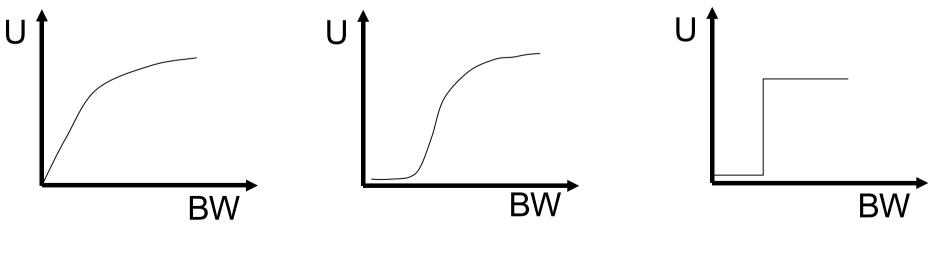
Advanced Computer Networks

Quality of Services

Jianping Pan Summer 2007

Internet design


- Current: best-effort services
 - no admission control
 - no delivery guarantee
- Elastic applications
 - tolerate delay/loss and adapt to congestion
 - e.g., bulk data transfer such as FTP, SMTP
- New "real-time" applications
 - "soft" real-time: e.g., multimedia streaming
 - "hard" real-time: e.g., interactive control

Quality of services

- Application's point of view
 - throughput guarantee
 - delay and jitter bound
 - one-way and/or two-way
 - loss tolerance
- Network's point of view
 - achievable bandwidth
 - packet delay and jitter
 - packet loss rate

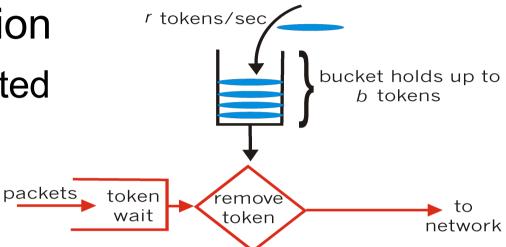
Utility functions

- Utility: user satisfaction
 - vs throughput, delay/jitter, loss, etc
- Utility curves
 - e.g., elastic, adaptive, threshold, etc

Ingredients of QoS

- Differentiation
 - be able to treat different (types of) flows differently
 - packet classification, marking
- Protection
 - one flow cannot adversely affect others
 - packet scheduling, policing
- Sharing
 - resource utilization
- Admission control

Integrated services


- IETF IntServ
 - per-flow QoS
 - flow: 5-tuple
- Service commitments
 - guaranteed, controlled load, best effort
- Service interfaces
 - T-spec, R-spec
- Packet scheduling
- Admission control

IntServ Services

- Guaranteed services
 - hard real-time applications
 - admission control, resource reservation
 - guaranteed QoS metrics
- Controlled load
 - soft real-time and adaptive application
 - measurement-based admission control
 - performance close to a lightly loaded network
- Best effort

Service interfaces

- T-spec: traffic specification
 - e.g., leaky-bucket regulated
 - (r,b)-regulated
- R-spec
 - e.g., rate reservation
- Signaling protocol
 - e.g., RSVP

Resource reservation

- RSVP messages
 - PATH
 - T-spec, AD-spec
 - RESV
 - T-spec, R-spec
- Receiver-initiated reservation
- Soft-state maintenance
- Multicast-oriented design
 - reservation filters

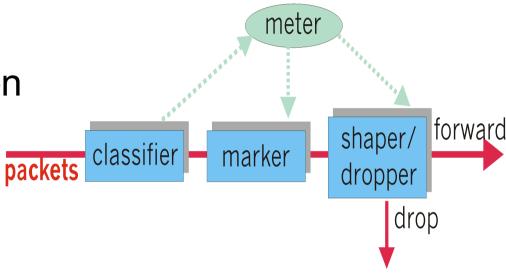
Packet scheduling

- Guaranteed services
 - (r,b)-regulated traffic
 - WFQ scheduling
 - queuing delay bound: b/r
- Predicted services
 - e.g., FIFO+

Admission control

- Guaranteed services
 - equation-based admission control
 - based on worst case traffic characteristics
 - e.g., peak data rate
- Predicted services
 - measurement-based admission control
 - based on average traffic characteristics

Issues with IntServ


- Per-flow states
 - traffic specification
 - resource reservation
 - packet classification
 - packet scheduling
- Inter-domain issues

Differentiated services

- DiffServ
 - class-based QoS
 - SLA: service-level agreement between ISPs
- Goals of DiffServ
 - scalability
 - no per-flow states
 - flexibility
 - more than just GS and CL
 - deployability
 - evolution not revolution

Edge routers

- Classification
 - based on flow information
- Metering
 - traffic measurement
- Marking
 - overload IP TOS (type-of-service): DS code point
- Conditioning
 - in-profile: forward
 - out-of-profile: drop or reshaping

Core routers: forwarding

- Expedited forwarding (EF)
 - "virtual-circuit" applications: low-loss/delay/jitter
 - a minimum rate of EF traffic
 - admission based on peak rate
 - nonconforming packets are dropped or reshaped
- Assured forwarding (AF)
 - adaptive applications: gold, silver, bronze services
 - 4 classes of bandwidth/buffer allocation
 - 3 drop preferences in each class
 - nonconforming packets are marked

Student presentation

Haoling Ma: CSFQ

 [SSZ98] I. Stoica, S. Shenker, and H. Zhang, "Core -Stateless Fair Queueing: Achieving Approximately Fair Allocations in High Speed Networks", Proc. ACM SIGCOMM, Vancouver, Canada, September 1998. [CSFQ]

Further discussion

- Research vs engineering approaches
 - QoS provisioning
 - resource overprovisioning

This lecture

- Internet quality of services
 - integrated services: fine-grained
 - differentiated services: coarse-grained
- Explore further
 - IntServ RFC 1633
 - DiffServ RFC 2475

Next lectures

- Network characterization
 - [FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos, "On Power-Law Relationships of the Internet Topology". In Proceedings of SIGCOMM '99.
 - [LAWD04] Lun Li, David Alderson, Walter Willinger, John Doyle. A First-Principles Approach to Understanding the Internet's Router-Level Topology. In SIGCOMM 2004.
- Course projects presentation
 - July 25, July 30 and August 1