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Abstract

Many researchers have had fun searching for and rendering symmetric Venn di-
agrams, culminating in the recent result of Griggs, Killian and Savage (Electronic
Journal of Combinatorics, “Venn Diagrams and Symmetric Chain Decompositions in
the Boolean Lattice”, 11 (2004) R2 [3]), that symmetric Venn diagrams on n curves
exist if and only if n is prime. Our purpose here is to point out ways to prolong the
fun by introducing and finding the basic properties of Venn and near-Venn diagrams
that satisfy relaxed notions of symmetry, while leaving tantalizing open problems. A
symmetric Venn diagram is one that possesses a rotational symmetry in the plane.
A monochrome symmetric Venn diagram is one that is rotationally symmetric when
the colours of the curves are ignored. A necessary condition for the existence of a
monochrome simple Venn diagram is that the number of curves be a prime power. We
specify conditions under which all curves must be non-congruent and give examples
of small visually-striking monochrome symmetric Venn diagrams found by algorithmic
searches. A Venn diagram partitions the plane into 2n open regions. For non-prime n
we also consider symmetric diagrams where the number of regions is as close to 2n as
possible, both larger and smaller.

1 Introduction

Venn diagrams and their close relatives, the Euler diagrams, form an important class of
combinatorial objects which are used in set theory, logic, and many applied areas. Symmetric
Venn diagrams are beautiful objects that have recently been intensively studied; however
only one notion of symmetry has been used. This naturally motivates the question: can we
expand on the traditional notions of symmetry in Venn diagrams?

Let C = {C1, C2, . . . , Cn} be a family of n simple closed curves in the plane. The curves
are required to be finitely intersecting. We say that C is a Venn diagram if all of the 2n open
regions X1 ∩ X2 ∩ · · · ∩ Xn are non-empty and connected, where each set Xi is either the
bounded interior or the unbounded exterior of the curve Ci.

2 If the connectedness condition
is dropped the diagram is called an independent family.

An i-region in a Venn diagram is a connected region that is interior to exactly i of the
curves. A Venn diagram is said to be simple if at most two curves intersect at any point.

1Research supported in part by NSERC.
2Note that the term “Venn diagram” is often used informally to refer to diagrams with fewer than 2n

regions, for example in using them to illustrate set inclusion and exclusion, but here we exclusively use the
term as defined. When fewer than 2n regions occur, they are properly called Euler diagrams.
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An n-Venn diagram is symmetric if it consists of n congruent curves C1, C2, . . . , Cn where
each successive curve is obtained from its predecessor by a 2πi/n rotation about a fixed point
x. We will think of distinct curves as having distinct colours. Henderson [6] proved that
a necessary condition for the existence of symmetric n-Venn diagrams is that n be prime.
This condition is also sufficient: Griggs, Killian, and Savage recently gave a construction for
symmetric Venn diagrams for any prime n [3] — a construction based on symmetric chain
decompositions of the boolean lattice.

Given a ray emanating from x a symmetric diagram may be partitioned into n sectors
(sometimes referred to as “pie-slices”) by taking the regions sliced by rotating the ray by 2π/n
radians for i = 1, 2, . . . , n. The only difference between successive sectors is a permutation
π of the curve colours. As observed by Ruskey [7], π must be a circular permutation.

In the search for symmetric Venn diagrams a particular type of diagram, first used in [7],
and later called a doodle by Hamburger [5], has proven very useful. Such a diagram has the
property that there are n points through which all the curves pass.

Figure 1: Symmetric 7-Venn diagram with one curve highlighted (dashed).

Figure 1 shows a symmetric 7-Venn diagram with several interesting properties. First,
consider that there are two adjacent vertices of degree 2n on the inner (and outer) face
that isolate between them a sector comprising 1/nth the entire diagram (here n = 7), and
that this sector’s structure repeats n times in the entire diagram. We can label the curves
1, 2 . . . , n by arbitrarily fixing curve 1 (say the dotted curve in Figure 1) and adding one
(modulo n) as the curve is rotated clockwise around the centre of the circle. The entire
diagram can then be recovered by rotating the sector n times and rotating the label of each
curve for each successive copy by adding one (modulo n). This corresponds to rotating the
curve labels by applying the circular permutation (1 2 · · ·n).

Previous research on generating symmetric diagrams has focussed on generating such
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a sector of the diagram that can be rotated n times to create the entire diagram; see for
example [1, 5, 3].

2 Monochrome Symmetry

An n-Venn diagram is said to be (n, p)-monochrome symmetric if it possesses a p-fold rota-
tional symmetry when the labels (i.e., colours) of the curves are ignored. Since the individual
curves can be uniquely recovered from a simple Venn diagram, the concept is of interest only
for non-simple diagrams.

Theorem 1 In any (n, k)-monochrome symmetric Venn diagram, k is prime and n is a
power of k.

Proof. Each 1/k sector of the diagram contains the same number of i-regions. Thus k

must divide
(

n
i

)
for all 0 < i < n, which in turn is equivalent to the condition that k is prime

and n is a power of k. See, for example, Theorem 13 of Singmaster [8]. 2

Figure 2 shows an example of the smallest non-trivial monochrome symmetric Venn
diagram in which n = 4 and k = 2.

3 Pseudo-Symmetry

We now study a restricted version of monochrome symmetry. Consider the (4,2)-monochrome
Venn diagram shown in Figure 2: we see that the diagram maps onto itself under a rotation
of 180◦ about the centre point. Another way of viewing it is that the diagram is composed
of 2 copies of the “pie-slice” forming the top 1/2 of the diagram, with the curves labelled
in the second copy from the first by a permutation of the colours in the first pie-slice; we
can generalize this to consider a monochrome symmetric diagram in which every pie-slice
is formed by relabelling under the same permutation. This example leads us to make the
following definition.

Definition 1 An n-Venn diagram V has p-fold pseudo-symmetry with 1 < p < n if there is
a pie-slice making up 1/pth of V so that the rest of V can be generated by repeatedly rotating
the pie-slice and recolouring the curves according to a fixed permutation π. We call π the
defining permutation, and refer to a diagram with this type of symmetry as (n, p)-pseudo-
symmetric.

The diagram in Figure 2 is (4, 2)-pseudo-symmetric, and the curves are labelled so that
the permutation to be applied is (1234): since p = 2 the permutation is only applied once,
to obtain the bottom half of the diagram from the top half.

This idea forms a natural extension of traditionally symmetric Venn diagrams: there,
a single pie-slice forming 1/nth of the diagram was rotated n times. This motivates a
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Figure 2: A (4,2)-monochrome Venn diagram.

generalization of this idea to a Venn diagram with two parameters, namely n and p, and a
similar process of generating the rest of the diagram from the pie-slice forming 1/pth of the
diagram; namely copying the pie-slice and rotating the curve labels. Unlike symmetric Venn
diagrams, however, pseudo-symmetric diagrams do not have the property that the last copy
of the pie-slice, when rotated once more and the permutation applied to the curve labels,
gives the first set of labels again (since p < n, applying (12 · · ·n) exactly p times will not
return a curve label to itself).

This definition also implies that the diagram maps onto itself by a rotation of 2π/p
ignoring the curve colourings, however the extra condition about the permutation being fixed
between successive copies of the pie-slice seems to be necessary, in that it is quite conceivable
that there exists a diagram that maps onto itself by a rotation of 2π/p but that does not
use the same permutation between successive copies of the pie-slice before the last and the
first: we can refer to this condition as weak pseudo-symmetry. The diagram in Figure 3 has
monochrome symmetry but not pseudo-symmetry, and thus is weakly symmetric; Figure 4
illustrates that there are different permutations between successive pie-slices. Though an
interesting idea, we will not consider weak pseudo-symmetry further.

The diagrams in Figures 2 and 3 also possess dihedral symmetry ignoring curve colourings,
but this property in general will not apply to other pseudo-symmetric diagrams we construct.

4 Properties of Pseudo-symmetric Diagrams

In considering Venn diagrams, one can use the fact that the permutation to be applied is
always circular and can thus be assumed to be the permutation (1 2 · · ·n) by relabelling the
curves. For pseudo-symmetric diagrams, this is also true:

Lemma 1 The defining permutation π of a pseudo-symmetric diagram must be a circular
permutation.

Proof. Consider labelling each region in the diagram by a bitstring x of length n, where
xi is 1 if the region is in the interior of curve i, and 0 otherwise. Since a diagram with
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a) b)

Figure 3: A monochrome symmetric but not pseudo-symmetric 5-Venn diagram with some
curves congruent and some not; part b) shows the separate curves.
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Figure 4: The dual graph of the 5-Venn diagram in Figure 3 showing the distinct permuta-
tions between each pie-slice.
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(n, p)-pseudo-symmetry can be viewed as being composed of p copies of a pie-slice forming
1/pth of the diagram, the 2n−2 different labels of regions (ignoring the internal and external
regions) must be divided up into p sets of equal size, one per pie-slice. We can consider all
sets but the first as being generated from the first by one or more applications of π to each
region, viewed as a bitstring.

We assume π is not circular and derive a contradiction. If π is not circular, it can
be written as π = (π1π2 · · · πj)π

′, with 0 < j < n. By relabelling we can assume that
π = (1 2 · · · j)π′. Since V is a Venn diagram, it must contain a region corresponding to the
bitstring w = 1j0n−j, which is a fixed point of the action of π. Thus w cannot be in any
of the aforementioned sets of region labels but the final set (the p-th copy of the pie-slice),
since if it were in any previous set it would map onto itself in a subsequent set and create
a repeated region in V . However, it cannot be in the final set either, since the pre-image
π−1(w) is also equal to w. 2

Since curve labellings are arbitrary, for convenience we can always relabel the curves so
that the permutation π is (12 · · ·n). For example, the curves in Figure 2 are labelled so that
the top half maps onto the bottom half by applying the permutation (1234).

The following Lemma illustrates a major difference between pseudo-symmetry and sym-
metry in Venn diagrams.

Lemma 2 In a (n, p)-pseudo-symmetric Venn diagram, if p < n, then no two curves are
congruent.

Proof. Assume the diagram is (n, p)-pseudo-symmetric, with 1 < p < n. Consider the pie-
slice forming 1/pth of the entire diagram, which rotates p times to give the entire diagram,
and the permutation π = (12 · · ·n) as given above that is applied to the curve labels each
time to obtain the next pie-slice.

Consider the set of edges of a given colour, say colour 1, in this pie-slice. These edges form
a connected path of that colour from one side to the other. We call this path a curve segment.
There are n different curve segments passing through the pie-slice, one corresponding to each
colour, and we can label these n segments by their colour in the first pie-slice: call si the
segment with colour i. Each segment must be distinct in shape from all others. In the final
diagram this pie-slice is rotated p times and the curve labels are incremented each time by
applying the permutation π.

Thus for example in the second copy s1 becomes colour 2 by applying π, in the third
copy s1 becomes colour 3, and in general in the jth rotation of the pie-slice, 1 < j ≤ p, s1

becomes colour (j +1) mod n. Moreover, segment si must be colour (i+ j− 1) mod n in the
jth copy, with 0 ≡ n.

In general the segment of colour i is si in the first copy, sπ−1[i] in the second copy ( i.e.
it is the segment whose colour shifts to colour i), so the curve segment of colour i in the jth
copy of the pie-slice must be s(i−j+1) mod n, with 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Now consider that the curve of colour i is made up of the cycle formed by joining all of
the segments of colour i. Define the sequence of segments followed by curve i as the circular
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sequence S(i) = (si, s(i−1) mod n, . . . , s(i−p+1) mod n), with 1 ≤ i ≤ n. Since p < n it is clear
that S(i) 6= S(j) for i 6= j given the permutation π. The sequence of segments of length p
can be thought of as a “window” of size p moving around the circular list of segments, which
has length n. Thus curves i and j are composed of a different circular sequence of distinct
segments, and thus are distinct (not congruent). 2

1

2 4

3

Figure 5: The 4 distinct curves of the (4,2)-pseudo-symmetric Venn diagram in Figure 2.

As an example of Lemma 2, consider the (4,2)-pseudo symmetric diagram in Figure 2.
In the top half of the diagram that is rotated to obtain the bottom half, we can label the
segments as black = 1, thin dotted = 2, thick dotted = 3, and light grey = 4. Then S(1) =
(s1, s4) (i.e. the black curve follows segments 1 and then 4), S(2) = (s2, s1), S(3) = (s3, s2),
and S(4) = (s4, s3). The four distinct curves are shown in Figure 5.

The Griggs, Killian, Savage (GKS) [3] result, mentioned earlier, involves generating sym-
metric Venn diagrams by creating the dual graph of the sector that is rotated n times to
form the complete diagram. Both of the larger diagrams that follow were created by using
an algorithm for the GKS construction and then modifying the output to ensure that it was
a pseudo-symmetric Venn diagram.

An (8, 2)-pseudo-symmetric Venn diagram is shown in Figure 6. Though at first glance
the diagram looks symmetric, upon closer inspection there are several “missing” regions that
show that the diagram does in fact have only 2-fold pseudo-symmetry.

Figure 7 shows a 9-Venn diagram with (9,3)-pseudo-symmetry. Areas of the diagram
that differ from sector to sector are magnified to clarify the differences. Further details of
the construction of the two larger diagrams can be found in [9].

The smallest open case is (16,2), which is far too large to construct by hand: each sector
forming 1/16th of the diagram would contain 4096 regions.

An interesting open problem is to create a general construction for pseudo-symmetric
diagrams, extending the GKS result.
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Figure 6: (8, 2)-pseudo-symmetric Venn diagram.

Conjecture 1 (pk, p)-pseudo symmetric Venn diagrams exist for all primes p and integers
k > 1.

5 Symmetric non-Venn Diagrams

In the case that n is not prime, symmetric Venn diagrams cannot exist. Thus, it is natural
to consider diagrams that are symmetric and in some sense “close” to Venn diagrams: if we
can ensure the number of regions in a diagram is close to (either greater or lesser than) the
2n required for an n-Venn diagram, we will in some sense “bracket” non-symmetric Venn
diagrams of non-prime n both from above and below by symmetric (non-Venn) diagrams.

In [4], Grünbaum generalized the concept of symmetry in Venn diagrams to independent
families of n sets. If n is not prime, there will be some i, 0 < i < n, such that regions
enclosed by i curves must be repeated to create a symmetric diagram, and thus we must
have more than 2n regions in any symmetric diagram. Grünbaum gave the lower bound
M(n) on the number of required regions: M(n) = 2 + n(Cn − 2), where Cn is the number
of binary necklaces of length n. The numbers Cn are well-studied, see [2, pages 139–141] for
explicit formulae and further references. We say that symmetric independent families that
attain this lower bound are minimal, in the sense that they cannot have any regions deleted
without either losing their symmetry or losing some regions altogether and ceasing to be
independent families. Table 1 gives M(n) for small values of n.

Grünbaum also conjectured in [4] that symmetric independent families with only M(n)
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Figure 7: (9, 3)-pseudo-symmetric Venn diagram, with blown-up regions to illustrate the
small differences between successive sectors.

regions exist for every integer n (this includes the special case that n is prime, and the
symmetric independent family is just a symmetric Venn diagram - it has no repeated regions),
and gave examples for n = 4 and n = 6 of such diagrams. Figure 8 shows a symmetric
independent family of 8 curves with M(8) regions. We have generated many such diagrams
for non-prime n up to 10, see [9] for more examples.

In addition to the above approach of adding extra regions to create symmetric diagrams,
we can also create them by removing as few regions as possible from a Venn diagram to create
a diagram that is not an independent family (as some regions will be missing) but will retain
rotational symmetry. Since these diagrams are not Venn diagrams but are “close” to being
Venn diagrams in that they are missing few regions and every region is connected, we call
them near-Venn diagrams. Symmetric near-Venn diagrams for non-prime n are maximally
symmetric Eulerian diagrams in the sense that they cannot have any more regions added
without either losing their symmetry or repeating regions.

Like the function M(n), which provided a lower bound on the number of regions in a
symmetric independent family of order n, we define a new function M ′(n), which provides
an upper bound on the number of regions in a symmetric near-Venn diagram of order n with
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Figure 8: Minimal symmetric independent family of 8 curves.

n M ′(n) 2n M(n)

4 14 16 18

6 56 64 74

8 242 256 274

9 506 512 524

10 1012 1024 1062

12 4070 4096 4202

Table 1: M(n) and M ′(n) for small n.

no repeated regions. An explicit expression is

M ′(n) = 2 + n
n−1∑

k=1

⌊(
n

k

)
/n

⌋
.

We give M(n) and M ′(n) for small n in Table 1, and 2n for comparison. For both
symmetric independent families and for symmetric near-Venn diagrams the bound on the
number of regions is asymptotic to 2n.

An example of a near-Venn diagram generated in this fashion is shown in Figure 9. This
diagram has M ′(6) = 56 regions, 8 fewer than the 64 required for a Venn diagram of order
6.

Figures 9 and 8 are also interesting in that they are as close as possible to being simple
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Figure 9: Symmetric near-Venn diagram of 6 curves.

without being simple: the diagram in Figure 9 has 6 points where three or more curves
intersect (every other point has the property, common to every point in simple diagrams,
that at most two curves cross at that point). Grünbaum suggested in [4] that we cannot do
better than this: he conjectured that if n is not prime, no simple symmetric independent
family of n curves exists with M(n) regions, and in fact we have been unable to find a simple
example of either a symmetric independent family or near-Venn diagram for any n not prime.
Thus, mirroring Grünbaum, we conjecture:

Conjecture 2 A simple symmetric near-Venn diagram of n curves, with n non-prime, does
not exist.

We have generated examples of maximal symmetric near-Venn diagrams for n = 4, 6, 8, 9
and more can easily be produced; in fact, most symmetric independent families can easily be
turned into symmetric near-Venn diagrams by deleting regions. These diagrams were gen-
erated by a branch-and-bound backtracking methodology; details on the generation process
as well as pictures of the larger examples of both symmetric independent families and near-
Venn diagrams can be found in [9]. An interesting area of future work is to find a general
construction for symmetric independent families and near-Venn diagrams for n non-prime,
and further explore their properties.

11



6 Acknowledgements
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