Advanced Computer Networks

Packet Scheduling

Jianping Pan Summer 2007

Review: Internet design

- Design principles
 - store-and-forward packet switching
 - end-to-end argument
- Network design
 - datagram routing
 - stateless network as much as possible

Reality check

- Internet
 - destination-oriented routing
 - inter-domain and intra-domain routing
 - drop-tail queuing
 - when buffer is full, drop incoming packets

Inside a router

Switching fabric

Packet buffering

- When buffer is full
 - drop is inevitable
 - possible choices
 - drop-tail
 - the incoming packets
 - drop-head
 - the oldest packets
 - random drop
 - other packets in the queue
- Drop can happen even before the buffer is full
 - random early drop/detection (RED)
 - choke

Packet scheduling

- Scheduling
 - "who's the next?"
- Goals
 - sharing: multiplexing
 - e.g., first-come first-serve and drop-tail
 - isolation: fairness
 - e.g., circuit switching
 - and a balance of the above two!

Fairness measures

- Max-Min fairness
 - no one gets more than required (satisfied)
 - the excess, if any, shared by unsatisfied ones
- Algorithm
 - recursive allocation
- Example
 - A, B, C, D request 1, 2, 3, 4, respectively
 - resource available: 8

Round-robin scheduling

- Round-robin
 - one unit each round
- Weighted round-robin
 - multiple units each round
 - the number of units proportional to weight
- Example
 - weight: 0.2, 0.6, 1.5

Priority scheduling

- Serve the highest priority
 - preemptive
 - non-preemptive
- Static priority can cause starvation
- Dynamic priority
 - e.g., deadline

General processor sharing

- Assumption
 - serving in infinitesimal units
 - fluid-like
- Performance bound
 - for (r,b)-regulated flows, delay is bounded by b/r
- Not implementable
 - serving packet-by-packet

Weighted fair queuing

- WFQ: packet-by-packet GPS approximation
 - calculate "finish number" in fluid model
 - in each round, one bit of active flows served
 - schedule according to finish number
- Finish number
 - if backlogged: finish number of the last packet in the same flow + packet size
 - otherwise: current round number + packet size
- Performance bound

$$\frac{b}{r_i} + \frac{(K-1)L_i}{r_i} + \sum_{m=1}^{K} \frac{L_{\text{max}}}{R_{\text{csc}} + 85b/586b/\text{seng}} + \frac{b}{r_i} + \frac{(K-1)L_i}{r_i} + \frac{1}{R_i} \frac{L_{\text{max}}}{R_i}$$

WFQ: example

- Example
 - unit service rate
 - equal weight
 - t = 0
 - packets of sizes 1, 2, 2 arrive at connection A, B, C
 - t=4
 - a packet of size 2 arrive at connection A

WFQ Example

Student presentation

- Leo Gong: IntServ
 - [CSZ92] D. Clark and S. Shenker and L. Zhang,
 "Supporting Real-Time Applications in an Integrated Services Packet Network: Architecture and Mechanism". In Proceedings of SIGCOMM '92, Baltimore, Maryland, Aug, 1992, pp 14-26. [IntServ]

Discussion

IntServ: pros and cons

This lecture

- Integrated services
 - commitments, interfaces, scheduling, admission
- Explore further
 - [DKS89] A. Demers, S. Keshav, and S. Shenker,
 "Analysis and Simulation of a Fair Queueing Algorithm". In Proceedings of ACM SIGCOMM'89, pp 3-12. [FQ]
 - [ZDESZ93] L. Zhang, S. Deering, D. Estrin, S.
 Shenker, and D. Zappala, "RSVP: A New Resource Reservation Protocol". IEEE Communications Magazine, 31(9):8-18, September 1993. [RSVP]

Next lecture

- Per-flow states?
 - [SSZ98] I. Stoica, S. Shenker, and H. Zhang,
 "Core -Stateless Fair Queueing: Achieving Approximately Fair Allocations in High Speed Networks", Proc. ACM SIGCOMM, Vancouver, Canada, September 1998. [CSFQ]