Advanced Computer Networks

VoIP

Jianping Pan Summer 2007

Feedback on reading & summaries

- Be aware of deadlines
 - the day before the presentation
- Read papers
 - not someone else's reading summaries
- Write summaries in your own words
 - the problem, main ideas
 - strengths, weaknesses, improvement
- Ask questions
 - papers cited by this one and citing this one
 - be active in class

csc485b/586b/seng480b 2 http://www.cs.uvic.ca/~pan/485/csc485-rs.txt http://www.cs.uvic.ca/~pan/485/reading.txt

Today's topics

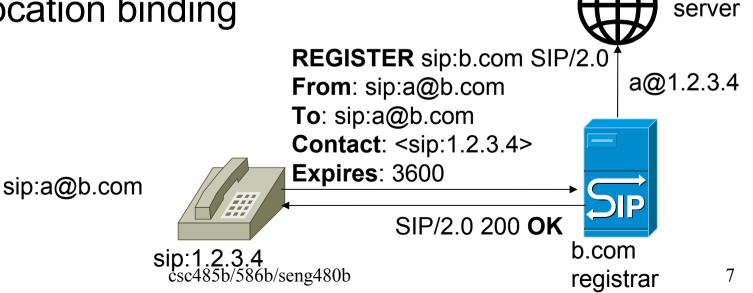
- Network support for voice over IP (VoIP)
 - application
 - session
 - transport
 - network
 - and challenges
- A peer-to-peer implementation
 - Skype

VoIP

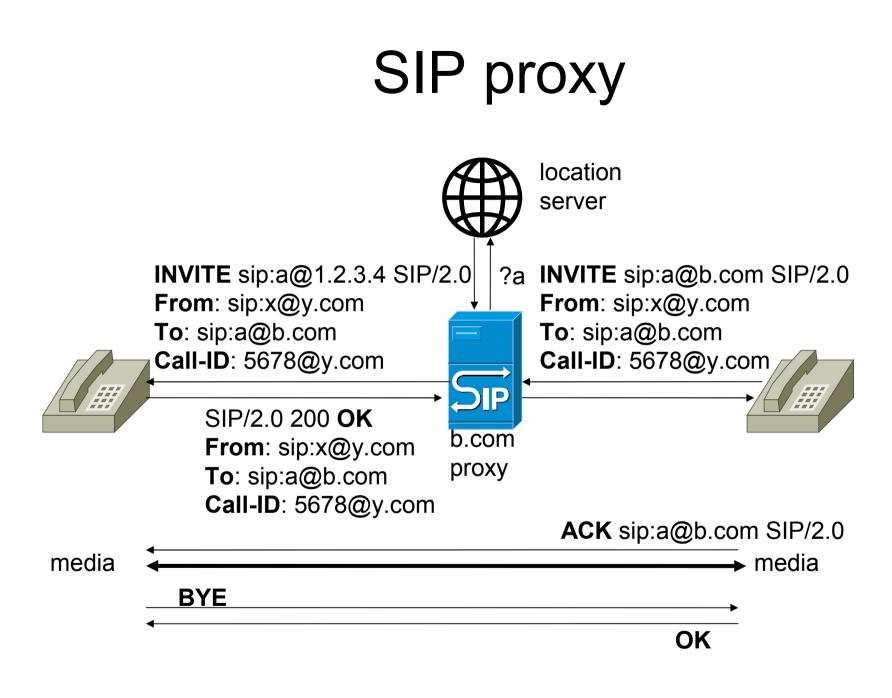
- Voice over IP
 - voice is still a major means of communication
 - trend: analog, digital, packetized
- Application requirements
 - reasonable bandwidth with a non-zero minimum
 - dependent on encoding schemes (10~100 Kbps)
 - tolerate some packet losses
 - normally less than 1%
 - sensitive to packet delay and jitter
 - one-way mouth-to-ear delay: less than 150 ms
 - average one-way delay jitter: less than 30 ms

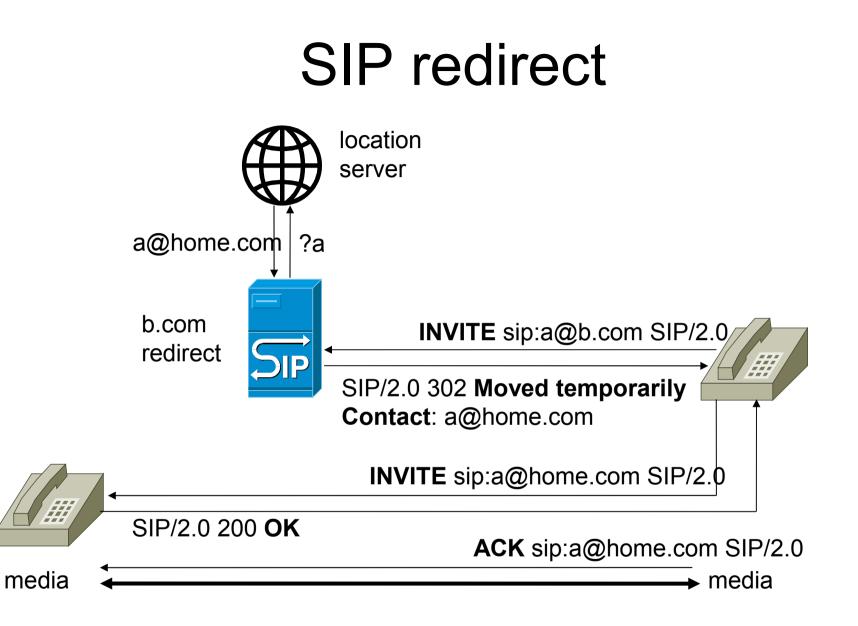
Deal with network impairments

- Packet loss (or equivalently excessive delay)
 - application impacts
 - voice clipping and skipping, decoding dependence, etc
 - application strategies
 - loss concealment: add background noise, repeat the last packet, interpolate with the next packet, etc
 - effective up to around 20 ms (about one packet)
- End-to-end delay
 - encoding and decoding
 - transmission, propagation, processing, queuing
- Delay jitter
 - playback buffering: tradeoff csc485b/586b/seng480b


5

SIP


- Session initiation protocol
 - signaling: similar to SS7 in PSTN
 - SIP is not just limited to VoIP
- SIP functions
 - setup calls
 - make changes to ongoing calls
 - terminate calls
 - and more (e.g., presence)
- SIP does not offer
 - media transport, QoS support, server control, etc


SIP operations

- Design guidelines
 - client-server model, HTTP+MIME syntax
- SIP entities
 - UA, registration, proxy, redirect server
- Registration
 - name/location binding

location

csc485b/586b/seng480b

9

Explore further: http://www.cs.columbia.edu/~hgs/sip/

SDP

- Session description protocol
 - used in SIP to describe sessions
 - include media type, network/transport parameters
 - e.g., media: media, port, protocol, format_list
 - m=audio 2000/2 RTP/AVP 0 98
 - format attributes
 - a=rtpmap:0 PCMU/8000
 - connection: net_type, add_type, address/TTL/#
 - c=IN IP4 1.2.3.4/127/3
- Ref: http://www.ietf.org/rfc/rfc4566.txt

RTP/RTCP

- Real-time transport protocol
 - does NOT guarantee real-time itself
 - but does provide mechanisms to achieve so
- RTP profile
 - Marker: e.g., the start of a talk spurt
 - <u>Payload Type: e.g.</u>, specific audio codec
 - PT=0: uPCM 64Kbps
 - PT=3: GSM 13Kbps
 - timestamp: e.g., sampling rate, 8KHz PCM
 - packet size: e.g., about 20ms samples in PCM
 - packets independent as much as possible: ALF
 - other issues: e.g., mixed audio channels

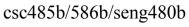
6/6/07

Explore further: http://www.cs.columbia.edu/~hgs/rtp/

11

RTCP

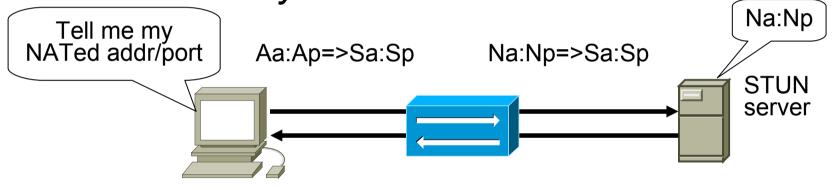
sender RTP RTCF Internet RTCF RTCF receiver


- Real-time control protocol
 - RTP's control companion
 - purpose: feedback control information
 - for flow/error/congestion/quality control
 - two consecutive UDP ports for RTP and RTCP
- Sender report
 - offer sending/reception statistics
 - NTP/RTP time stamp, byte/packet count, etc
- Receiver report
 - offer reception statistics
 - short/long-term loss ratio, time stamp, jitter, etc

NAT

- Network address translation
 - was to deal with IPv4 address shortage
 - now pervasive in all networking scenarios
- "Directional" connectivity
 - outgoing connections are OK
 - mappings are created to filter incoming packets
 - incoming connections are blocked
- Problems with VoIP applications
 - how SIP server reaches UA
 - how caller reaches callee

NAT traversal


- NAT characterization
 - full cone
 - restricted cone
 - port-restricted cone
 - symmetric cone
- NAT traversal
 - static configuration
 - UPnP (universal plug and play)
 - application-layer gateway
 - STUN, TURN (relay)
 - ICE (interactive connection establishment)

Explore further: http://www.cs.uvic.ca/~pan/seng490

STUN and TURN

- Simple traversal of UDP through NAT
 - probe and learn allocated address/port at NATs
 - work with many but not all NATs

- Traversal using relay NAT
 - request to allocate address/port at this NAT

CSC

g480b

TURN

- act as a masquerade relay

6/6/07

Challenges

- Internet: best-effort service
 - no guarantee on minimal throughput
 - excessive packet loss, excessive delay, jitter, etc
 - better than best-effort services?
- Application: client-server model
 - scalability issues
 - peer-to-peer models?
- NAT and firewall
 - NAT traversal is not bullet-proof
- Security
 - "who else can hear you?"

IP telephony examples

- Vonage: proprietary VoIP infrastructure
 - good PSTN interworking
 - SIP compatible
 - phone adapter: SIP UA and more
- Skype: without specialized infrastructure
 - better NAT traversal capability
 - with the help of other users
 - voice encryption
 - proprietary protocols
 - an peer-to-peer implementation

Student presentation

- Chun-Hung Chiu: Skype
 - [BS06] Salman A. Baset and Henning Schulzrinne,
 "An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol", IEEE Infocom 2006. [Skype]

This lecture

- VoIP and P2P
 - network support for VoIP applications
 - application, session, transport, network
 - challenges
 - from the viewpoint of applications and networks
 - Skype
 - a peer-to-peer implementation
- Explore further
 - Q and "Explore further" footnotes
 - we still know little about Skype!

Next lectures

- Congestion Control
 - June 11: [JK88] V. Jacobson and M. Karels, Congestion Avoidance and Control, In Proc. ACM SIGCOMM '88. [TCPCC]
 - June 13: [BOP94] L. Brakmo, S. O'Malley and L. Peterson TCP-Vegas: new techniques for congestion detection and avoidance, In Proc. of ACM SIGCOMM '94. [TCPVegas]
 - June 18: [PFTK98] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J., "Modeling TCP Throughput: a Simple Model and its Empirical Validation". In Proceedings of ACM S IGCOMM 1998. [TCPmodel]
 - June 20: [KDR02] Dina Katabi, Mark Handley, and Chalrie Rohrs. Congestion Control for High Bandwidth-Delay Product Networks. In the proceedings on ACM Sigcomm 2002. [XCP]
- Bring up your course project web page at the google group