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Abstract

We explore the properties of some sequences for which a(n − a(n)) = 0. Under
the natural restriction that a(n) < n the number of such sequences is a Bell number.
Adding other natural restrictions yields sequences counted by the Catalan numbers, the
Narayana numbers, the triangle of triangular binomial coefficients, and the Schröder
numbers.

1 Introduction, set partitions

We consider here sequences a(1), a(2), . . . , a(n) with the property that a(j − a(j)) = 0 for
all j = 1, 2, . . . , n. Naturally, we must have 1 ≤ j − a(j) ≤ n for j = 1, 2, . . . , n. Let F(n)
be the set of all such sequences, and let F(n,m) be the subset of those for which m of the
a(j) are zero.1

Theorem 1.1. For all 1 ≤ m ≤ n,

|F(n,m)| =
(

n

m

)
mn−m.

Proof. There are
(

n
m

)
ways to choose the m indices J = {j1, j2, . . . , jm} for which a(j) = 0.

Each of the n −m other elements t can take on any value from the m-set {t − j : j ∈ J}.
For such a value of t, we have a(t− a(t)) = a(t− (t− j)) = a(j) = 0.
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1Throughout the paper we will use a bold-case letter, like X to denote a set of sequences, X(n) to denote
the sequences in X of length n, and X(n,m) to denote the sequences in X(n) that contain exactly m zeroes.
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The numbers occurring in Theorem 1.1 are not in the OEIS [6] but summing on m yields
A000248, the number of labelled forests in which every tree is a star (isomorphic to K1s

for some s). To get a correspondence with our sequences, let the parent of node j be node
j − a(j), with roots regarded as self-parents.

Comtet calls these numbers the “idempotent numbers” [1] (see pg. 91,135). The number of
idempotent functions on an n-set that have m fixed-points is

(
n
m

)
mn−m.

If we take the subset of F(n) that is closed under the taking of prefixes (or, equivalently,
that the a(j) only take on non-negative values), then we get the additional constraint that
a(j) < j for j = 1, 2, . . . , n. (Of course, the set of sequences that only satisfy the condition
a(j) < j has cardinality n!, but our condition is stronger.) Let A(n) denote the set of all such
sequences and let A(n, m) denote the subset of A(n) consisting of sequences with exactly m
zeroes. Below we list the elements of A(n) for n = 1, 2, 3, 4.

A(1) = {0}
A(2) = {00, 01}
A(3) = {000, 001, 002, 010, 012}
A(4) = {0000, 0001, 0002, 0003, 0010, 0012, 0013, 0020,

0022, 0023, 0100, 0101, 0103, 0120, 0123}

Note that 011 is missing from A(3) since then a(3− a(3)) = a(3− 1) = a(2) = 1 6= 0. Using
the notation of Comtet [1] and Knuth [3], we denote the n-th Bell number, A000110, by $n

and Stirling numbers of the second kind, A008277, by
{

n
m

}
.

Theorem 1.2. For all 0 < m ≤ n,

|A(n)| = $n and |A(n,m)| =
{

n

m

}
.

Proof. Let j1, j2, · · · , jm be the positions for which a(j) = 0. Now define the i-th block of a
partition to be the set

Bi = {k : k − a(k) = ji}.

Note that ji is the smallest element of Bi. It should be clear that this specifies a one-to-one
correspondence.

Example: The sequence that corresponds to the partition {1, 3, 4}, {2, 5, 8}, {6, 7} is
(0, 0, 2, 3, 3, 0, 1, 6).
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(i)
0 0 72104230

0 1 32132131
(iv)

0 1 00210410 60
(ii)

(ii)
0 0 10620032

Figure 1: Linear difference diagram representation of an element from: (i) A(n), (ii) B(n),
(iii) C(n), and (iv) D(n).

There is a natural pictorial representation of the sequences in A(n) as what we call a linear
difference diagram, as shown in Figure 1(i) for the sequence (0, 0, 0, 3, 2, 4, 0, 1, 2, 7). For each
value x ∈ {1, 2, . . . , n}, we draw an arc from x to x−a(x), except if a(x) = 0. Our condition
a(n − a(n)) = 0 then translates into the property that each connected component of the
underlying graph is a star.

Define the set B(n) to be the subset of A(n) that satisfy the constraint that if a(j) 6= 0,
then a(j − 1) < a(j). We have that B(n) = A(n) for n = 1, 2, 3 and B(4) = A(4) \
{0022}. Let B(n, m) denote the subset of B(n) consisting of sequences with exactly m
zeroes. The numbers |B(n,m)| appear in OEIS [6] as sequence A098568 but no combinatorial
interpretation is assigned to them. Summing on m gives the sequence A098569.

In terms of set partitions, the set B corresponds to those in which every element j such that
j is not smallest in its block is in a block whose smallest element is no greater than the
smallest element of the block containing j − 1.

Example The sequence (0, 0, 2, 3, 0, 0, 2, 6, 0, 1), depicted in Figure 1(ii), is in B(n).

Theorem 1.3. For all 1 ≤ m ≤ n,

|B(n,m)| =
(

n− 1 +
(

m
2

)

n−m

)
. (1)

Proof. Denote B(n,m) = |B(n,m)|. Classify the sequences in B(n, m) according to the
index k of the rightmost zero. The sequences that occur in the first k − 1 positions are
exactly those in B(k − 1,m − 1). The values that can go into positions k + 1 to n must
be increasing and can be thought of as a selection with repetition of size n − k − 1 from
the set of positions of the 0’s, call them 1 = j1 < j2 < · · · < jm = k. Arrange the
selection as a nonincreasing sequence lk+1 ≥ lk+2 ≥ · · · ≥ ln. Now, if ls = jt, then set
a(s) = s − jt. Note that a(s − a(s)) = a(jt) = 0. Furthermore, a(s) < a(s + 1) since
a(s) = s − jt < s + 1 − jt′ = a(s + 1) where t′ ≥ t. This classification implies that the
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following recurrence relation holds, with the initial condition that B(n, 1) = 1.

B(n,m) =
n∑

k=m

B(k − 1,m− 1)

(
n− k + m− 1

n− k

)

We will now show that the expression in (1) satisfies this recurrence relation. The following
identity is well-known (see Gould [2], equation (3.2)).

(
x + y + t + 1

t

)
=

t∑
j=0

(
j + x

j

)(
t− j + y

t− j

)
(2)

We wish to show that

(
n−m− 1 +

(
m+1

2

)

n−m

)
=

n∑

k=m

(
k −m− 1 +

(
m
2

)

k −m

)(
n− k + m− 1

n− k

)
.

But this is the same as (2) with j = k −m, t = n−m, x =
(

m
2

)− 1, and y = m− 1.

2 Catalan and Schröder correspondences

Note that the linear difference diagram of Figures 1 (i) and 1 (ii) have crossing arcs. How
many such sequences have no crossing arcs?

Define the set C(n) to be the set of sequences a(1), a(2), . . . , a(n) for which (a) 0 ≤ a(j) < j
and (b) there is no subsequence such that i−a(i) < j−a(j) ≤ i < j. Note that C(n) = B(n)
for n = 1, 2, 3, 4 and C(5) = B(5) \ {00203}, since 3− a(3) < 5− a(5) ≤ 3 < 5. Let C(n, m)
denote the subset of C(n) consisting of sequences with exactly m zeroes. The numbers
|C(n,m)| appear in OEIS [6] as sequence A001263, the Catalan triangle. Summing on m
gives the Catalan numbers A000108.

Lemma 2.1. For all n ≥ 1, C(n) ⊆ A(n).

Proof. Suppose that there is some value j for which a(j − a(j)) > 0, and let i = j − a(j).
We will show that

i− a(i) < j − a(j) = i < j,

which will prove the lemma. First note that a(j) > 0 since otherwise a(j−a(j)) = a(j) = 0.
Thus i < j. Finally, i − a(i) = j − a(j) − a(j − a(j)) < j − a(j) by our assumption that
a(j − a(j)) > 0.

Lemma 2.2. For all n ≥ 1, C(n) ⊆ B(n)
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Proof. If there is some sequence a(1), a(2), . . . , a(n) that is not in B(n), then there is some
value of j such that a(j − 1) ≥ a(j) and a(j) > 0. Setting i = j − 1 we would then have
i− a(i) < j − a(j) ≤ i < j and so the sequence is not in C(n) either.

A Dyck path on 2n steps is a lattice path in the coordinate plane (x, y) from (0, 0) to (2n, 0)
with steps (1, 1) (Up) and (1, 1) (Down), never falling below the x-axis. Figure 2 shows a
typical Dyck path of length 24.

The numbers shown below for |C(n,m)| are called the Narayana numbers [4]. They count
the number of Dyck paths on 2n steps with m peaks.

Let Cn denote the n-th Catalan number, Cn = 1
n+1

(
2n
n

)
. The correspondence used in the

proof below is mentioned in [5], problem 6.19(f4).

Theorem 2.3.

|C(n)| = Cn and |C(n,m)| = 1

m

(
n− 1

m− 1

)(
n

m− 1

)
.

Proof. Considering Up steps as left parentheses and Down steps as right parentheses, a
Dyck path of length 2n corresponds to a well-formed parentheses string of equal length.
Furthermore, a peak corresponds to a () pair.

Let S2n denote the set of well-formed parenthesis strings of length 2n. Define the function
f from S2n to C(n) as f(s) = (a(1), a(2), . . . , a(n)) where a(j) is the number of right paren-
theses that are properly enclosed by the j-th parentheses pair where the parentheses pairs
are numbered by the order in which their right parentheses occur. The left parenthesis that
matches the j-th right parenthesis is referred to as j’s match. For example, consider s =
((())(()))(((()))()()()). Subscripting the right parentheses and overlining matching
parentheses pairs we obtain

((()1)2(()3)4)5(((()6)7)8()9()10()11)12

and thus f(s) = (0, 1, 0, 1, 4, 0, 1, 2, 0, 0, 0, 6) (represented as a linear difference diagram in
Figure 1(iii)).

We now need to explain why f(S2n) ⊆ C(n). Let s ∈ S2n and consider f(s) = (a(1), a(2), . . . ,
a(n)). By definition a(i) < i. Furthermore the sequence satisfies the non-crossing property.
If it did not, for some i < j we would have that both j − a(j) ≤ i and i − a(i) < j − a(j).
Notice that j−a(j) is the position of the leftmost right parenthesis to the right of j’s match.
Now, j − a(j) ≤ i < j implies that the i-th right parenthesis must lie between j and its
match. As well, i − a(i) < j − a(j) implies that the leftmost right parenthesis to the right
of i’s match is left of the leftmost right parenthesis to the right of j’s match. This implies
that i’s match is left of j’s match which contradicts the fact that s is well-formed. Hence
f(s) ∈ C(n) thus f(S2n) ⊆ C(n).
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(i) (ii)

Figure 2: The sequence (0, 1, 0, 1, 4, 0, 1, 2, 0, 0, 0, 6) represented as: (i) a Dyck path of length
24, (ii) a Schröder path of length 11.

We now show that f is indeed a bijection. Let b = (b(1), b(2), . . . , b(n)) ∈ C(n). We
show by induction that it is possible to construct exactly one s ∈ S2n such that f(s) =
(a(1), a(2), . . . , a(n)) = b. Let k = 1 and s be the well-formed parenthesis string (). Then
f(s) = (a(1)) = (0) = b(1) and s is the only such string. Assume f(s) = (a(1), a(2), . . . , a(n))
= (b(1), b(2), . . . , b(n)) for some n ≥ 1 where s is the only such string. Consider b(n + 1).
If b(n + 1) = 0 then appending () to s, in which there is only one way, results in f(s) =
(a(1), a(2), . . . , a(n), a(n + 1)) = (b(1), b(2), . . . , b(n), b(n + 1)) and s is the only such string.
Similarly, if b(n+ 1) = n, then enclosing s within a right and a left parenthesis produces the
desired result.

Suppose that 0 < b(n + 1) < n. Consider the substring s′ consisting of all elements of s to
the right of the {n+1− b(n+1)−1}-th right parenthesis. If s′ is not well-formed then there
exists a right parenthesis i with n+1− b(n+1) ≤ i < n+1 whose match is to the left of the
{n + 1− b(n + 1)− 1}-th right parenthesis. This implies that i− b(i) ≤ n + 1− b(n + 1)− 1.
However then, i − b(i) < n + 1 − b(n + 1) ≤ i < n + 1 which contradicts the fact that b is
in C(n). Therefore s′ is well-formed and simply enclosing it in a left and right parentheses
pair within s produces the desired result.

Furthermore, note that a zero in an element of C(n) corresponds to a () in an element of
S2n which corresponds to a peak in a Dyck path of length 2n. Thus |C(n,m)| is the number
of Dyck paths of length 2n with m peaks.

The reader may wonder what happens if we were allowed to have i− a(i) < j− a(j) = i < j
but not i − a(i) < j − a(j) < i < j. Call the resulting set D(n). Such sequences need no
longer satisfy a(j − a(j)) = 0 so strictly speaking are outside the scope of this paper, but
the question is interesting nonetheless. They are counted by Schröder numbers.

Let Dn denote, A006318, the n-th (large) Schröder number, Dn = 〈zn〉1−z−√1−6z+z2

2z
(see [4],

pg. 178).

Example The sequence (0, 1, 1, 3, 1, 2, 3, 1, 2, 3), depicted as a linear difference diagram in
Figure 1(iv), is in D(n) but not C(n).
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A Schröder path is a lattice path in the coordinate plane (x, y) from (0, 0) to (n, 0) with
steps (1, 1) (Up), (1,−1) (Down) and (1, 0) (Straight) never falling below the x-axis. The
length of a Schröder path is the number of Up and Straight steps in the path. Figure 2shows
a typical Schröder path of length 11.

The numbers
(
2n−m−1

m−1

)
Cn−m count the number of Schröder paths from (0, 0) to (n−1, n−1)

containing m− 1 Straight steps (A060693).

Theorem 2.4.

|D(n)| = Dn−1 and |D(n,m)| =
(

2n−m− 1

m− 1

)
Cn−m

Proof. Let Pn denote the set of Schröder paths of length n. Define the function g from
Pn−1 to D(n) as g(p) = (0, a(1), a(2), . . . , a(n − 1)) where a(j) is 0 if the j-th counted
step is Straight or is the number of counted steps (starting with itself) between it and its
corresponding Down step. For example, let p be the Schröder path shown in Figure 2. Then
g(p) = (0, a(1), a(2), . . . , a(11)) = (0, 1, 0, 1, 4, 0, 1, 2, 0, 0, 0, 6). Notice that a(i) = 0 exactly
when the i-th counted step in p is Straight.

We now need to explain why g(Pn−1) ⊆ D(n). Let p ∈ Pn−1. Consider g(p) = (0, a(1), a(2),
. . . , a(n−1)) = (b(1), b(2), . . . , b(n)). Since p is a Schröder path a(i) ≤ i. Since b(i+i) = a(i)
we have that b(i + 1) < i + 1. Now, suppose that there exists an 1 < i < j ≤ n such
that i − b(i) < j − b(j) < i < j. Then there exists some 1 ≤ x < y < n such that
x − a(x) < y − a(y) < x < y. Since both a(y) and a(x) must be non-zero to satisfy this
inequality, we have that they both count the number of countable steps (beginning with
themselves) between them and their respective matches. Now, x lies between y and its
match. Furthermore, y − a(y) is the position of the first countable step to the left of y’s
match. Since x− a(x) < y − a(y), the first countable step to the left of x’s match is to the
left of the first countable step to the left of y’s match which implies that x’s match is to the
left of y’s match. This means that between y and its match there is one more Up step then
Down step thus y and its match are not on the same level contradicting the fact that this is
indeed y’s match. Hence g(p) ∈ D(n) thus g(Pn−1) ⊆ D(n).

We now show that g is a bijection. Let b = (b(1), b(2), . . . , b(n)) ∈ D(n). We show
by induction that it is possible to construct exactly one p ∈ Pn−1 such that g(p) =
(0, a(1), a(2), . . . , a(n − 1)) = b. Let k = 2. If b(2) = a(1) = 0 let p′ be the Schröder
path of length 1 consisting of 1 Straight step. Then g(p′) = (0, 0) = (b(1), b(2)) and there
was only one such p′. Otherwise let p′ be the Schröder path of length 1 consisting of one Up
step and its match. Then g(p′) = (0, 1) = (b(1), b(2)) and there was only one such p′.

Assume g(p′) = (0, a(1), a(2), . . . , a(j−1)) = (b(1), b(2), . . . , b(j)) for some j ≥ 1 and p′ is the
only such path. Consider b(j+1). If b(j+1) = 0 then appending a Straight step to p′, in which
there is only one way, results in g(p′) = (0, a(1), a(2), . . . , a(j)) = (b(1), b(2), . . . , b(j), b(j+1))
and p′ is the only such string. Similarly, if b(j + 1) = j appending an Up step to the end p′

and placing its match at the front produces the desired result.

7



Suppose that 0 < b(j + 1) < j. Consider the path p′′ consisting of all elements of p′ to the
right of the j−a(j)-th countable step. If p′′ is not a Schröder path then there exists some Up
step at position j− a(j) < i < j whose match is to the left of the j− a(j)-th countable step.
However, this implies that the first countable step to the left of i’s match is to the left of the
first countable step to the left of j’s match. This implies that i − a(i) < j − a(j) < i < j
and hence i + 1− b(i + 1) < j + 1− b(j + 1) < i + 1 < j + 1 contradicting the fact that b is
in D(n). Therefore p′′ is a Schröder path. Now, within p′, simply appending an Up step to
the end of p′′ and placing its match at the front of p′′ produces the desired result.

Furthermore, since a zero in an element of D(n) in any position other than the first corre-
sponds to a Straight step in a Schröder path of length n − 1, |D(n,m)| = the number of
Schröder paths of length n− 1 with m− 1 zeros.
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