
Teaching the Art of Computer Programming (TAOCP)

Frank Ruskey
∗

Dept. of Computer Science
University of Victoria

Victoria, B.C., V8W 3P6
(last-name)@cs.uvic.ca

ABSTRACT
Donald Knuth’s magnum opus, The Art of Computer Pro-
gramming (TAOCP), is often bought, frequently cited, some-
times browsed, occasionally read, but almost never used for
teaching. The purpose of this paper is to describe the au-
thor’s experience in teaching two courses, each based on dif-
ferent sections of TAOCP volume 4a, using the pre-fascicles
and fascicles that were available at the time. The conclu-
sion reached is that such an adventurous undertaking can
be extremely rewarding, not only for the students, but also
for the instructor.

Keywords
The Art of Computer Programming, Donald E. Knuth, Ad-
vanced undergraduate and graduate student classes.

1. INTRODUCTION
In the 1960’s Don Knuth was approached by the publisher
Addison-Wesley to produce a book that would summarize
the major ideas and results of computer science at the time.
Don agreed to the task and so the Art of Computer Program-
ming came to life. It soon became apparent that it could not
be done in a single book, and Knuth laid out a plan for a se-
ries of seven volumes. Volumes 1,2, and 3 appeared in 1968,
1969, and 1973, respectively [4], [5], [6] (the latest editions
of these books appeared in 1997, 1998, 1998, respectively).
The influence of these books on Computer Science has been
incredible.

“At the end of 1999, these books were named among the
best twelve physical-science monographs of the century by
American Scientist, along with: Dirac on quantum mechan-
ics, Einstein on relativity, Mandelbrot on fractals, Pauling
on the chemical bond, Russell and Whitehead on founda-
tions of mathematics, von Neumann and Morgenstern on
game theory, Wiener on cybernetics, Woodward and Hoff-
mann on orbital symmetry, Feynman on quantum electro-

∗Research supported in part by NSERC.

dynamics, Smith on the search for structure, and Einstein’s
collected papers.”

The following statement of Bill Gates from his blog in 1995
is often quoted:

“If you think you’re a really good programmer,
or if you want to challenge your knowledge, read
the ‘Art of Computer Programming’ by Donald
Knuth. Be sure to solve the problems. ... If
some people are so brash that they think they
know everything, Knuth will help them under-
stand that the world is deep and complicated. ...
It took incredible discipline, and several months,
for me to read it. I studied 20 pages, put it away
for a week and came back for another 20 pages.
You should definitely send me a resume if you
can read the whole thing.”

Of course, that was many years ago, but consider this more
recent exchange in an interview by Maria Klawe (formerly at
UBC, then Dean of Science at Princeton, and now President
of Harvey Mudd) of Bill Gates in 2005 (the emphases below
are mine):

MARIA KLAWE: One of the things that we all
know is that as fields go, computer science prob-
ably has the most rapidly changing content, and
technology evolves so quickly. And both as head
of a computer science department and then now
my second job as a dean, having computer sci-
ence departments, I would always get into these
discussions with people in the math department
saying, it makes sense that your people teach
more courses per semester than the computer sci-
entists do because you’re still teaching the same
courses that you taught 50 years ago, whereas in
the computer science you have to continually re-
develop materials so that you really are covering
the most up to date things.

And I wondered if you had just ideas that would
help us or whether Microsoft has ideas that might
help computer science departments stay on top
of the most recent technological developments.

BILL GATES: Well, certainly it’s the goal of our
University Relations Group to make sure that

we’re talking about what we think the state of
the art problems are, finding out from the univer-
sities and a lot of dialogue back and forth about
that. In a certain sense, yeah, the curriculum has
changed, but say somebody came for an interview
and they said, ”Hey, I read the ’Art of Computer
Programming’, that’s all I ever read, I did all the
problems, I would hire them right then.”

MARIA KLAWE: You’d hire them right then.

BILL GATES: Yeah, that’s right.

MARIA KLAWE: So would I.

BILL GATES: Even if they didn’t do the double-
star problems, I mean, just the fact that they’d
read the whole book, you know, those are the
kinds of things you need to know to be a good
programmer. Actually, there’s some of that you
don’t even need to know, but the kind of algo-
rithmic thinking that’s promoted there.

So in a sense, we want to teach the same thing,
but we’d like to teach it in a forum that’s most
interesting. So, for example, the idea of, OK,
let’s take some of those basic ideas and program
a robot to go somewhere or figure something out,
you want to inject that into the field. But what
you’re really teaching the person about design is
pretty much the same as you wanted to teach
them 30 years ago. I mean, we still haven’t got-
ten past that. And so there may be rich runtimes
that we can give to universities that make sure
that the person learning those things feels like
they’re doing something very cool and very in-
teresting.

Note that Gates is not saying that he would hire the person
because they have to be extraordinarily intelligent to read
TAOCP; rather it is because having read the book means
that they have read things necessary to being a good pro-
grammer and solving problems algorthmically.

Why then aren’t we all trying to get our students to
read and understand TAOCP?

We will get back to this question later.

2. TEACHING FROM TAOCP
Ok, I1 have to admit that I was indoctrinated from an early
age. In 1973 at UCSD I took a course from Clark Crane,
a student of Knuth’s. Volume 1 was the textbook. It was
a course on data structures and assembly language! E.g.,
we learned about linked lists, not by implementing them in
some high-level language, but rather by implementing them
in MIXAL, the assembly language for Knuth’s idealized ma-
chine MIX. Such courses do not exist anymore, but I still
remember some of the problems from that course, such as
Knuth’s crossword problem (1.3.2, problem 23); a delightful
problem which I still occasionally put on homework assign-
ments in data structures courses.

1Please excuse the non-standard use of the first person here
and in the rest of the paper.

But I actually know of only one other course that used the
Art of Computer Programming as the primary textbook;
although many courses list it for supplementary reading.
That one course was similar to the courses described here in
the sense that it was focussed on Volume 4, particularly in
answering the questions that Knuth asked for help on; see
[2]. There have been some books devoted to other books
of Knuth, for example courses about Literate Programming
and about the MMIX architecture.

3. THE UVIC COURSES
After a long hiatus, mainly devoted to the development of
TeX, Knuth resumed work on Volume 4 early in the 21st cen-
tury. His modus operandi was to issue pre-fascicles which
were approximately 100 page previews of his writing of vari-
ous sections of Volume 4. Initially they were “hidden” on his
website and called to the attention of selected researchers,
which preceded announcement of their availability to the
general public. I was fortunate to be one of the ones con-
tacted and thought that it might be interesting to fashion
a course around these pre-fascicles. Knuth agreed to let
me bind together various pre-fascicles, print them, and sell
them to the students at cost. I thought that this provided
a unique opportunity for students to get to see a master at
work, a chance to get a glimpse at, and perhaps even be
involved with, a piece of computer science history.

The two courses that I taught are listed below. In the
UVic numbering scheme a 400 level course is a 4th year
undergraduate course and a 500 level course is a graduate
course. These websites are still active and their content can
be viewed.

CSC 483A/583A F01 (2004): Knuth Volume IV
http://www.cs.uvic.ca/~ruskey/classes/KnuthIV/.

and

CSC 483A/583A S01 (2009): Zeroes and Ones
http://www.cs.uvic.ca/~ruskey/classes/ZeroesOnes/.

3.1 The Knuth Volume IV Course
The purpose of this material was to teach the students the
basics of algorithms for exhaustively listing the combina-
torial structures that most frequently occur and which have
well-understood recursive structures. Examples include multi-
radix numbers, permutations, combinations, set partitions,
numerical partitions, necklaces, and various classes of trees.
We also learned about Gray codes for many of these struc-
tures. In a Gray code listing, successive strings used in the
listing are required to differ by some small amount. For ex-
ample, in the classic binary reflected Gray code for listing
all subsets, each successive binary string is required to differ
from its predecessor by a bit flip in one position. Gray code
listings are a necessary condition for the development of the
so-called “loopless” generation algorithms which are favored
by Knuth.

The minimum pre-requisites for the course were a previous
course on data structures and a previous course on discrete
mathematics; students were advised to have taken at least
one further course on theoretical computer science or combi-
natorics. In this course there was 1 undergraduate student

http://www.cs.uvic.ca/~ruskey/classes/KnuthIV/
http://www.cs.uvic.ca/~ruskey/classes/ZeroesOnes/

and 11 graduate students; two of the graduate students were
from the mathematics department.

This course covered the following topics and sections from
TAOCP Volume 4 [7]:

7.2 Generating All Possibilities
7.2.1 Combinatorial Generators

7.2.1.1. Generating all n-tuples
7.2.1.2. Generating all permutations
7.2.1.3. Generating all combinations
7.2.1.4. Generating all partitions
7.2.1.5. Generating all set partitions
7.2.1.6. Generating all trees
7.2.1.7. History and further references

The marks were distributed 40% for homework (4 assign-
ments), 30% for quizzes (4 20 minute in-class quizzes), and
30% for a project. The students had trouble completing the
quizzes in 20 minutes and on a couple of occasions I gave
them 1/2 hour.

Here are some typical questions from the assignments in that
course.

• Is the solution to exercise 49 from Section 7.2.1.1 cor-
rect? If so prove it, if not provide a correct solution.
This was from the first assignment. The answer was
incorrect, and I wanted to illustrate for them early on
that it was not always difficult to find an error in these
preliminary drafts.

• Explain the solution to exercise 58 in 7.2.1.3. You may
assume the result of exercise 49 without explanation.
Although Knuth provides solutions to all of his exer-
cises, in many cases they are more like indications of
the main idea needed to solve it, but many details are
missing. So an easy source of good problems is to ask
them to explain a solution.

• Explain the last equality in equation (16) on page 29
of 7.2.1.5.
Here they were asked to explain something in the main
text. Knuth’s explanations are often rather terse, and
so the instructor has to fill in the missing steps, or
relegate them to assignments.

• Develop a ranking algorithm for Algorithm H of Sec-
tion 7.2.1.4. Your algorithm should be efficient (i.e.,
polynomial in m and n). What is the rank of
10+10+8+5+5+5+1+1?
And sometimes I just made up new problems.

I gave them much latitude in their project topics but en-
couraged them to do them on either (a) open problems men-
tioned in the book or (b) the specific topics that Knuth had
mentioned on his website that he wanted readers to check.
Here is what he had on his website (before Volume 4a was
published):

‘Thus I would like to enter here a plea for some
readers to tell me explicitly, “Dear Don, I have

read exercise N and its answer very carefully, and
I believe that it is 100% correct,” where N is one
of the following:’

Here is a small selection of the list that followed the above
comment.

• 7.1.2–76 (Uhlig’s cloning algorithm, computes twice as
fast as expected)

• 7.1.2–85 and 86 (introduction to Razborov’s monotone
lower bounds)

• 7.1.3–124 (lower bounds on a basic RAM)

• 7.1.3–179 (online algorithm for components of a bitmap)

• 7.1.4–107 (testing whether a BDD defines a 2SAT in-
stance)

• 7.2.1.3–42 (analysis of an algorithm for near-perfect
combination generation)

• 7.2.1.6–33 (representing binary tree links with a single
permutation)

3.2 The Zeroes and Ones Course
The purpose of this material was to teach, at a high level,
basic facts about dealing with bits. First, we considered
Boolean operations and the basics of Boolean algebra and
Boolean functions. Next was a consideration of circuits for
implementing Boolean functions. Then came study of how
to take advantage of the fact that computers organize bits
into words and provide operations on words. And lastly
we studied binary decision diagrams, which are often the
method of choice for representing and manipulating Boolean
functions in a computer.

In this course there were 2 undergraduate students and 10
graduate students. I got a lot of grief from my colleagues
about the title of this course; but I was just using Knuth’s
own title for Section 7.1. The second course covered the
following topics and sections from TAOCP Volume 4 [7]:

7.1 Zeros and Ones
7.1.1 Boolean Basics
7.1.2 Boolean Evaluation
7.1.3 Bitwise Tricks and Techniques
7.1.4 Binary Decision Diagrams

Most of the time was spent in section 7.2.1, which is mainly
about Boolean algebra and ramifications, section 7.2.2, mainly
about Boolean circuits and their minimization, and section
7.2.3, which is about various ways of taking advantage of
word operations in various algorithmic contexts. For exam-
ple, in 7.2.3 you study things like X&(X − 1) which turns
the rightmost 1 in X into a 0. Knuth is often criticized for
implementing many of his algorithms in assembly language
and section 7.2.3 is rife with little pieces of assembly code for
his new machine MMIX. In this section it was particularly
helpful to have MMIX for implementing and comparison.
For example, MMIX has a SADD (population count) instruc-
tion that is not particularly easy to implement if you are
restricted to C or Java.

These were topics with which I was not already an expert,
so much learning time was spent by me. To help ease the
load and get the students more involved with the teaching
process, each student was required to pick a relevant topic
from the fascicles and present it to the class. In the student
evaluations this was one part of the course that was criti-
cized. Students did not feel that their fellow students did a
good job of presenting the material.

Again there were 4 assignments and 4 quizzes and a final
project.

Here is a list of the final projects that were undertaken by
the graduate students:

• KY: Median graphs generalize distributive lattices. The
prism of any distributive lattice is Hamiltonian. Are
the prisms of median graphs Hamiltonian?

• JW: Exercises 7.1.4.215 and 7.1.4.216 on Tatami tilings.
This project led to a couple of papers.

• JK: 7.1.1-123. Determine the exact number of 10-
variable self-dual Boolean functions that are also thresh-
old functions.

• AE: 7.1.4-260: generating all set partitions with ZDDs.

• JS: Investigation of “universal operations” like NAND
and NOR.

• AS: Analysis of Knuth’s XOR (2-forward, 1-back) game.
Can something be said for general n?

• JL: Platologic computation applied to rasterization.
This student is also an engineer at Intel working on
graphics hardware.

• ED: 7.1.4 226. Generation of all simple cycles of a
graph using a ZDDs.

• DG: Investigations of broadword computation of ex-
haustive lists of combinatorial objects such as com-
binations and well-formed parentheses strings, imple-
mented in MMIX.

3.3 Knuth movies
We have become accustomed to having “supplementary ma-
terials” supplied by publishers in the form of presentations,
model solutions, example exams, and so on. These supple-
mentary materials do not exist for this course. Of course, the
many exercises have solutions, which is often helpful. How-
ever, there are several movies on the web of Knuth introduc-
ing some of the topics covered in these courses. These are
from talks that are given to a audience that consists mainly
of undergraduate and graduate students at Stanford Uni-
versity. They are given at a level that a typical upper-level
computer science or mathematics student should be able to
follow. On several occasions we watched the movie, stopping
occasionally when the students had a question or some point
required further elaboration. They formed a great supple-
ment for book.

The following “Musings” [3] were relevant to one course or
the other. Some were viewed in class and others were sug-
gested for viewing outside of class. The students always
seemed to enjoy watching them.

Dec 9, 2008 Fun With ZDDs

Jun 5, 2008 Fun With BDDs
Dec 3, 2007 Sideways Heaps
Oct 24, 2006 Platologic Computation
May 6, 2005 Integer Partitions and Set Partitions
Dec 13, 2004 Sand Piles and Spanning Trees
Dec 16, 2003 Finding All Spanning Trees
Dec 3, 2002 Chains of Subsets
Feb 9, 1999 MMIX: A RISC Computer ...

I did not want to rely on the university wireless system to
have these streamed onto my laptop during class, so I got a
knowledgeable student to capture the streams and give them
to me as *.avi files.

4. OUTCOMES
In both of these classes there were several students who re-
ceived the famous Knuth checks for spotting errors in or
making useful suggestions for TAOCP Volume 4. Not only
that, but the checks were accompanied by Knuth’s hand-
written comments about each of the errors or suggestions,
even for the suggestions that he decided not to follow. Knuth
pays $2.56 for each error and $0.32 for each useful sugges-
tion. In October 2008 he stopped writing checks drawn on
a real bank, because “it is no longer safe to write personal
checks.” He started a fictitious bank, and now writes checks
in hexadecimal dollars. See Figure 1.

Figure 1: Scans of checks received by two students.
The top check is from an actual bank and is in U.S.
dollars. The bottom check is from a mythical bank
and is in hexadecimal dollars.

Aaron Williams’ thesis topic arose from the first class [11].
Not only that, but Knuth liked one of his results so much
that he put it into the Volume 4. The result is about a
new way to generate combinations, as represented by binary
strings with s 0s and t 1s. Amazingly, Aaron discovered
that the following simple rule produces an exhaustive list
of all such combinations: Move the leftmost bit and place
it after the first 10; if there is no 10 place the bit at the

right end. That result was published in [8]. One of Knuth’s
open questions in a pre-fascicle was answered in [9] and that
result is now mentioned in [7].

Jenni Woodcock and I published a paper that arose from
trying (and succeeding) to solve a question in TAOCP Vol-
ume 4 about Tatami Tilings [10]. That work has been ex-
tended, together with Alejandro Erickson, another student
from the Zeroes-Ones class [1]. Enumeration and complex-
ity of Tatami tiling problems are the topic of his PhD thesis,
which is in progress.

Three students from the courses are named in the Index:
Gilbert Lee, Jenni Woodcock, and Aaron Williams.

5. CONCLUSION
Returning to my question: Why then aren’t we all trying to
get our students to read and understand TAOCP? I think
that the answer is multi-faceted, but that some of the rea-
son are: (a) The material is bloody difficult, not only for
students but also for instructors. One minute we are con-
sidering tricky assembly instructions for multi-linked data
structures and the next we are in the midst of using com-
plex analysis for determining the asymptotics of the analysis
of an algorithm. One has to learn the art of determining
what to try to understand and what to ignore. It is quite
humbling to come face-to-face with the incredible amount of
knowledge that is presented in these books. (b) Many of the
topics found in Volumes 1 and 3 are taught to undergraduate
students, but they really do not mesh well with the standard
curriculum. You could fashion a super-course from Volume
1 that replaced the standard courses in discrete mathemat-
ics, assembly language programming (including subroutines,
coroutines, and memory management) and the introductory
course on data structures, but I don’t really foresee that
happening.

But there is no reason not to base advanced undergraduate
and graduate courses on the material in the later volumes.

Would I do it again? Definitely. I consider the teaching of
these courses as two of the highlights of my career at UVic.
It wasn’t easy, but it was rewarding. The department has
slated me to teach a graduate course in the fall. If Knuth
has some more pre-fascicles ready by then, then I will teach
from those; otherwise I will teach a course from Volume 4a,
combining some of the topics from the two courses discussed
in this paper.

6. ACKNOWLEDGMENTS
Thanks to all the students who took these courses. Their
energy and enthusiasm was instrumental in making them a
success. I also that the referees for their constructive com-
ments and suggestions; unfortunately, there was not time to
follow them all.

7. REFERENCES
[1] M. Schurch A. Erickson, F. Ruskey and J. Woodcock.

Auspicious tatami mat arrangements. In The 16th
Annual International Computing and Combinatorics
Conference (COCOON 2010), pages 288–297. LNCS
6169, 2010.

[2] S. Richter J. Kneis, A. Langer and P. Rossmanith.
Helping Donald Knuth. http:
//tcs.rwth-aachen.de/lehre/Help-Knuth/WS2008/.

[3] D. E. Knuth. Computer musings.
http://scpd.stanford.edu/knuth/index.jsp.

[4] D.E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms. Addison-Wesley,
Reading, MA, third edition, 1997.

[5] D.E. Knuth. The Art of Computer Programming,
Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, third edition, 1998.

[6] D.E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-Wesley,
Reading, MA, second edition, 1998.

[7] D.E. Knuth. The Art of Computer Programming,
Volume 4: Combinatorial Algorithms, Part 1.
Addison-Wesley, Reading, MA, 2011.

[8] F. Ruskey and A. Williams. The coolest way to
generate combinations. Discrete Mathematics,
309:5305–5320, 2009.

[9] F. Ruskey and A. Williams. An explicit universal cycle
for the (n− 1)-permutations of an n-set. ACM
Transactions on Algorithms, 6:12 pages, 2010.

[10] F. Ruskey and J. Woodcock. Counting fixed-height
tatami tilings. Electronic Journal of Combinatorics,
16:20 pages, 2009.

[11] A.M. Williams. Shift Gray Codes. PhD thesis, Dept. of
Computer Science, University of Victoria, Victoria,
B.C., Canada, 2009.

http://tcs.rwth-aachen.de/lehre/Help-Knuth/WS2008/
http://tcs.rwth-aachen.de/lehre/Help-Knuth/WS2008/
http://scpd.stanford.edu/knuth/index.jsp

	Introduction
	Teaching from TAOCP
	The UVic courses
	The Knuth Volume IV Course
	The Zeroes and Ones Course
	Knuth movies

	Outcomes
	Conclusion
	Acknowledgments
	References

