Advanced Computer Networks

Congestion Control

Jianping Pan Summer 2007

Review: Internet design

- Design principles
 - store-and-forward packet switching
 - end-to-end argument
- TCP/IP protocol stack
 - IP: best-effort packet delivery
 - possible errors: loss, duplication, corruption, out-of-order
 - TCP: connection-oriented, reliable data transfer
 - connection management
 - 3-way handshake
 - flow, error and congestion control

Flow control

Problem

a fast sender to overflow a slow receiver's buffer

Approach

- stop-and-go, or
- let receiver advertise available buffer space, or
- let receiver choose the sending rate

TCP flow control

- sliding window with variable size
- advertised by the receiver: ack number, win size

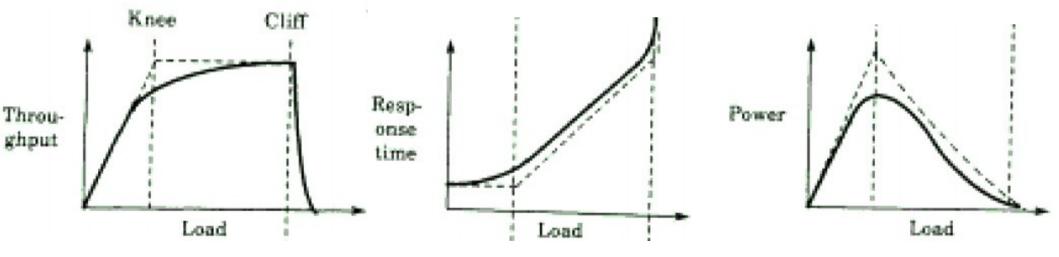
Error control

Problem

packets get lost, duplicated, corrupted, reordered

Approach

- error checking and correction
- error notification and recovery

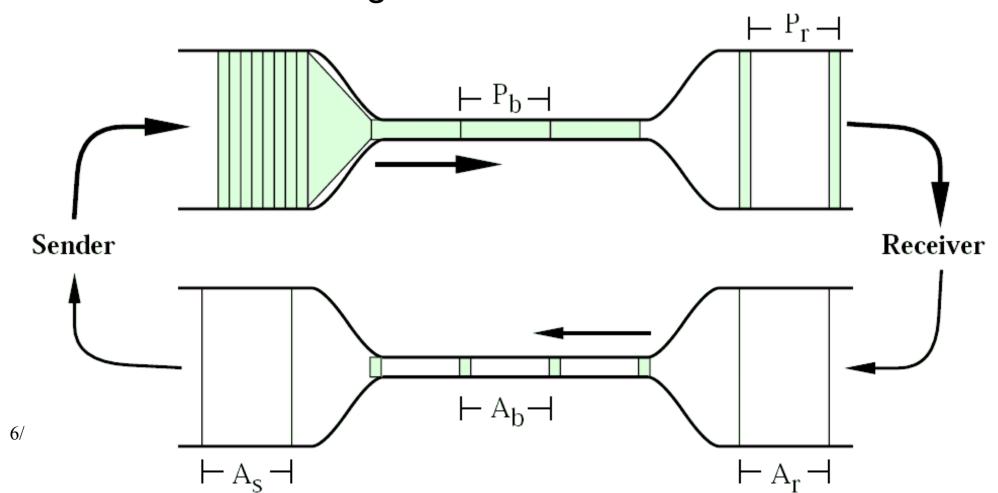

TCP error control

- sequence number, checksum
- receiver acknowledgment, sender timer
- sender retransmission

Congestion control

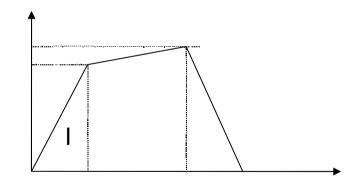
Problem

- "network buffer overflow"
- packet loss, retransmission, more packet loss
- congestion collapse

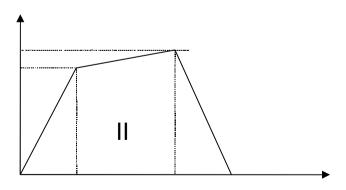


DECbit [RJ88]

- Binary feedback
 - router: set congestion bit
 - congestion detection: queue length
 - feedback filter: average since the previous renewal point
 - feedback selection: throughput fair share
 - user (endpoint): respond to congestion bit
 - signal filter: binary decision based on congestion bits
 - decision frequency
 - one rtt to get signal, another rtt to know reaction
 - increase/decrease algorithm
 - additive/multiplicative increase/decrease: 2x2
 - AIMD: additive increase: 1; multiplicative decrease: 0.875


TCP congestion control [JK88]

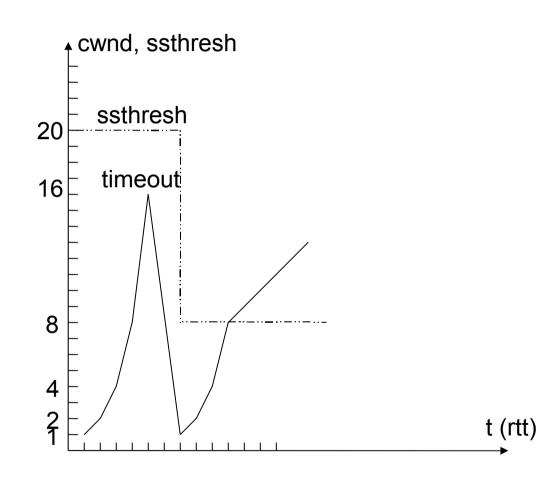
- Principle
 - packet conservation
 - "ack self-clocking"


"Slow" start

- Sender variables
 - congestion window (cwnd)
 - sender window = min {buffer size, receiver window, cwnd}
 - initially, cwnd = 1 MSS: maximum segment size
 - slow-start threshold (ssthresh)
- Slow start
 - when cwnd < ssthresh
 - on each new ack
 - cwnd += 1 MSS
 - effectively doubling cwnd every RTT


Congestion avoidance

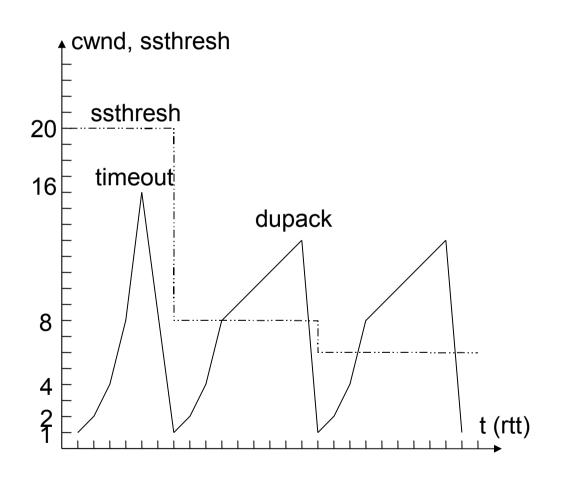
- Congestion avoidance
 - when cwnd > ssthrehsh
 - on each new ack
 - cwnd += MSS²/cwnd
 - effectively cwnd += 1 MSS every RTT
 - linear increment


Network congestion

- Packet loss signals
 - timeout
 - 3 duplicate acknowledgments
 - TCP cumulative acknowledgment
- Timeout
 - srtt = srtt + g1 (rtt srtt)
 - rttv = rttv + g2 (|rtt-srtt|-rttv)
 - rto = srtt + g3 rttv
 - g1: 0.125, g2: 0.25
 - g3: initially 2, now 4

Timeout retransmission

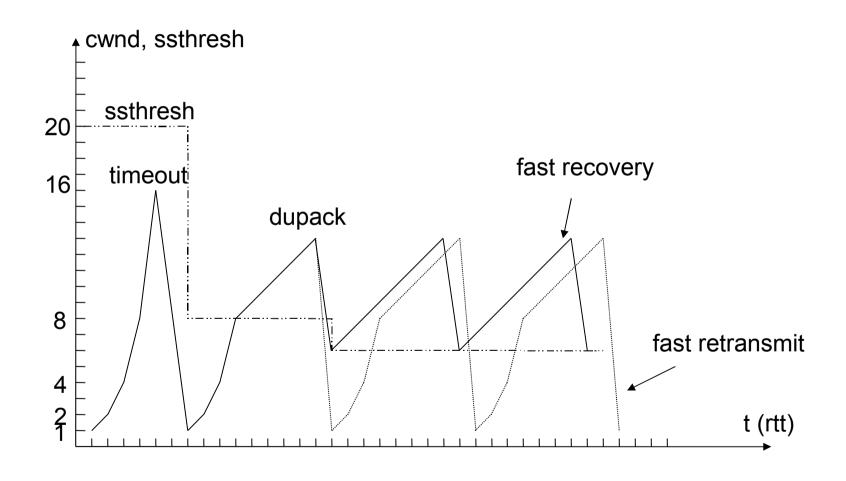
- Congestion control
 - ssthresh = cwnd / 2
 - cwnd = 1 MSS
 - followed by slow start
- Error control
 - retransmit packet
 - backoff timer
 - rto = rto * 2
 - until maxrto is reached


Fast retransmit

- Duplicate acknowledgment
 - example
 - rcv: [0, 499], [500, 999], [1500, 1999], [2000, 2499], [2500, 2999]
 - ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)
- Congestion control (fast retransmit)
 - on 3rd dupack:
 - ssthresh=cwnd/2
 - cwnd=1 MSS
 - followed by slow start
- Error control
 - retransmit: [1000,1499]

csc485b/586b/seng480b

12


Fast retransmit: cwnd

Fast recovery

- TCP Reno
 - slow start
 - congestion avoidance
 - timeout
 - on 3rd dupack, fast recovery
 - ssthresh=cwnd/2
 - cwnd=ssthresh
 - fellowed congestion avoidance
 - cwnd inflate
- Differentiate
 - timeout and dupack

Fast recovery: cwnd

More TCP variants

- TCP NewReno
 - partial acknowledgment (for multiple losses)
 - now popular over the Internet
- TCP SACK
 - selective acknowledgment
- TCP Vegas
 - delay-based congestion control
 - increased delay indicates network congestion

Challenges on TCP

- TCP over high-speed (long-delay) networks
 - limited sequence space
 - limited window size
 - TCP big window
 - "slow" congestion recovery
 - cwnd: linear increase per RTT
 - high-speed TCP, FAST, etc
 - http://www.icir.org/floyd/longpaths.html

Challenges on TCP: more

- TCP over wireless
 - packet loss
 - transmission error vs network congestion
 - http://bbcr.uwaterloo.ca/~jpan/tcpair
 - local retransmission
 - link-layer retransmission
 - reduced packet loss ratio
 - increased variability: effective bandwidth and delay
 - http://www.icir.org/floyd/tcp_small.html

This lecture

- TCP congestion control
 - basic congestion control algorithms
 - slow-start
 - congestion avoidance
 - fast transmit
 - fast recovery
 - selective acknowledgment
- Explore further
 - [FJ93] S. Floyd and V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp. 397-413, August 1993. [RED]

Next lectures

- TCP Vegas
 - delay-based congestion control
- TCP-friendly congestion control
 - TCP throughput model
- XCP
 - explicit congestion control

Bring up your course project web page by June 15