
ar
X

iv
:1

20
3.

05
86

v1
 [

m
at

h.
C

O
]

 2
 M

ar
 2

01
2

An Undecidable Nested Recurrence Relation

Marcel Celaya and Frank Ruskey⋆

Department of Computer Science, University of Victoria, CANADA

Abstract. Roughly speaking, a recurrence relation is nested if it con-
tains a subexpression of the form . . . A(. . . A(. . .) . . .). Many nested re-
currence relations occur in the literature, and determining their behavior
seems to be quite difficult and highly dependent on their initial condi-
tions. A nested recurrence relation A(n) is said to be undecidable if the
following problem is undecidable: given a finite set of initial conditions
for A(n), is the recurrence relation calculable? Here calculable means
that for every n ≥ 0, either A(n) is an initial condition or the calculation
of A(n) involves only invocations of A on arguments in {0, 1, . . . , n− 1}.
We show that the recurrence relation

A (n) =A (n− 4− A (A (n− 4))) + 4A (A (n− 4))

+A (2A (n− 4− A (n− 2)) + A (n− 2)) .

is undecidable by showing how it can be used, together with carefully
chosen initial conditions, to simulate Post 2-tag systems, a known Turing
complete problem.

Keywords: Nested recurrence relation, undecidable problem, Turing complete
problem, tag system, Hofstadter Q-sequence.

1 Introduction

In the defining expression of a recurrence relation R (n), one finds at least one
application of R to some function of n. The Fibonacci numbers, for example,
satisfy the recurrence F (n) = F (n− 1) + F (n− 2) for n ≥ 2. A recurrence
relation R (n) is called nested when the defining expression of R contains at
least two applications of R, one of which is contained in the argument of the
other.

Many sequences defined in terms of nested recurrences have been studied
over the years. One famous example is Hofstadter’s Q sequence, which is defined
by the recurrence

Q (n) = Q (n−Q (n− 1)) +Q (n−Q (n− 2)) , (1)

with initial conditions Q (1) = Q (2) = 1. This sequence is very chaotic, and a
plot of the sequence demonstrates seemingly unpredictable fluctuation about the

⋆ Research supported in part by an NSERC Discovery Grant.

http://arxiv.org/abs/1203.0586v1

2 Celaya and Ruskey

line y = x/2. It remains an open question whether Q is defined on all positive
integers, despite its introduction in [7] over 30 years ago. Indeed, if it happens
that there exists some m such that m < Q (m− 1) or m < Q (m− 2), then
the calculation of Q (m) would require an application of Q to a negative integer
outside its domain. While little is known about the Q sequence, other initial
conditions that give rise to much better behaved sequences that also satisfy the
Q recurrence have been discovered [6], [11].

Another sequence defined in terms of a nested recurrence is the Conway-
Hofstadter sequence

C (n) = C (C (n− 1)) + C (n− C (n− 1)) , (2)

with initial conditions C (1) = C (2) = 1. Unlike the Q sequence, this se-
quence is known to be well-defined for n ≥ 1, and in fact Conway proved that
limn→∞ C (n) /n = 1/2. Plotting the function C (n) − n/2 reveals a suprising,
fractal-like structure. This sequence is analyzed in depth in [8].

Another sequence whose structure is mainly understood, but is extraordinar-
ily complex, is the Hofstadter-Huber V sequence, defined by

V (n) = V (n−V (n−1))+V (n−V (n−4)), with V (1) = V (2) = V (3) = V (4) = 1.
(3)

It was first analyzed by Balamoham, Kuznetsov and Tanny [2] and recently
Allouche and Shallit showed that it is 2-automatic [1].

Some of these nested recurrences are well-behaved enough to have closed
forms. Hofstadter’s G sequence, for example, is defined by

G (n) = n−G (G (n− 1)) , with G(0) = 0. (4)

This sequence has closed form G (n) = ⌊(n+ 1) /φ⌋, where φ is the golden
ratio [5]. A sequence due to Golomb [6], defined by G (1) = 1 and G (n) =
G (n−G (n− 1)) + 1 when n > 1, is the unique increasing sequence in which
every n ≥ 1 appears n times, and has closed form G (n) =

⌊

(1 +
√
8n)/2

⌋

.
Despite their wide variation in behaviour, all of these recursions are defined

in terms of only three simple operations: addition, subtraction, and recurrence
application. Of these, the latter operation makes them reminiscent of certain
discrete systems—particularly the cellular automaton. Consider, for instance,
the Q sequence defined above. It is computed at any point by looking at the two
values immediately preceeding that point, and using them as “keys” for a pair
of “lookups” on a list of previously computed values, the results of which are
summed together as the next value. It is well-known that many cellular automata
are Turing complete; an explanation of how to simulate any Turing machine
in a suitably-defined one-dimensional cellular automaton is given in [12]. With
respect to nested recurrences, therefore, two questions naturally arise. First, does
there exist, in some sense, a computationally universal nested recurrence defined
only in terms of the aforementioned three operations? Second, given a nested
recurrence, is it capable of universal computation? In this paper we aim to clarify
the first question and answer it in the positive.

An Undecidable Nested Recurrence Relation 3

2 Tag Systems

The tag system, introduced by Emil Post in [10], is a very simple model of com-
putation. It has been used in many instances to prove that some mathematical
object is Turing complete. This was done, for example, with the one-dimensional
cellular automaton known as Rule 110; the proof uses a variant of the tag system
[4].

Such a system consists of a finite alphabet of symbols Σ, a set of production
rules ∆ : Σ → Σ∗, and an initial word W0 from Σ∗. Computation begins with
the initial word W0, and at each step of the computation the running word
w1 . . . wk is transformed by the operation

w1 . . . wk ⊢ w3 . . . wk∆ (w1) .

In other words, at each step, the word is truncated by two symbols on the left
but extended on the right according to the production rule of the first truncated
symbol. In this paper, we adopt the convention that lowercase letters represent
individual symbols while uppercase letters represent words.

If the computation at some point yields a word of length 1, truncation of the
first two symbols cannot occur; it is at this point the system is said to halt. The
halting problem for tag systems asks: given a tag system, does it halt? As is the
case for Turing machines, the halting problem for tag systems is undecidable [9].

Although this definition of tag systems has two symbols deleted at each step,
there’s no reason why this number need be fixed at two. In general, an m-tag

system is a tag system where at each step m symbols are removed from the
beginning of the running word. The number m is called the deletion number

of the tag system. It is known that m = 2 is the smallest number for which
m-tag systems are universal [3]. Thus, only 2-tag systems are considered in the
remainder of these notes.

Example 1. Two tag systems are depicted below, both of which share alphabet
Σ = {a, b, c} and production rules ∆ given by

a→ abb b→ c c→ a.

The initial word of the left tag system is abcb, while the initial word of the right
tag system is abab. The left tag system never halts and is in fact periodic, while
the right tag system halts after 11 steps.

4 Celaya and Ruskey

abcb

cbabb

abba

baabb

abbc

bcabb

abbc

· · ·

abab

ababb

abbabb

babbabb

bbabbc

abbcc

bccabb

cabbc

bbca

cac

ca

a

3 A Modified Tag System

The goal of this paper is to show that the recurrence given in the abstract can
simulate some universal model of computation. In particular, we wish to show
that if we encode the specification of some abstract machine as initial conditions
for our recurrence, then the resulting sequence produced by the recurrence will
somehow encode every step of that machine’s computation. The tag system
model seems like a good candidate for this purpose, since the entire run of a
tag system can be represented by a single, possibly infinite string we’ll call the
computation string. For example, the string corresponding to the tag system
above and to the right is ababbabbabbccabbcacaa. A specially-constructed nested
recurrence A would need only generate such a string on N = {0, 1, 2, . . .} to
simulate a tag system; each symbol would be suitably encoded as an integer.

Ideally, the sequence defined by the nested recurrence can be calculated one
integer at a time using previously computed values. It would therefore make sense
to find some tag-system-like model of computation capable of generating these
strings one symbol at a time. That way, the computation of the nth symbol
of a string in this new model can correspond to the calculation of A (n) (or,
more likely, some argument linear in n). With this motivation in mind, we now
introduce a modification of the tag system model.

A reverse tag system consists of a finite set of symbols Σ, a set of production
rules δ : Σ2 → Σ, a function d : Σ → N, and an initial word W0 ∈ Σ∗. While
an ordinary tag system modifies a word by removing a fixed number of symbols
from the beginning and adding a variable number of symbols to the end, the
situation is reversed in a reverse tag system.

A single computation step of a reverse tag system is described by the oper-
ation

w1 . . . wk ⊢ wd(y)+1 . . . wky,

where y = δ (w1, wk). Given a word that starts with w1 and ends with wk, the
production rule for the pair (w1, wk) yields a symbol y which is appended to the

An Undecidable Nested Recurrence Relation 5

end of the word. Then, the first d (y) symbols are removed from the beginning
of the word. The number d (s) we’ll call the deletion number of the symbol s. If
at some point the deletion number of y exceeds k, then the reverse tag system
halts.

Example 2. Let Σ = {a, b}, d (a) = 0, and d (b) = 2. Define δ by

(a, a)→ b (a, b)→ b (b, a)→ b (b, b)→ a.

It takes 12 steps before this reverse tag system with initial word W0 = baaab
becomes periodic.

baaab

baaaba

aabab

babb

babba

bbab

bbaba

abab

abb

bb

bba

ab

b

ba

b

· · ·

4 Simulating a Tag System with a Reverse Tag System

Consider a tag system T = (Σ,∆,W0) such that each production rule of∆ yields
a nonempty string. The goal of this section is to construct a reverse tag system
R = (Σ′, δ, d,W ′

0) which simulates T .
This construction begins with Σ′. Some notation will be useful to represent

the elements that are to appear in Σ′. Let [s]j denote the symbol “sj”, where s
is a symbol in Σ and j is an integer.

For each si ∈ Σ, write ∆ (si) as si,ℓi . . . si,2si,1. For each symbol si,j in
this word, the symbol [si,j]j shall appear in Σ′. For example, if a → abc is a

production rule of ∆, then Σ′ contains the three symbols [a]3, [b]2, and [c]1.
If W0 = q1q2 . . . qm, the symbols [q1]1 , [q2]1 , . . . , [qm]1 are also included in Σ′.
Constructed this way, Σ′ contains no more symbols than the sum of the lengths
of the words in ∆ (Σ) and the word W0.

The production rules of δ include the rules

δ([si]∗ , [∗]1) = [si,ℓi]ℓi
δ([si]∗ , [si,j]j) = [si,j−1]j−1

6 Celaya and Ruskey

taken over all si ∈ Σ, all j ∈ {2, 3, . . . , ℓi}, and all possibilites for the ∗’s. Note
that this specification of δ doesn’t necessarily exhaust all possible pairs of (Σ′)

2
,

however, any remaining pairs can be arbitrarily specified because they are never
used during the computation of R.

Finally, the deletion numbers are specified by

d
(

[s]j

)

=

{

0, j > 1

2, j = 1

for all [s]j ∈ Σ′, and if W0 = q1q2 . . . qm, then W ′

0 = [q1]1 [q2]1 . . . [qm]1.

Example 3. This example demonstrates a simulation of the tag system T in
Example 1 using a reverse tag system R = (Σ′, δ, d,W ′

0).
The production rules in Example 1 are

a→ abb b→ c c→ a.

To properly simulate T , the three symbols a3, b2, b1 are needed for the first rule,
the symbol c1 is needed for the second, and the symbol a1 is needed for the third.
The initial word for R is W ′

0 = a1b1c1b1. Taking all these symbols together, we
have Σ′ = {a1, b1, c1, b2, a3}.

If we take “∗” to mean “any symbol or subscript, as appropriate,” the pro-
duction rules δ can be written as follows:

(a∗, ∗1)→ a3 (b∗, ∗1)→ c1 (c∗, ∗1)→ a1

(a∗, a3)→ b2

(a∗, b2)→ b1

Finally, every symbol with a subscript of 1 gets a deletion number of two, and
zero otherwise:

d (a1) = d (b1) = d (c1) = 2 and d (b2) = d (a3) = 0.

The output of R is depicted below. Compare the marked rows with the
original output of T in Example 1.

a1b1c1b1 ←
a1b1c1b1a3

a1b1c1b1a3b2

c1b1a3b2b1 ←
a3b2b1a1 ←
a3b2b1a1a3

a3b2b1a1a3b2

b1a1a3b2b1 ←
a3b2b1c1 ←
a3b2b1c1a3

a3b2b1c1a3b2

b1c1a3b2b1 ←
a3b2b1c1 ←
· · ·

An Undecidable Nested Recurrence Relation 7

One point worth mentioning is that if a reverse tag system halts while simu-
lating an ordinary tag system, then the simulated tag system must halt also.
However, the converse is not true! A reverse tag system might keep rolling once
it’s completed the simulation of a halting tag system. The reverse tag system in
Example 2 is a good example of this; it can survive even when there’s only one
symbol, while ordinary tag systems always require at least two.

Theorem 1. Let T = (Σ,∆,W0) be a tag system such that each production rule

of ∆ yields a nonempty string, and let R be a reverse tag system constructed as

above in terms of T . Suppose k > 0, w1 . . . wk ∈ Σ∗, and ∆ (w1) = zℓzℓ−1 . . . z1.
If i1, i2, . . . , ik−1 are such that [wj]ij ∈ Σ′, then

[w1]i1 . . . [wk−1]ik−1
[wk]1 ⊢∗ [w3]i3 . . . [wk]1 [zℓ]ℓ . . . [z1]1

in R.

Proof. We have by construction of R that

[w1]i1 . . . [wk−1]ik−1
[wk]1 ⊢ [w1]i1 . . . [wk−1]ik−1

[wk]1 [zℓ]ℓ

⊢ [w1]i1 . . . [wk−1]ik−1
[wk]1 [zℓ]ℓ [zℓ−1]ℓ−1

...

⊢ [w1]i1 . . . [wk−1]ik−1
[wk]1 [zℓ]ℓ [zℓ−1]ℓ−1 . . . [z2]2

⊢ [w3]i3 . . . [wk−1]ik−1
[wk]1 [zℓ]ℓ [zℓ−1]ℓ−1 . . . [z2]2 [z1]1 .

⊓⊔

5 Simulating a Reverse Tag System with a Recurrence

While it’s possible to describe how the recurrence A simulates a reverse tag
system, a better approach is to introduce another, simpler recurrence B which
does this simulation, then show how A reduces to B. The simpler recurrence,
without initial conditions, is:

B (n) =

{

B (n− 2) + 2B (B (n− 1)) , if n is even

B (2B (n− 2−B (n− 1)) +B (n− 2)) , if n is odd.

Consider a reverse tag system R = (Σ, δ, d,W0). The simulation of R by B
necessitates encoding δ and d as initial conditions of B. In order to do this,
every symbol in Σ and every possible pair in Σ2 = Σ ×Σ must be represented
by a unique integer. Then, invoking B on such an integer would correspond to
evaluating δ or d, whatever the case may be. In order to avoid conflicts doing
this, any integer representation of symbols and symbol pairs α : Σ ∪ Σ2 → N

must be injective.

8 Celaya and Ruskey

Assuming Σ = {s1, s2, . . . , st}, one such injection is defined as follows:

α (si) = 4i+1 + 2 = 22i+2 + 2, and

α (si, sj) = 2α (si) + α (sj) = 22i+3 + 22j+2 + 6.

The fact that α is injective can be seen by considering the binary repre-
sentation of such numbers. Each of the bitstrings of α (s1) , . . . , α (st) are clearly
distinct from one another, and the bitstring of α (si, sj) for any i, j ∈ {1, 2, . . . , t}
“interleaves” the bitstrings of α (si) and α (sj). The constant 2 term in the defi-
nition of α is important in the next section, when the A recurrence is considered.

The initial conditions of B are constructed so that the encoding of d occurs
on α (Σ), and the encoding of δ occurs on α

(

Σ2
)

. For i, j ∈ {1, 2, . . . , t}, The
encoding for d and δ is done respectively as follows:

B (α (si)) = 1− d (si) (5)

B (α (si, sj)) = α (δ (si, sj)) .

Is it worth noting that because of (5), B(n) can take on negative values.
The largest value attained by α is

α (st, st) = 3α (st) = 3 · 4t+1 + 6.

Let c0 = α (st, st) + 2. For the remainder of initial conditions that appear be-
fore c0 and don’t represent a symbol or symbol pair under α, B is assigned
zero. One observes that even though the number of initial conditions specified
is exponential in the size of Σ, only a polynomial number of these are actually
nonzero.

The way the B recurrence simulates R is that R’s computation string, as
represented under α, is recorded on the odd integers, while the length of the
running word is recorded on the even integers. Thus, for large enough n, the
pair (B (2n+ 1) , B (2n+ 2)) represents exactly one step of R’s computation.
The simulation begins with the initial word W0 = q1q2 . . . qm. Specifically, the m
integers α (q1) , . . . , α (qm) are placed on the first m odd integers that come after
c0. The value 2m − 2 is then immediately placed after the last symbol of W0;
it is the last initial condition of B and signifies the length of the initial word.
Beyond this point, the recurrence of B takes effect. An illustration of these initial
conditions is given in the table below.

B (c0 + k) α (q1) 0 α (q2) 0 . . . α (qm−1) 0 α (qm) 2m− 2

k 1 2 3 4 . . . 2m− 3 2m− 2 2m− 1 2m

We now formalize what is meant by “B simulates R.” As mentioned pre-
viously, B will alternatingly output symbols and word lengths. We encode the
symbols and word lengths produced by B in the following manner: any symbol

An Undecidable Nested Recurrence Relation 9

s ∈ Σ is encoded as the integer α (s), while the length k of some computed word
is recorded in the output of B as the value 2k − 2.

Suppose that at the ith computation step of R, the word W = w1w2 . . . wk

is produced. We will say that B computes the ith step of R at n if the following
equalities hold:

(B (n− 2k + 1) , . . . , B (n− 3) , B (n− 1)) = (α (w1) , α (w2) , . . . , α (wk))

B (n) = 2k − 2.

This terminology is justified, since if B computes the ith step of R at n, then
these equalities allow W to be reconstructed from the output of B near n. If
there exist constants r, s such that for all i ∈ N, B computes the ith step of R
at ri+ s whenever step i exists, then we will say that B simulates R.

Theorem 2. With the above initial conditions, B simulates R = (Σ, δ, d,W0).

Proof. If we suppose that the 0th step of R yields the initial word W0, then by
Table 1 it is clear that B computes the 0th step of R at c0 + 2m.

Assume that B computes the ith step of R at 2n, where, again, we assume the
word produced at step i is w1w2 . . . wk. We would like to show that B computes
the (i+ 1)th step of R at 2n + 2. Showing this, by induction, would prove the
theorem.

If y = δ (w1, wk), then the word produced by R at step i+1 is wd(y)+1 . . . wky.
The last symbol of this word is y and length of this word is k+1−d (y). Therefore,
to prove the theorem, we need only show that

B (2n+ 1) = α (y)

B (2n+ 2) = 2 (k + 1− d (y))− 2

= 2 (k − d (y)) .

We first consider the point 2n+ 1. Since this point is odd, we have

B (2n+ 1) = B (2B (2n− 1−B (2n)) +B (2n− 1))

= B (2B (2n− 1− 2 (k − 1)) +B (2n− 1− 2 (k − k)))

= B (2α (w1) + α (wk))

= B (α (w1, wk))

= α (δ (w1, wk))

= α (y) .

The point 2n+ 2 is even, thus

B (2n+ 2) = B (2n) + 2B (B (2n+ 1))

= 2k − 2 + 2B (α (y))

= 2k − 2 + 2 (1− d (y))

= 2 (k − d (y)) .

⊓⊔

10 Celaya and Ruskey

The above theorem describes the behaviour of B when R does not halt. If R
halts at any point, then there exists some even n such that B (n) = −2. Then,
B (n+ 1) = B (2B (n+ 1) +B (n− 1)), and so B is not calculable. Thus, B
with the prescribed initial conditions is calculable if and only if R does not halt.

6 Reducing A to B

It remains to show that the output of B is effectively the same as the output of
the recurrence

A (n) =A (n− 4−A (A (n− 4))) + 4A (A (n− 2))

+A (2A (n− 4−A (n− 2)) +A (n− 4)) , (6)

given the right initial conditions.
Once more, suppose we have a reverse tag system R = (Σ, δ, d,W0). One

restriction that will be made on R is that d (Σ) = {0, 2}. Section 3 demonstrated
how, despite this restriction, R can still simulate an ordinary tag system. The
goal at the beginning of these notes, to show that A is Turing complete, is
therefore still in reach.

Assume there are t symbols in Σ, and m symbols in the initial word W0.
Let c0 = α (st, st) + 2, as before. We now specify the initial conditions of A. For
n = 0, 1, . . . , c0, A and B will share the same initial conditions. Immediately
after, we’ll have

A (c0 + 4n+ j) =

0, j = 0, 2

B (c0 + 2n+ 1) , j = 1

2B (c0 + 2n+ 2) , j = 3

(7)

for 0 ≤ n < m and 0 ≤ j < 4.
The next theorem demonstrates how to obtain the sequence B from A.

Theorem 3. Using the given initial conditions for A and B, A is calculable if

and only if B is calculable. If B is calculable, then equation (7) holds for all

n ≥ 0.

Proof. We first consider the case when the argument of A is even, that is, j
equals 0 or 2. By the initial conditions,

A (c0 + 4m− 2) = A (c0 + 4m− 4) = 0.

Suppose A (y − 2) = A (y − 4) = 0 for some y ≥ c0+4m where y ≡ 0 mod 2.
Then A (y) = 0 since all three terms of A (y) are zero:

A (y − 4−A (A (y − 4))) = A (y − 4−A (0))

= A (y − 4)

= 0.

An Undecidable Nested Recurrence Relation 11

4A (A (y − 2)) = 4A (0)

= 0.

A (2A (y − 4−A (y − 2)) +A (y − 4)) = A (2A (y − 4) +A (y − 4))

= A (3A (y − 4))

= A (0)

= 0.

Because every number in α
(

Σ ∪Σ2
)

is congruent to 2 mod 4, we haveA (4n) =
0 for all n ∈ N whenever A (4n) is defined.

Now, let n ≥ m, and let y = c0 + 4n+ 1. Suppose that

A (y − 2) = 2B (c0 + 2n)

A (y − 4) = B (c0 + 2n− 1) .

If k is the length of the word produced in the (n−m)th step of R’s computation,
then B (c0 + 2n) = 2k−2. If k = 0, then R halts at this step. When this happens,
A (y) cannot be computed since

A (y) = 4A (A (y − 2)) + · · · = 4A (4k − 4) + · · · = 4A (−4) + · · · ,

and A is not defined on negative integers. Hence, if R halts, then A with the
given initial conditions is not calculable.

For the remainder of the proof, then, assume R never halts, that is, k ≥ 1.
The length of the word on (n−m)th step can be no longer thanm+(n−m) = n,
thus k ≤ n.

If s is the last symbol of the word at the (n−m)th step of R (which exists
since k ≥ 1), then

B (c0 + 2n− 1) = α (s) = 4i + 2

for some i ≥ 2.
We next show the first term of A (y) is zero:

A (y − 4−A (A (y − 4))) = A (y − 4−A (α (s)))

= A (y − 4−B (α (s)))

= A (y − 4− (1− d (s))) .

Since d (s) ∈ {0, 2}, this is equal to either A (y − 3) or A (y − 5). However, since
y is odd, both of these are equal to zero.

Since A vanishes on multiples of 4, the second term of A (y) also vanishes:

4A (A (y − 2)) = 4A (2B (c0 + 2n))

= 4A (4k − 4)

= 0.

12 Celaya and Ruskey

For the last term, we have

A (2A (y − 4−A (y − 2)) +A (y − 4))

= A (2A (y − 4− (4k − 4)) +A (y − 4))

= A (2A (c0 + 4 (n− k) + 1) +A (y − 4))

= A (2B (c0 + 2 (n− k) + 1) +B (c0 + 2n− 1))

= A (2B (c0 + 2n− 1− (2k − 2)) +B (c0 + 2n− 1))

= A (2B (c0 + 2n− 1−B (c0 + 2n)) +B (c0 + 2n− 1))

= B (2B (c0 + 2n− 1− B (c0 + 2n)) +B (c0 + 2n− 1))

= B (c0 + 2n+ 1) .

Therefore, A (y) = A (c0 + 4n+ 1) = B (c0 + 2n+ 1).
It remains to consider the case j = 3. As before, let n ≥ m and this time let

y = c0 + 4n+ 3. Assume

A (y − 2) = B (c0 + 2n+ 1)

A (y − 4) = 2B (c0 + 2n) .

We wish to show that A (y) = 2B (c0 + 2n+ 2). Again, k is the length of the
word after n−m steps of R, so that B (c0 + 2n) = 2k− 2. k must be larger than
zero, otherwise A (y − 2) would not be well-defined. The number c0 + 2n+ 1 is
odd, so B (c0 + 2n+ 1) = α (s′) = 4i + 2 for some s′ ∈ Σ, i ≥ 2.

The first term of A (y) is

A (y − 4−A (A (y − 4))) = A (y − 4−A (4k − 4))

= A (y − 4)

= 2B (c0 + 2n) .

The second term of A (y) is

4A (A (y − 2)) = 4A (B (c0 + 2n+ 1))

= 4A (α (s′))

= 4B (α (s′))

= 4B (B (c0 + 2n+ 1)) .

Finally, it remains to show that the third term of A (y) is zero. The quantity

h := y − 4−A (y − 2)

= y − 4− α (s′)

= y − 4−
(

4i + 2
)

= c0 + 4
(

n− 4i−1 − 1
)

+ 1

is larger than zero, smaller than y, and is congruent to 1 mod 4. Thus, A (h) = 0
if h ≤ c0, and A (h) ∈ α (Σ) if h > c0. In either case, A (h) is even and 0 ≤
A (h) ≤ maxα (Σ). Since 0 < k ≤ n, we have

2A (h) +A (y − 4) ≥ 0

An Undecidable Nested Recurrence Relation 13

and

2A (h) +A (y − 4) = 2A (h) + 4k − 4

≤ 2maxα (Σ) + 4k − 4

< c0 + 4n+ 3

= y.

Because 2A (h) +A (y − 4) ≡ 0 mod 4, A (2A (h) +A (y − 4)) = 0. Therefore,

A (y) = 2B (c0 + 2n) + 4B (B (c0 + 2n+ 1))

= 2B (c0 + 2n+ 2) .

⊓⊔

7 Concluding Remarks

In this paper, we have shown the existence of an undecidable nested recurrence
relation. Furthermore, like its more well known cousins (1), (2), (3) and (4), our
recurrence relation (6) is formed only from the operations of addition, subtrac-
tion, and recursion. Thus the result lends support to the idea that, in general,
it will be difficult to prove broad results about nested recurrence relations. It
will be interesting to try to determine whether other nested recurrence relations,
such as (1), are decidable or not. If it is undecidable then it will certainly involve
extending the techniques that are presented here, since the form of the recursion
seems to prevent lookups in the manner we used.

References

1. Allouche, J.P., Shallit, J.: A variant of Hofstadter’s sequence and finite automata.
arXiv:1103.1133v2 (2011)

2. Balamohan, B., Kuznetsov, A., Tanny, S.: On the behavior of a variant of Hofs-
tadter’s Q-sequence. J. Integer Sequences 10, 29 pages (2007)

3. Cocke, J., Minsky, M.: Universality of tag systems with p = 2. J. ACM 11(1),
15–20 (Jan 1964)

4. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

5. Downey, P., Griswold, R.: On a family of nested recurrences. Fibonacci Quarterly
22(4), 310–317 (1984)

6. Golomb, S.: Discrete chaos: sequences satisfying ”strange” recursions. preprint (un-
dated, likely late eighties or early nineties) (1991)

7. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books
(1979)

8. Kubo, T., Vakil, R.: On Conway’s recursive sequence. Discrete Mathematics 152(1),
225–252 (1996)

9. Minsky, M.L.: Recursive unsolvability of Post’s problem of ”Tag” and other topics
in theory of Turing machines. The Annals of Mathematics 74(3), 437–455 (Nov
1961)

14 Celaya and Ruskey

10. Post, E.L.: Formal reductions of the general combinatorial decision problem. Amer-
ican Journal of Mathematics 65(2), 197–215 (Apr 1943)

11. Ruskey, F.: Fibonacci meets Hofstadter. Fibonacci Quarterly 49(3), 227–230 (2011)
12. Smith, A.R.: Simple computation-universal cellular spaces and self-reproduction.

In: IEEE Conference Record of the 9th Annual Symposium on Switching and
Automata Theory, 1968. pp. 269–277 (Oct 1968)

	An Undecidable Nested Recurrence Relation

