
6/18/07 csc485b/586b/seng480b 1

Advanced Computer Networks

TCP-Friendly Congestion Control

Jianping Pan
Summer 2007



6/18/07 csc485b/586b/seng480b 2

Review: congestion control

 Loss-based congestion control
− e.g., TCP Tahoe, Reno, NewReno, etc
− slow-start, congestion avoidance
− timeout retransmit
− fast retransmit, fast recovery

 Delay-based congestion control
− e.g., TCP Vegas
− more aggressive retransmission
− less aggressive congestion avoidance
− less aggressive slow start



6/18/07 csc485b/586b/seng480b 3

TCP congestion control principles

 Packet conservation with ACK self-clocking
− Q: why ACK self-clocking?
− Q: when ACK self-clocking not working well?
− Q: traffic with no ACK?

 e.g., UDP-transported CBR (constant bit rate) flow
 Additive increase multiplicative decrease

− Q: why AIMD?
 alternatives: AIAD, MIAD, MIMD, etc

− Q: the consequence of TCP AIMD
 TCP: increase by one, reduce by half
 or (1, 0.5)-AIMD



6/18/07 csc485b/586b/seng480b 4

TCP-friendly congestion control

 For non-TCP traffic
− particularly for multimedia traffic

 no TCP-like per-packet acknowledgment
 performance degrades severely due to rate-halving

− to maintain friendliness with TCP
 achieve the average throughput no more than a TCP flow 

can do under the same condition over a long time period
 Goal

− allow TCP and non-TCP traffic to coexist
 TCP traffic not adversely affected by non-TCP one
 and vice versa



6/18/07 csc485b/586b/seng480b 5

TCPFCC approaches

 Rate-based TCP-friendly congestion control
− obtain the average throughput for TCP

 Q: how to know the throughput of TCP
− under the same network condition

 e.g., packet loss ratio, round-trip time, etc
− and set sending rate properly

 AIMD-based TCP-friendly congestion control
− follow the same AIMD principle as TCP
− with different sets of AIMD parameters

 e.g., avoid rate-halving, etc
− to maintain TCP friendliness



6/18/07 csc485b/586b/seng480b 6

TCP throughput [MSMO97]

 A simple model
− steady state
− dupack only
− fast recovery only

 Sawtooth cwnd
− packets sent

− W(p)

− throughput



6/18/07 csc485b/586b/seng480b 7

Limitations

 Limitations
− sender's window = min {rwin, buffer, cwnd}
− sender is not persistent
− timeout not considered
− slow-start not considered
− short connections
− periodic loss
− some other TCP implementation details

 Upper bound
− TCP throughput



6/18/07 csc485b/586b/seng480b 8

TCP throughput [PFTK98]

 A newer model
− consider timeout

 measurement indicates timeout is quite often
− consider small receiver window

 Modeling approach
− based on “rounds”
− round: from the back-to-back transmission of W 

packets (cwnd size) till their first acknowledgment
− RTT is independent of W
− transmission time << RTT
− packet loss: tail-drop



6/18/07 csc485b/586b/seng480b 9

TD-only

 TDP: TD-period
− initial cwnd: W

i-1
/2

− increased by 1/b MSS per round
 b=2 for delayed ack

− i.e., increased by
1 MSS per b rounds

 TCP throughput



6/18/07 csc485b/586b/seng480b 10

TD and TO

 Example
− timeout after T

0

− cwnd reset to 1 MSS
− timeout again after 2T

0

 timer backoff
 TCP throughput



6/18/07 csc485b/586b/seng480b 11

s

How to determine Q

 The 2nd last round
− w packets sent
− k acknowledged

 The last round
− k more packets sent
− m duplicate

acknowledgments
for f

k+1

− either TD or TO
happens

b=1 in this example



6/18/07 csc485b/586b/seng480b 12

TCP throughput with TD and TO

 So far

 How to determine E[R]

 How to determine E[ZTO]
− TCP timer backoff

 2, 4, 8, 16, 32, 64, 64, 64, ...
− give up after a certain number of retries

 TCP throughput



6/18/07 csc485b/586b/seng480b 13

The impact of window limitation



6/18/07 csc485b/586b/seng480b 14

Limitations

 Discussion



6/18/07 csc485b/586b/seng480b 15

AIMD-based congestion control

 Follow the same AIMD principle as TCP
− with parameters other than (1, 0.5)

 Example
− one TCP and one AIMD
− fluid model when underload: AI

− fluid model when overload: MD
 r: bottleneck capacity



6/18/07 csc485b/586b/seng480b 16

TCP-friendly AIMD parameters

 Converged window size in overload state

 Average window size

 TCP-friendly condition:

 
 For two AIMD flows:



6/18/07 csc485b/586b/seng480b 17

This lecture

 TCP-friendly congestion control
− for non-TCP traffic

 ack self-clocking issue
 rate-halving problem

− two approaches
 rate-based (or equation-based)
 AIMD-based

 Explore further
− http://www.icir.org/padhye/tcp-model.html
− http://www.psc.edu/networking/tcp_friendly.html



6/18/07 csc485b/586b/seng480b 18

Next lecture

 Explicit congestion control
− [KDR02] Dina Katabi, Mark Handley, and Chalrie 

Rohrs. Congestion Control for High Bandwidth-
Delay Product Networks. In the proceedings on 
ACM Sigcomm 2002. [XCP]

 Student presentations are back
− presenters are notified one week in advance


