Advanced Computer Networks

Network Routing

Jianping Pan Summer 2007

Internet design

- Design principles
 - store-and-forward packet switching
 - end-to-end argument
- Endpoint transport-layer protocol control
 - connection management
 - flow, error and congestion control
- What's left for network layer?
 - addressing
 - routing

Internet addressing

- IPv4 address
 - 32-bit address space
 - class-based address allocation

6/25/07

csc485b/586b/seng480b

IPv6: 128-bit address space

3

Subnetwork

- E.g., UVicNet: 142.104.0.0/16
 - class B address
- Engineering Network (EngrNet)
 - 142.104.96.0/19
 - moving to 142.104.64.0/19
- Another example

Classless Inter-Domain Routing

- CIDR addressing
 - no longer class A/B/C
 - a "class A" can be partitioned into "smaller" networks
 - a few "class C"s can be combined in a "bigger" network

University	First address	Last address	How many	Written as
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

Hierarchical addressing

- Hierarchical address allocation
 - customer, provider, APNIC/ARIN/RIPE..., ICANN

Address renumbering

Hierarchical addressing

longest prefix match

Private addressing with NAT

Internet routing

- Internet routing
 - intra-domain vs inter-domain routing
 - autonomous system (AS)
- Intra-domain routing
 - RIP: distance vector
 - OSPF: link state
- Inter-domain routing
 - BGP: path vector

Distance vector routing

Example

Count-to-infinite

Example

Routing Information Protocol

RIP

- distance vector
- included in BSD Unix since 1982
- max hops: 15
- Distance vector
 - exchanged between neighbors every 30s
 - up to 25 destinations within an AS
 - if no advertisement for 180s
 - neighbor is dead
 - invalidate routes going through the neighbor

Link state routing

Example

Open Shortest-Path First

OSPF

- using link state routing algorithm
- link state dissemination
 - flooding, directly over IP
- topology map at each node
- Dijkstra's algorithm at each node
- Hierarchical OSPF
 - intra-domain areas: backbone and areas
 - flooding in an area
 - area border routers

Hierarchical routing

Scalability: go hierarchical!

(a)

Full table for TA					
Dest.	Line	Hops			
1A	_	_			
1B	1B	1			
1C	1C	1			
2A	1B	2			
2B	1B	3			
2C	1B	3			
2D	1B	4			
ЗА	1C	3			
3B	1C	2			
4A	1C	3			
4B	1C	4			
4C	1C	4			
5A	1C	4			
5B	1C	5			
5C	1B	5			
5D	1C	6			
5E	1C	5			
	(b)				

Full table for 1A

Hierarchical table for 1A

Dest.	Line	Hops
1A	1	_
1B	1B	1
1C	1C	1
2 3	1B	2
3	1C	2
4 5	1C	3
5	1C	4

(c)

Border Gateway Protocol: basics

- BGPv4: based on distance vector
 - the de facto inter-domain routing standard
 - heavily policy-influenced, over TCP
- Reachability information
 - "you can reach X through me"
- AS path
 - "with a path of AS numbers"
 - AS: autonomous system (e.g., ISP domains)

BGP advertisement

Student presentation

- Ching-Chang Chen: HN-SPF
 - [KZ90] A. Khanna and J. Zinky, "A Revised ARPANET Routing Metric," ACM SIGCOMM '89, pp. 45-56, September 1989.

Further discussion

Internet routing

This lecture

- Internet addressing
 - class-based addressing
 - CIDR
- Internet routing
 - distance vector, link state, path vector
 - RIP, OSPF, BGP
- How to choose a "good" routing metric

Next lectures

- June 27
 - [LMJ97] C. Labovitz, G. R. Malan, and F. Jahanian, "Internet Routing Instability". In Proceedings of ACM SIGCOMM'97, September 1997.
- July 4
 - [GR00] Lixin Gao and Jennifer Rexford, "Stable Internet Routing Without Global Coordination". In Proceedings of the 2000 ACM SIGMETRICS international conference on Measurement and modeling of computer systems. 2000.