness?
- Choking/unchoking
 - a limited number of uploads
 - default: 4
 - evaluate peers based on their recent download speed
 - 20-second average
 - upload to the peers with the fastest download speed
 - adjust every 10 seconds

Optimistic unchoking

- Stuck with poor peers?
- Optimistic unchoking
 - upload to other peers as well
 - rotate every 30 seconds
 - hope to get better download
 - also help bootstrap other peers
- Seed's unchoking
 - seed does not download from other peers
 - try to equally distribute its upload to leechers
 - or upload to the one downloads fastest

Peer wire protocol

- Messages over TCP
 - handshake
 - keep-alive
 - choke/unchoke
 - interested/not-interested
 - a block is downloaded if the client is interested and unchoked
 - a block is uploaded if the peer is interested and unchoked
 - have
 - advertise new pieces
 - request/piece
 - request blocks in a piece

Piece selection

- Initially, a few random pieces
 - anything is better than nothing
 - easy to find at the beginning
- Then, rarest-first in neighborhood
 - become less dependent on seed
 - more interested by peers
- Finally, "end game" mode
 - look for missing pieces aggressively
 - send requests to all peers
 - cancel requests after last pieces are collected

Student presentation

- Ryan Chen: BitTorrent
 - [QS04] Dongyu Qiu, R. Srikant. Modeling and Performance Analysis of Bit Torrent-Like Peer-to-Peer Networks. SIGCOMM 2004 [BitTorrent]

More discussion

This lecture

- BitTorrent
 - P2P swarming
 - protocol overview
 - performance analysis
- Explore further
 - measurement-based modeling
 - measurement-based performance analysis
 - BitTorrent extensions
 - http://wiki.theory.org/BitTorrentSpecification

Next lecture

- June 6: Skype
 - [BS06] Salman A. Baset and Henning Schulzrinne,
 "An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol", IEEE Infocom 2006. [Skype]

Notice

- reading list and schedule are online
- presenter to be contacted one week in advance