
6/11/07 csc485b/586b/seng480b 1

Advanced Computer Networks

Congestion Control

Jianping Pan
Summer 2007

6/11/07 csc485b/586b/seng480b 2

Review: Internet design

 Design principles
− store-and-forward packet switching
− end-to-end argument

 TCP/IP protocol stack
− IP: best-effort packet delivery

 possible errors: loss, duplication, corruption, out-of-order
− TCP: connection-oriented, reliable data transfer

 connection management
− 3-way handshake

 flow, error and congestion control

6/11/07 csc485b/586b/seng480b 3

Flow control

 Problem
− a fast sender to overflow a slow receiver's buffer

 Approach
− stop-and-go, or
− let receiver advertise available buffer space, or
− let receiver choose the sending rate

 TCP flow control
− sliding window with variable size
− advertised by the receiver: ack number, win size

6/11/07 csc485b/586b/seng480b 4

Error control

 Problem
− packets get lost, duplicated, corrupted, reordered

 Approach
− error checking and correction
− error notification and recovery

 TCP error control
− sequence number, checksum
− receiver acknowledgment, sender timer
− sender retransmission

6/11/07 csc485b/586b/seng480b 5

Congestion control

 Problem
− “network buffer overflow”
− packet loss, retransmission, more packet loss
− congestion collapse

6/11/07 csc485b/586b/seng480b 6

DECbit [RJ88]

 Binary feedback
− router: set congestion bit

 congestion detection: queue length
 feedback filter: average since the previous renewal point
 feedback selection: throughput fair share

− user (endpoint): respond to congestion bit
 signal filter: binary decision based on congestion bits
 decision frequency

− one rtt to get signal, another rtt to know reaction
 increase/decrease algorithm

− additive/multiplicative increase/decrease: 2x2
− AIMD: additive increase: 1; multiplicative decrease: 0.875

Q: why AIMD prevails?

6/11/07 csc485b/586b/seng480b 7

TCP congestion control [JK88]
 Principle

− packet conservation
− “ack self-clocking”

6/11/07 csc485b/586b/seng480b 8

“Slow” start
 Sender variables

− congestion window (cwnd)
 sender window = min {buffer size, receiver window, cwnd}
 initially, cwnd = 1 MSS: maximum segment size

− slow-start threshold (ssthresh)
 Slow start

− when cwnd < ssthresh
− on each new ack

 cwnd += 1 MSS
 effectively doubling cwnd every RTT

I

Q: how to determine ssthresh?

6/11/07 csc485b/586b/seng480b 9

Congestion avoidance

 Congestion avoidance
− when cwnd > ssthrehsh
− on each new ack

 cwnd += MSS2/cwnd
 effectively cwnd += 1 MSS every RTT
 linear increment

II

6/11/07 csc485b/586b/seng480b 10

Network congestion

 Packet loss signals
− timeout
− 3 duplicate acknowledgments

 TCP cumulative acknowledgment

 Timeout
− srtt = srtt + g1 (rtt - srtt)
− rttv = rttv + g2 (|rtt-srtt|-rttv)
− rto = srtt + g3 rttv
− g1: 0.125, g2: 0.25
− g3: initially 2, now 4

III

Q: why g3 increased to 4?

6/11/07 csc485b/586b/seng480b 11

Timeout retransmission

 Congestion control
− ssthresh = cwnd / 2
− cwnd = 1 MSS
− followed by slow start

 Error control
− retransmit packet
− backoff timer

 rto = rto * 2
 until maxrto is reached

1
2
4

8

16

20

timeout

ssthresh

t (rtt)

cwnd, ssthresh

6/11/07 csc485b/586b/seng480b 12

Fast retransmit

 Duplicate acknowledgment
− example

 rcv: [0, 499], [500, 999], [1500, 1999], [2000, 2499], [2500, 2999]
 ack: 500, 1000, 1000, 1000, 1000 (3rd dupack)

 Congestion control (fast retransmit)
− on 3rd dupack:

 ssthresh=cwnd/2
 cwnd=1 MSS
 followed by slow start

 Error control
− retransmit: [1000,1499]

Q: why fast retransmit is better?

6/11/07 csc485b/586b/seng480b 13

Fast retransmit: cwnd

1
2
4

8

16

20

timeout

ssthresh

dupack

t (rtt)

cwnd, ssthresh

6/11/07 csc485b/586b/seng480b 14

Fast recovery

 TCP Reno
− slow start
− congestion avoidance
− timeout
− on 3rd dupack, fast recovery

 ssthresh=cwnd/2
 cwnd=ssthresh
 fellowed congestion avoidance

− cwnd inflate
 Differentiate

− timeout and dupack
Q: why treat dupack differently?

6/11/07 csc485b/586b/seng480b 15

Fast recovery: cwnd

1
2
4

8

16

20

timeout

ssthresh

dupack

t (rtt)

cwnd, ssthresh

fast recovery

fast retransmit

6/11/07 csc485b/586b/seng480b 16

More TCP variants

 TCP NewReno
− partial acknowledgment (for multiple losses)
− now popular over the Internet

 TCP SACK
− selective acknowledgment

 TCP Vegas
− delay-based congestion control
− increased delay indicates network congestion

6/11/07 csc485b/586b/seng480b 17

Challenges on TCP

 TCP over high-speed (long-delay) networks
− limited sequence space
− limited window size

 TCP big window
− “slow” congestion recovery

 cwnd: linear increase per RTT
− high-speed TCP, FAST, etc

• http://www.icir.org/floyd/longpaths.html

6/11/07 csc485b/586b/seng480b 18

Challenges on TCP: more

 TCP over wireless
− packet loss

 transmission error vs network congestion
– http://bbcr.uwaterloo.ca/~jpan/tcpair

− local retransmission
 link-layer retransmission
 reduced packet loss ratio
 increased variability: effective bandwidth and delay

– http://www.icir.org/floyd/tcp_small.html

6/11/07 csc485b/586b/seng480b 19

This lecture

 TCP congestion control
− basic congestion control algorithms

 slow-start
 congestion avoidance
 fast transmit
 fast recovery
 selective acknowledgment

 Explore further
 [FJ93] S. Floyd and V. Jacobson, Random Early

Detection Gateways for Congestion Avoidance,
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp.
397-413, August 1993. [RED]

6/11/07 csc485b/586b/seng480b 20

Next lectures

 TCP Vegas
− delay-based congestion control

 TCP-friendly congestion control
− TCP throughput model

 XCP
− explicit congestion control

 Bring up your course project web page by June 15

