
THE FELINE JOSEPHUS PROBLEM

FRANK RUSKEY AND AARON WILLIAMS

Abstract. In the classic Josephus problem, elements 1, 2, . . . , n are placed in order around
a circle and a skip value k is chosen. The problem proceeds in n rounds, where each
round consists of traveling around the circle from the current position, and selecting the
kth remaining element to be eliminated from the circle. After n rounds, every element
is eliminated. Special attention is given to the last surviving element, denote it by j. We
generalize this popular problem by introducing a uniform number of lives `, so that elements
are not eliminated until they have been selected for the `th time. We prove two main results:
1) When n and k are fixed, then j is constant for all values of ` larger than the nth Fibonacci
number. In other words, the last surviving element stabilizes with respect to increasing the
number of lives. 2) When n and j are fixed, then there exists a value of k that allows j to
be the last survivor simultaneously for all values of `. In other words, certain skip values
ensure that a given position is the last survivor, regardless of the number of lives. For the
first result we give an algorithm for determining j (and the entire sequence of selections)
that uses O(n2) arithmetic operations.

“un gatto ha sette vite”

1. Introduction

1.1. A Fanciful Scenario. In this subsection we describe some of the history that lead to
the classic Josephus problem, and then invent a scenario that might have led to our version
of the Josephus problem.

During the first Jewish-Roman war, the military leader Josephus (ad 37 - c. 100) and 40
of his countrymen hid from the Romans in the fallen city of Yodfat. With no hope for escape,
the Jewish survivors agree to commit mass suicide rather than be captured and enslaved by
the enemy. Josephus does not agree with the others, and instead convinces them to take
part in a lethal game of chance:

“He whom the lot falls to first, let him be killed by him that hath the second
lot, and thus fortune shall make its progress through us all.” (Book 3, Chapter
8, Section 7 in The Jewish War [14].)

Whether by chance or “by the providence of God” Josephus survives this ordeal, and even-
tually becomes the Roman citizen and Jewish historian known as Titus Flavius Josephus.

By 1539, Girolamo Cardano described the situation as a mathematical puzzle [5]. Instead
of drawing lots, the 41 men form a circle and then every 3rd person around the circle is
successively selected for elimination. Using this interpretation, Josephus is recast as an
erudite scholar who quickly determined that he should stand in the 31st position to avoid
elimination.

Key words and phrases. Josephus problem, Fibonacci number, Chinese remainder theorem, Bertrand’s
postulate, number theory, algorithm.

Research supported in part by an NSERC discovery grant.
1



2 FRANK RUSKEY AND AARON WILLIAMS

In general, the classic Josephus problem has two parameters: n and k. A circle of n people
is formed, and successively every k-th person is selected for elimination. As people are killed
off, the circle shrinks, and the goal is to determine last surviving position j. In particular,
Josephus solved the first instance of the problem by determining that j = 31 when n = 41
and k = 3. In all versions of the problem, including ours, Josephus knows where the circle
begins and has the right to stand in whatever position he wishes.

Now imagine that Josephus’s countrymen agree with his orderly method of elimination,
but suspect that Josephus has already determined where to stand. For this reason, they
introduce a third parameter ` (for lives). Again the men form a circle, but this time they do
not die until they have been selected (also called “hit”) for the `-th time. Inspired by the
Italian saying that “un gatto ha sette vite” (cats have seven lives)1, we call this generalization
the Feline Josephus problem. In the original problem ` = 1.

To further complicate matters, Josephus’s countrymen hide the value of ` from their
military leader. Undeterred, Josephus agrees to this change of plans, but only under one of
the following two conditions: (a) he gets to specify a lower bound on `, or (b) he gives up his
right to specify where he stands, in exchange for choosing the value of k. Amazingly enough,
Josephus continues to survive, and the main purpose of this paper is to tell the reader how
he manages to do this.

In part, our motivation for studying (b) is the second bonus problem in Concrete Mathe-
matics [10] which asks the following:

Suppose that Josephus finds himself in a given position j, but he has a chance
to name the elimination parameter k such that every kth person is executed.
Can he always save himself?

As we will show, the answer is yes, not only for ` = 1, but for any ` ≥ 1.

1.2. Notation. The parameters to the feline Josephus problem are n (the number of people),
k (the skip factor), and ` (the number of “lives”). It is important to note that we make no
assumptions about the parameters, other than that are positive integers. In particular, k or
`, or both, could be larger than n.

When the parameters are fixed, as they usually are, we introduce the following three
notations. Let hit(i) be the ith person that is selected (or “hit”). The sequence of all
successive hits is called the hit sequence; it is

hit(1), hit(2), . . . , hit(` · n).

Let kill(i) be the ith person that is eliminated (or “killed”). Note that j = kill(n) =
hit(` · n) denotes the last surviving element. The kill sequence is

kill(1), kill(2), . . . , kill(n).

Let round(i) be the sequence of selections that take place after (but not including) the (i−1)
person is eliminated, up to (and including) the selection that eliminates the ith person. Thus
the hit sequence may be written as

round(1), round(2), . . . , round(n).

Finally, let `r(i) represent the remaining lives for person i at the end of round r. In particular,
`0(i) = ` for all i, and the last surviving element is the unique value of i such that `n−1(i) > 0.

1In some cultures the saying is “cats have nine lives.”



THE FELINE JOSEPHUS PROBLEM 3

1

5

4
3

2

1

5

4
3

2

33

Figure 1. The Josephus problem with n = 5, k = 2, ` = 1 (left) and ` = 3 (right).

Example 1: Let n = 5, k = 2, and ` = 1. Then the hit sequence is

2, 4, 1, 5, 3,

which is the same as the kill sequence. If we now set ` = 3, then we obtain the hit sequence

2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2,︸ ︷︷ ︸
round(1)

4, 1, 5, 3,

and the same kill sequence as before. The first round is indicated by the underbrace above;
the other four rounds are singletons. This example is illustrated in Figure 1; it starts at the
outer 1 and works inwards. In the figure white filled dots are persons passed over and not
hit, filled dots are persons hit, and a filled red dot is a person hit for the last time. The last
survivor, person 3, is recorded in the center.

The reason that we did not continue with the circular arcs is that they would have spiralled
around several times before hitting 3. In general it is desirable to avoid spiralling around
the circle without hitting anybody. In round r this will happen if k > n− r + 1. Obviously
the useless spirals can be eliminated by using k mod n− r + 1 in round r instead of k; to
save computation, this will be done later on in an algorithm.

One consequence of the observation in the above paragraph is that we may always reduce k
to k mod lcm{1, 2, . . . , n} without changing the hit sequence. In the OEIS lcm{1, 2, . . . , n} is
sequence A003418 [19]. The prime number theorem implies that lcm{1, 2, . . . , n} ∼ e(1+o(1)),
so it grows much slower than n!.

Example 1 is trivial in a sense, because n and k are relatively prime, (which we denote
n ⊥ k, following [10]). For larger values of ` in the example above, the hit sequence will be
(2, 4, 1, 3, 5)`−1, 2, 4, 1, 5, 3. More generally, whenever n ⊥ k the hit sequence will have the
form π`−1τ where π and τ are permutations of {1, 2, . . . , n} and τ is the kill sequence for
` = 1. Thus, the new problem is only interesting when n and k are not relatively prime. In
particular, 41 ⊥ 3 so the original instance of the Josephus problem would have been no more
interesting with cats replacing humans. Next we will consider an example in which n 6⊥ k.



4 FRANK RUSKEY AND AARON WILLIAMS

1

5

4

3

2

3

6

5

5

4

3

6

1

2

Figure 2. The Josephus problem with n = 6, k = 4, ` = 1 (left) and ` = 2 (right).

Example 2: In this example n = 6 and k = 4. See Figure 2. If ` = 1, then the hit
sequence and the kill sequence are both 4, 2, 1, 3, 6, 5. If ` = 2, then the hit sequence is
4, 2, 6, 4, 2, 1, 1, 3, 5, 6, 5, 3, and the kill sequence is 4, 2, 1, 6, 5, 3 which is different from the
kill sequence when ` = 1.

1.3. History. There are several related research problems for the original Josephus prob-
lem: characterizing and computing the last survivor kill(n) [15, 16, 9], or the ith-last
surviving element kill(n−i+1) [13, 21, 11, 20], studying the combinatorial properties of
kill(1)kill(2) · · · kill(n) as a permutation of {1, 2, . . . , n} [17, 7, 3, 6], when considering
kill(n−r+1), kill(n−r+2), . . . , kill(n) as an r-element subset of {1, 2, . . . , n} [10] (espe-
cially when r = n/2 [8]). The problem plays an interesting role in the history of combinatorics
[2], and is used for mathematical recreation [1] and education [12, 10, 18]. Variations have
also been examined [4, 20], but the feline version of the problem appears to be new.

2. Josephus meets Leonardo of Pisa

When n and k have a common factor, then the value of the last survivor is contingent
upon the value of `. As shown in Example 2, when n = 6 and k = 4, the last surviving
element is kill(n) = 5 when ` = 1, and changes to kill(n) = 3 when ` = 2.

Example 3: For a more involved example, the values of kill(n) appears below for n = 12,
k = 14642, and ` = 1, 2, . . . , 10 respectively:

kill(n) = 9, 1, 11, 11, 11, 5, 5, 5, 1, 1.

Given this example, it is natural to fix n and k, and to consider the value of kill(n) as
` →∞. A priori, the ultimate behavior of kill(n) is not clear: it could continue to fluctuate
chaotically, or could settle into a repeating pattern. The main result of this section is that
there is a single limiting value for kill(n). Furthermore, this limiting value holds whenever
` exceeds the (n + 2)nd Fibonacci number.

To prove the result, we show that the value of `r(i) (the remaining lives for element i at the
end of round r) is contained in either an “increasing” set or a “decreasing” set. By ensuring
that these two sets do not overlap, it is possible to give an explicit formula for each round(r)



THE FELINE JOSEPHUS PROBLEM 5

(the hits between the (r− 1)st and rth elimination). One consequence of this formula is the
value of the last surviving element. Define the increasing set and decreasing set respectively
as

I(r) = {0, 1, 2, . . . , Fr} and D(r) = {`, `− 1, . . . , `− Fr+1 + 1},
where Fi denotes the ith Fibonacci number. As usual the Fibonacci numbers are defined as,
F0 = 0, F1 = 1, and Fi = Fi−2 + Fi−1 for all i ≥ 2. Note that

I(0) ⊆ I(1) ⊆ · · · ⊆ I(n) and D(0) ⊆ D(1) ⊆ · · · ⊆ D(n).

Lemma 1. Let n and k be fixed positive integers. Then for any i satisfying 1 ≤ i ≤ n and
any r satisfying 0 ≤ r ≤ n,

(1) `r(i) ∈ I(r) ∪ D(r).

Proof. Our proof is by induction on r. The result is true when r = 0 since `0(i) = ` and
D(0) = {`}. Now assume that (1) holds for all rounds previous to round r. We will use this
assumption to prove that (1) holds for round r.

When I(r) and D(r) have a value in common then (1) certainly holds since the union of
these two sets includes {0, 1, . . . , `}. Therefore, we may assume that the maximum value of
I(r) is strictly less than the minimum value of D(r). It is also safe to ignore the case when
i has been eliminated, since then `r(i) = 0 and (1) clearly holds. Similarly, if i does not
appear in round(r) then (1) holds by induction.

In the remaining case, let y = kill(r). Notice that `r−1(y) ≤ `r−1(i). Furthermore, i
must appear in round(r) either the same number of times as y, or one time fewer than y.
That is,

`r(i) ∈ {`r−1(i)− `r−1(y), `r−1(i)− `r−1(y) + 1}.
Inductively,

{`r−1(i), `r−1(y)} ⊆ I(r − 1) ∪ D(r − 1)

and so there are four cases depending on which sets contain these two values. However, it
is not possible for `r−1(i) ∈ I(r − 1) and `r−1(y) ∈ D(r − 1) since `r(y) ≤ `r(i) and our
assumption that the maximum value of I(r) is strictly less than the minimum value of D(r).
Furthermore, if `r−1(i) ∈ I(r− 1) and `r−1(y) ∈ I(r− 1) then obviously `r(i) ∈ I(r− 1) and
so (1) follows from I(r − 1) ⊆ I(r). This leaves two cases to consider.

If `r−1(i) ∈ D(r − 1) and `r−1(y) ∈ I(r − 1) then

`r(i) ≥ min(D(r − 1))−max(I(r − 1))

= `− Fr + 1− Fr−1

= `− Fr+1 + 1

= min(D(r)).

On the other hand, if `r−1(i) ∈ D(r − 1) and `r−1(y) ∈ D(r − 1) then

`r(i) ≤ max(D(r − 1))−min(D(r − 1)) + 1

= `− (`− Fr + 1) + 1

= Fr

= max(I(r)).

Therefore, `r(i) ∈ I(r) ∪ D(r) as claimed, and so (1) is true by induction. ¤



6 FRANK RUSKEY AND AARON WILLIAMS

Lemma 1 proved that the remaining number of lives at the end of each round are always
contained in the increasing or the decreasing set. The next lemma says that these two sets
are disjoint, so long as ` is chosen to be large enough.

Lemma 2. If ` ≥ Fn+2, then the maximum value in I(r) is less than the minimum value in
D(r) for all 0 ≤ r ≤ n.

Proof.

max(I(r)) = Fr

= Fr+2 − Fr+1

< Fr+2 − Fr+1 + 1

≤ `− Fr+1 + 1

= min(D(r)).

¤

2.1. Algorithmic Implications. Assuming the ` is large enough, we will now show that it
is possible to represent the hit sequence by a data structure that uses O(n2) space and that
can be constructed in O(n2) time. For example, let us consider the scenario discussed at the
beginning of this section. When n = 12, k = 14642, and ` ≥ 9, we will show below that the
hit sequence for the feline Josephus problem is the following sequence of length n` = 12 · `.

(2) (2, 4, 6, 8, 10, 12)`−1, 2, 3, 4, 6, 3, 1, 12, (3, 7, 9, 11)`−3, 3,

10, (1, 7, 9)2, 1, 7, 9, 1, 8, (1, 11, 5)2, 1, 11, 5`−2, 1`−8.

Notice that this sequence immediately implies that the last surviving element is 1 whenever
` ≥ 9. The remainder of this section describes how sequences of this form can be constructed
algorithmically. The strings are guaranteed to represent the hit sequence for all ` ≥ Fn+2,
although the above example illustrates that the string often represents the hit sequence for
smaller values of ` as well.

Recall that the hit sequence is obtained by concatenating the sequences round(r) for
r = 1, 2, . . . , n. We will show that the sequence for round(r) can be expressed as πhτ where
π is a sequence of unique elements from {1, 2, . . . , n}, as is τ . Either π or τ may be empty.

Let us first consider the problem of constructing a table of the values of `r(i) for i =
1, 2, . . . , n and r = 0, 1, . . . , n. This process is best illustrated by an example, which is
the same as the one that started this subsection. The following table shows the values of
n− r + 1 mod 14642.

mod 12 11 10 9 8 7 6 5 4 3 2 1
14642 2 1 2 8 2 5 2 2 2 2 0 0

Table 1 shows `r(i) for our example. The rounds are shown below. We discuss how the
table and rounds are obtained in the following paragraph.



THE FELINE JOSEPHUS PROBLEM 7

rounds r
`r(i) 0 1 2 3 4 5 6 7 8 9 10 11 12
i = 1 ` ` ` ` `−1 `−1 `−1 `−4 `−4 `−5 `−8 `−8 0
i = 2 ` 0 · · · · · · · · · · ·
i = 3 ` ` `−1 `−1 `−2 0 · · · · · · ·
i = 4 ` 1 0 · · · · · · · · · ·
i = 5 ` ` ` ` ` ` ` ` ` ` `−2 0 ·
i = 6 ` 1 1 0 · · · · · · · · ·
i = 7 ` ` ` ` ` 3 3 0 · · · · ·
i = 8 ` 1 1 1 1 1 1 1 1 0 · · ·
i = 9 ` ` ` ` ` 3 3 1 0 · · · ·

i = 10 ` 1 1 1 1 1 0 · · · · · ·
i = 11 ` ` ` ` ` 3 3 3 3 3 0 · ·
i = 12 ` 1 1 1 0 · · · · · · · ·

Table 1. A table of `r(i) when n = 12, k = 14642, and ` is sufficiently large.
The dots (·) indicate the value 0.

round(1) = (2, 4, 6, 8, 10, 12)`−1, 2 round(2) = 3, 4

round(3) = 6 round(4) = 3, 1, 12

round(5) = (3, 7, 9, 11)`−3, 3 round(6) = 10

round(7) = (1, 7, 9)2, 1, 7 round(8) = 9

round(9) = 1, 8 round(10) = (1, 11, 5)2, 1, 11

round(11) = 5`−2 round(12) = 1`−8

The table is constructed column-by-column. Initially, we set `0(i) = `. To determine
column r from column r − 1, one needs to know the following information:

• kill(r − 1) (the element eliminated at the end of the previous round)
• `r−1(i) (the remaining lives at the end of the previous round)
• k mod n− r + 1 (to determine the subset of elements that will be hit).

Starting at kill(r − 1), some subset of survivors will be repeatedly and cyclicly hit until
some survivor’s life is reduced to one — the exact subset, call it S, depending on the value
of k mod n− r + 1. That sequence of hits can be written as πh where π is a permutation of
S and h = −1 + min{`r−1(i) : i ∈ S}. Thereafter, the hitting continues in the order π until
the first person with one life is hit; this person is kill(r). This last sequence of hittings
is some prefix of π, call it τ . The elements of τ form some subset of S, call it T . (When
h = 0, it is natural to write round(r) = πhτ = τ . Similarly, when π = τ , it is natural to
write round(r) = πhτ = πh+1.) This technique for representing round(r) as a sequence of
the form πhτ can always be followed, regardless of the value of `.

It should also be clear that we can update the values of `r(i) from the information that we
obtained in determining round(r) = πhτ . First, if i 6∈ S, then `r(i) = `r−1(i). If i ∈ S and i ∈
τ , then `r(i) = `r(i)−`r−1(kill(r)). If i ∈ S and i 6∈ τ , then `r(i) = `r(i)−`r−1(kill(r))−1.



8 FRANK RUSKEY AND AARON WILLIAMS

Lemmas 1 and 2 show that the values of `r(i) can be uniquely expressed as g or ` − g
(where g ≤ Fn+1), regardless of the specific value of ` ≥ Fn+2. That is why we left ` as a
variable in Table 1. Furthermore, the values of the form g are always less than the values of
the form `− g whenever ` ≥ Fn+2. Therefore, τ is uniquely determined by π. The exponent
h can also be uniquely expressed as g or ` − g, where g ≤ Fn+1. In particular, the last
element of round(n) is the final surviving element.

Theorem 1. Given fixed values of n and k, the last surviving element kill(n) is constant
in the feline Josephus problem for all ` ≥ Fn+2.

We now argue that the values `r(i) for i = 1, 2, . . . , n can be determined in time O(n).
First we put the non-zero values of `r−1(i) into an array of size n− r + 1. This will allow us
to advance by k mod n − r + 1 in constant time, which in turn will allow us to determine
the set S and then the set T in O(n) time. It should be clear that the remaining part of
the update is O(n). Thus the entire table can be computed in O(n2) operations. We can
compute π and τ for each round at the same time, also in O(n2) operations.

Of course other information can be efficiently recovered from the rounds if they are stored
in an appropriate data structure, say an array that indexes into the information for each
round. That information would include π, τ , and h. In particular, the kill sequence can be
recovered in O(n) time. To repeatedly determine a single value of hit(t) we would want to
keep a running total of the number of elements occurring in previous rounds. These totals
would be stored as symbolic expressions of the form a` + b for some integers a and b. We
could then use binary search to determine the round r in which has the tth hit in time
O(log n). Once we have r, determining hit(t) takes constant time.

3. Saving Josephus

This section supposes that n is fixed, and that Josephus is assigned to a given position
around the circle. In Concrete Mathematics [10] it is shown that Josephus can always save
himself in this scenario, so long as he is allowed to choose the value of k. We prove that this
result can be extended to the feline Josephus problem by constructing a suitable value of k.
Furthermore, the constructed value of k does not depend on the specific value of `.

As in [10], our solution relies on basic principles from number theory including the Chinese
Remainder Theorem (CRT), and Bertrand’s Postulate. We use a|b when a divides b, and
lcmS for the least common multiple of a set of integers S. After the proof, we point out
why the solution in [10] does not generalize to the feline Josephus problem.

Theorem 2. Suppose n and j are fixed and satisfy 1 ≤ j ≤ n, and ` is an arbitrary positive
integer. There exists a value of k such that kill(n) = j.

Proof. If j = n then k = 1 suffices. If j = 1 then k = lcm{1, 2, . . . , n} suffices. If n = 2 then
any even k suffices for j = 1, while any odd k suffices for j = 2. Therefore, assume 1 < j < n
and n > 2. Bertrand’s postulate implies there is a prime p satisfying n/2 < p < n. Let P
represent the non-empty set {2, 3, . . . , n} − {p}. Notice that p ⊥ i for all i ∈ P. Therefore,
p ⊥ lcmP. We now split our construction into two cases depending on the value of j. The
kill sequences for these two cases are illustrated in Figure 3.

Case One: n/2 ≤ j < n. This case will be solved by constructing a value of k that
results in the following hit sequence

(3) (1, 2, . . . , n)`−1, 1, 2, . . . , n−p, j+1, j+2, . . . , n, n−p+1, n−p+2, . . . , j.



THE FELINE JOSEPHUS PROBLEM 9

p

Case One. Case Two.

A
A

B
B

C

1n

p

j

n− p

C

n− p

1n

j

Figure 3. An illustration of the kill sequences in the two cases of Theorem
2. In each case the kill sequence is A, followed by B, followed by C.

This string is valid for all ` ≥ 1 and gives j as the last surviving element. To achieve this
hit sequence, we choose k so that it satisfies the following congruences

k ≡ 1 mod lcmP(4)

k ≡ j + 1− n mod p.(5)

This choice of k is possible by the CRT. The congruence (4) implies the following congruences

(6) k ≡ 1 mod i for all i ∈ P.

Now that the values of k modulo 1, 2, . . . , n have been determined, we can verify that
(3) is indeed the hit sequence. This will be explained in three steps. First, the prefix
(1, 2, . . . , n)`−1, 1, 2, . . . , n−p follows immediately from (6). Second, (5) implies that the
next element selected and removed is j+1. Third, (6) implies that the remaining elements
selected and removed are j+2, j+3 . . . , n, n−p+1, n−p+2, . . . , j.

Case Two: 1 < j < n/2. This case will be solved by constructing a value of k that
results in the following hit sequence

(7) n`, (n−1)`, . . . , (p+1)`, π`−1, j−1, j−2, . . . , 1, p, p−1, . . . , j

where π is a permutation of {1, 2, . . . , p} beginning with j − 1. This string is valid for all
` ≥ 1 and gives j as the last surviving element. To achieve this hit sequence, we choose k so
that it satisfies the following congruences

k ≡ 0 mod lcmP(8)

k ≡ j − 1 mod p.(9)

This choice of k is possible by the CRT. The congruence (8) implies the following congruences

(10) k ≡ 0 mod i for all i ∈ P.

Now that the values of k modulo 1, 2, . . . , n have been determined, we can verify that
(7) is indeed the hit sequence. This will be explained in three steps. First, the prefix
n`, (n−1)`, . . . , (p+1)` follows immediately from (10). Second, (9) and j − 1 ⊥ p imply
that the next round is π`−1, j−1 where π is some permutation of {1, 2, . . . , p} that begins
with j − 1. Third, (10) implies that the remaining elements selected and removed are
j−2, j−3, . . . , 1, p, p−1, . . . , j. ¤



10 FRANK RUSKEY AND AARON WILLIAMS

This section concludes with a result that holds for the Josephus problem but not the feline
Josephus problem. Consider the following hit sequences

3, 6, 4, 2, 5, 1 4, 1, 3, 5, 2, 6.

The hit sequence on the left is for n = 6 and k = 3 and ` = 1, while the hit sequence on the
right is for n = 6 and k = 58 and ` = 1. Notice that respective values in these hit sequences
sum to n + 1 = 7. In other words, k = 6 and k = 58 provide identical hit sequences except
they proceed in opposite clockwise/counter-clockwise directions around the circle. More
generally, k and lcm {1, 2, . . . , n} − k + 1 provide directionally-opposite hit sequences when
n is fixed and ` = 1. On the other hand, consider the following hit sequences

3, 6, 3, 6, 4, 2, 1, 5, 4, 2, 5, 1 4, 2, 6, 4, 1, 5, 2, 5, 6, 3, 3, 1.

The hit sequence on the left is for n = 6 and k = 3 and ` = 2, while the hit sequence
on the right is for n = 6 and k = 58 and ` = 2. Notice that the hit sequences are no
longer directionally-opposite, even when considering only the last surviving element. This
observation led to the two-case proof of Theorem 2 that was not necessary in [10].

4. Open Problems

This paper has introduced a new variation of the Josephus problem known as the feline
Josephus problem. Sections 2 and 3 have demonstrated that there are fun algorithmic and
number theoretic problems that can be asked and solved within this generalized setting.
This section suggests additional open problems arising from different perspectives, and then
closes with an application of the algorithm from Section 2.1.

From an algorithmic perspective, it is natural to ask how efficiently the last surviving
element j can be computed for arbitrary values of n, k, and `. Similar questions are also
natural for the kill sequence, hit sequence, and σ(n) (discussed below).

From a mathematical perspective, it is natural to ask when the value of the last surviving
element j can be characterized, either directly or in terms of the original Josephus problem.
For example, we have already seen that the value of j does not depend on ` whenever n and
k are relatively prime. For this reason, it may be useful to next consider situations where n
is a prime power that is not relatively prime with k.

From an artistic perspective, it is interesting to consider the spiral drawings found in
Figures 1 and 2. Determining the number of spirals that appear in one of these drawings
is equivalent to asking the following question: Given n, k, and `, how many times does one
have to travel around the circle until the last surviving element is obtained.

From the perspective of a person who wishes to avoid any pain as long as possible, what
can be proven about the last person to be hit for the first time? In the original ` = 1
Josephus problem, the last person to be hit is kill(n). However, this is not necessarily true
for ` > 1. For example, the end of hit sequence for n = 12, k = 14642, and ` > 8 is restated
from (2) is . . . 10, (1, 7, 9)2, 1, 7, 9, 1, 8, (1, 11, 5)2, 1, 11, 5`−2, 1`−8. Notice that kill(n) = 1,
whereas element 5 is the last element to be hit for the first time (in round 10). To provoke
further questions, consider the following hit sequence for n = 6, k = 10, and ` ≥ 2:

(4 2 6)`−1 4, 3`, 6, 1 2, 1`−1, 5`.

Notice that the last surviving element 5 is not hit until the final round. When do situations
like this occur, and is there at least one such value of k for every value of n?



THE FELINE JOSEPHUS PROBLEM 11

Perhaps the most natural open problem is motivated by running the algorithm outlined
in Section 2.1. For example, Table 2 contains output for n = 3, 4, 5, 6 and all k modulo
lcm {1, 2, . . . , n}. From this table it is clear that the Fibonacci bound discussed in Section
2 is not tight. For example, in the n = 6 column of Table 2, `− 2 is the exponent with the
lowest negative integer. Therefore, all of the hit sequences for n = 6 are valid for ` ≥ 3, as
opposed to the bound ` ≥ F8 = 55 from Theorem 1. More generally, let σ(n) be the lowest
negative integer exponent in a hit sequence for n elements generated by our algorithm. The
following values show σ(n) in comparison with Fn+2 for n = 1, 2, . . . , 14.

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
σ(n) 1 1 1 1 1 3 3 4 6 6 6 9 9 11
Fn+2 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Notice that for small values of n, the correct bound for σ(n) appears to be closer to n than
Fn+2. Tightening the bound on σ(n) promises further number theoretic and algorithmic fun.

References

[1] W. W. Rouse Ball and H. S. M. Coxeter. Mathematical Recreations and Essays. Dover Publications,
1987.

[2] N. L. Biggs. The roots of combinatorics. Historia Math., 6(2):109–136, 1979.
[3] Sarah Breede and Christy Finch. Fixed points of the (n, 3)-Josephus permutations. The Journal of the

Summer Undergraduate Mathematical Science Research Institute (SUMSRI), 2001.
[4] Sarah Burke and Robert Davis. The ABBA modification of the Josephus problem. The Journal of the

Summer Undergraduate Mathematical Science Research Institute (SUMSRI), 2001.
[5] Girolamo Cardano. Practica Arithmetice et Mensurandi Singularis. 1539.
[6] Ledah Casburn and Tuyet-Linh Phan. The orthogonal Josephus problem. The Journal of the Summer

Undergraduate Mathematical Science Research Institute (SUMSRI), 2001.
[7] James Dowdy and Michael E. Mays. Josephus permutations. J. Combin. Math. Combin. Comput.,

6:125–130, 1989.
[8] Martin Gardner. Mathematical Puzzles of Sam Loyd, volume 2. Dover Publications, 1960.
[9] Fatih Gelgi and Errol L. Lloyd. Josephus: an improved algorithm for finding the sole survivor, unpub-

lished manuscript. 2002.
[10] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Adison Wesley, 1994.
[11] Lorenz Halbeisen and Norbert Hungerbhler. The Josephus problem. J. Théor. Nuombres Bordeaux.,

9:303–318, 1997.
[12] I.N. Herstein and I. Kaplansky. Matters Mathematical. Harper & Row, 1974.
[13] F. Jakobczyk. On the generalized Josephus problem. Glasgow Mathematical Journal, 14:168–173, 1973.
[14] Titus Flavius Josephus. The Jewish War. 75. ISBN 0-14-044420-3.
[15] Errol L. Lloyd. An o(n log m) algorithm for the Josephus problem. J. Algorithms, 4(3):262–270, 1983.
[16] Andrew M. Odlyzko and Herbert S. Wilf. Functional iteration and the Josephus problem. Glasgow

Mathematical Journal, 33(2):235–240, 1991.
[17] W. J. Robinson. The Josephus problem. Math. Gaz., 4:47–52, 1960.
[18] Susan H. Rodger. Using hands-on visualizations to teach computer science from beginning courses to

advanced courses, 2002.
[19] N. J. A. Sloane. The on-line encyclopedia of integer sequences. http://www.research.att.com/~njas/

sequences/A003418.
[20] N. Theérialut. Generalizations of the Josephus problem. Util. Math., 58:161–173, 2000.
[21] D. Woodhouse. The extended Josephus problem. Rev. Mat. Hisp.-Amer., 4(33):207–218, 1973.

Dept. of Computer Science, University of Victoria, Canada.

Dept. of Computer Science, University of Victoria, Canada.



12 FRANK RUSKEY AND AARON WILLIAMS

n = 3 n = 4 n = 5 n = 6

k = 1 (123)`−11, 2, 3 (1234)`−11, 2, 3, 4 (12345)`−11, 2, 3, 4, 5 (123456)`−11, 2, 3, 4, 5, 6

k = 2 (213)`−12, 1, 3 (24)`−12, 4, 3`, 1` (24135)`−12, 4, 1, 5, 3 (246)`−12, 4, 6, (315)`−13, 1, 5

k = 3 3`, (12)`−11, 2 (3214)`−13, 2, 4, 1 (31425)`−13, 1, 5, 2, 4 (36)`−13, 6, (4215)`−14, 2, 5, 1

k = 4 (123)`−11, 3, 2 4`, (123)`−11, 3, 2 (43215)`−14, 3, 5, 2, 1 (426)`−14, 2, 1`, 356, 5`−1, 3`−1

k = 5 (213)`−12, 3, 1 (1234)`−11, 3, 4, 2 5`, (1234)`−11, 3, 4, 2 (543216)`−15, 4, 6, 2, 3, 1

k = 6 3`, 2`, 1` (24)`−12, 1`, 4, 3` (12345)`−11, 3, 2, 5, 4 6`, (12345)`−11, 3, 2, 5, 4

k = 7 (3214)`−13, 4, 1, 2 (24135)`−12, 5, 1, 3, 4 (123456)`−11, 3, 6, 2, 4, 5

k = 8 4`, (213)`−12, 1, 3 (31425)`−13, 2, 5, 4, 1 (246)`−12, 536, 5`−1, 314, 3`−2, 1`−1

k = 9 (1234)`−11, 4, 2, 3 (43215)`−14, 5, 3, 1, 2 (36)`−13, 16, (1245)`−21, 52, (24)12, 4

k = 10 (24)`−12, 34, 3`−1, 1` 5`, (24)`−12, 34, 3`−1, 1` (426)`−14, 3`, 6, 12, 1`−1, 5`

k = 11 (3214)`−13, 1, 2, 4 (12345)`−11, 4, 2, 3, 5 (543216)`−15, 6, 3, 1, 2, 4

k = 12 4`, 3`, 2`, 1` (24135)`−12, 1, 5, 4, 3 6`, (24135)`−12, 1, 5, 4, 3

k = 13 (31425)`−13, 4, 5, 1, 2 (123456)`−11, 4, 5, 6, 2, 3

k = 14 (43215)`−14, 1, 3, 2, 5 (246)`−12, 6, (35)`−13, 5, 4, 1`

k = 15 5`, (3214)`−13, 2, 4, 1 (36)`−13, 2`, 6, 5`, (14)`−11, 4

k = 16 (12345)`−11, 5, 2, 4, 3 (426)`−14, 56, 5`−1, 12, 1`−1, 3`

k = 17 (24135)`−12, 3, 5, 1, 4 (543216)`−15, 1, 2, 4, 6, 3

k = 18 (31425)`−13, 5, 4, 2, 1 6`, (31425)`−13, 5, 4, 2, 1

k = 19 (43215)`−14, 2, 3, 5, 1 (123456)`−11, 5, 3, 4, 6, 2

k = 20 5`, 4`, (213)`−12, 1, 3 (246)`−12, 1`, 6, 4, 3`, 5`

k = 21 (12345)`−11, 2, 5, 3, 4 (36)`−13, 456, (1245)`−2124, 2, 5, 1

k = 22 (24135)`−12, 4, 5, 3, 1 (426)`−14, 6, 2, (351)`−13, 1, 5

k = 23 (31425)`−13, 1, 4, 5, 2 (543216)`−15, 2, 6, 3, 4, 1

k = 24 (43215)`−14, 3, 2, 1, 5 6`, (43215)`−14, 3, 2, 1, 5

k = 25 5`, (1234)`−11, 2, 3, 4 (123456)`−11, 6, 2, 3, 4, 5

k = 26 (12345)`−11, 3, 5, 4, 2 (246)`−12, 34, 6, (315)`−23, 12, 52

k = 27 (24135)`−12, 5, 4, 1, 3 (36)`−13, 5146, (4215)`−24, 22, 5, 1

k = 28 (31425)`−13, 2, 4, 1, 5 (426)`−14, 152, 1`−1, 356, 5`−2, 3`−1

k = 29 (43215)`−14, 5, 2, 3, 1 (543216)`−15, 3, 4, 1, 2, 6

k = 30 5`, (24)`−12, 1`, 4, 3` 6`, 5`, (24)`−12, 1`, 4, 3`

k = 31 (12345)`−11, 4, 5, 2, 3 (123456)`−11, 2, 5, 6, 3, 4

k = 32 (24135)`−12, 1, 4, 3, 5 (246)`−12, 4, 3`, 6, 5`, 1`

k = 33 (31425)`−13, 4, 2, 5, 1 (36)`−13, 6, (1245)`−11, 5, 2, 4

k = 34 (43215)`−14, 1, 2, 5, 3 (426)`−14, 2, (51)`−15, 6, 3`, 1

k = 35 5`, (3214)`−13, 1, 2, 4 (543216)`−15, 4, 2, 6, 1, 3

k = 36 (12345)`−11, 5, 4, 3, 2 6`, (12345)`−11, 5, 4, 3, 2

k = 37 (24135)`−12, 3, 4, 5, 1 (123456)`−11, 3, 4, 5, 6, 2

k = 38 (31425)`−13, 5, 2, 1, 4 (246)`−12, 536, (35)`−23, 5, 4, 1`

k = 39 (43215)`−14, 2, 1, 3, 5 (36)`−13, 16, (4215)`−2421, 52, 2, 4

k = 40 5`, 4`, (123)`−11, 3, 2 (426)`−14, 3`, 2, 56, 5`−1, 1`

k = 41 (12345)`−11, 2, 4, 5, 3 (543216)`−15, 6, 1, 3, 4, 2

k = 42 (24135)`−12, 4, 3, 1, 5 6`, (24135)`−12, 4, 3, 1, 5

k = 43 (31425)`−13, 1, 2, 4, 5 (123456)`−11, 4, 2, 3, 5, 6

k = 44 (43215)`−14, 3, 1, 5, 2 (246)`−12, 6, 5`, 314, 3`−1, 1`−1

k = 45 5`, (1234)`−11, 4, 2, 3 (36)`−13, 2`, 456, 5`−1, (14)`−1, 1

k = 46 (12345)`−11, 3, 4, 2, 5 (426)`−14, 56, 2, (351)`−235, 3, 12

k = 47 (24135)`−12, 5, 3, 4, 1 (543216)`−15, 1, 4, 2, 3, 6

k = 48 (31425)`−13, 2, 1, 5, 4 6`, (31425)`−13, 2, 1, 5, 4

k = 49 (43215)`−14, 5, 1, 2, 3 (123456)`−11, 5, 6, 2, 3, 4

k = 50 5`, (24)`−12, 4, 3`, 1` (246)`−12, 1`, 4, 6, 5`, 3`

k = 51 (12345)`−11, 4, 3, 5, 2 (36)`−13, 456, (4215)`−24, 22, 5, 12

k = 52 (24135)`−12, 1, 3, 5, 4 (426)`−14, 6, 5`, 12, 1`−1, 3`

k = 53 (31425)`−13, 4, 1, 2, 5 (543216)`−15, 2, 3, 6, 1, 4

k = 54 (43215)`−14, 1, 5, 3, 2 6`, (43215)`−14, 1, 5, 3, 2

k = 55 5`, (3214)`−13, 4, 1, 2 (123456)`−11, 6, 4, 5, 2, 3

k = 56 (12345)`−11, 5, 3, 2, 4 (246)`−12, 34, 3`−1, 6, 5`, 1`

k = 57 (24135)`−12, 3, 1, 4, 5 (36)`−13, 5146, (1245)`−21, 5, 24, 2

k = 58 (31425)`−13, 5, 1, 4, 2 (426)`−14, 152, (51)`−25, 6, 3`, 1

k = 59 (43215)`−14, 2, 5, 1, 3 (543216)`−15, 3, 1, 4, 6, 2

k = 60 5`, 4`, 3`, 2`, 1` 6`, 5`, 4`, 3`, 2`, 1`

Table 2. Hit sequences for 3 ≤ n ≤ 6, 1 ≤ k ≤ lcm {1, 2, . . . , n} and ` ≥
Fn+2. Commas appear only at the end of each round.


