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Abstract. Many researchers have had fun searching for and rendering symmet-
ric Venn diagrams, culminating in the recent result of Griggs, Killian, and Savage
(“Venn Diagrams and Symmetric Chain Decompositions in the Boolean Lattice,”
Electronic Journal of Combinatorics, 11 (2004), R2), that symmetric Venn diagrams
on n curves exist if and only if n is prime. Our purpose here is to point out ways to
prolong the fun by introducing and finding the basic properties of Venn and near-
Venn diagrams that satisfy relaxed notions of symmetry, while leaving tantalizing
open problems. A symmetric Venn diagram is one that possesses a rotational symme-
try in the plane. A monochrome symmetric Venn diagram is one that is rotationally
symmetric when the colours of the curves are ignored. A necessary condition for the
existence of a monochrome symmetric Venn diagram is that the number of curves be
a prime power. We specify conditions under which all curves must be non-congruent
and give examples of small visually striking monochrome symmetric Venn diagrams
found by algorithmic searches. A Venn diagram partitions the plane into 2n open
regions. For non-prime n we also consider symmetric diagrams where the number
of regions is as close to 2n as possible, both larger and smaller.

Introduction

Venn diagrams and their close relatives, the Euler diagrams, form an important class
of combinatorial objects which are used in set theory, logic, and many applied areas.
Symmetric Venn diagrams are beautiful objects that have recently been intensively stud-
ied; however, only one notion of symmetry has been used. This naturally motivates the
question: Can we expand on the traditional notions of symmetry in Venn diagrams?

∗ Frank Ruskey’s research was supported in part by NSERC.
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Fig. 1. Symmetric 7-Venn diagram with one curve highlighted (dashed).

Let C = {C1,C2, . . . ,Cn} be a family of n simple closed curves in the plane. The
curves are required to be finitely intersecting. Let Xi , i = 1, 2, . . . , n, be either the
open bounded interior or the open unbounded exterior of the curve Ci . Then we say
that C is a Venn diagram if all of the 2n open regions X1 ∩ X2 ∩ · · · ∩ Xn are non-
empty and connected.1 If the connectedness condition is dropped the diagram is called
an independent family.

An i-region in a Venn diagram is a connected region that is interior to exactly i of
the curves. A Venn diagram is simple if at most two curves intersect at any point.

An n-Venn diagram is symmetric if it consists of n congruent curves C1,C2, . . . ,Cn

where each successive curve is obtained from its predecessor by a rotation of 360i/n
degrees about a fixed point x . We think of distinct curves as having distinct colours.
Henderson [6] proved that a necessary condition for the existence of symmetric n-Venn
diagrams is that n be prime. This condition is also sufficient: Griggs et al. recently gave
a construction for symmetric Venn diagrams for any prime n [3]—a construction based
on symmetric chain decompositions of the boolean lattice.

Given a ray emanating from x , a symmetric diagram may be partitioned into n
sectors (sometimes referred to as “pie-slices”) by taking the regions sliced by rotating
the ray by 360i/n degrees for i = 1, 2, . . . , n. The only difference between successive
sectors is a permutation π of the curve colours. As observed by Ruskey [7], π must be
a circular permutation.

Figure 1 shows a symmetric 7-Venn diagram with several interesting properties.
First, consider that there are two adjacent vertices of degree 2n on the inner (and outer)
face that isolate between them a sector comprising 1/nth the entire diagram (here n = 7),
and that this sector’s structure repeats n times in the entire diagram. We can label the
curves 1, 2 . . . , n by arbitrarily fixing curve 1 (say the dotted curve in Figure 1) and
adding one (modulo n) as the curve is rotated clockwise around the centre of the circle.
The entire diagram can then be recovered by rotating the sector n times and rotating the
label of each curve for each successive copy by adding one (modulo n). This corresponds
to rotating the curve labels by applying the circular permutation (1 2 · · · n).

1 Note that the term “Venn diagram” is often used informally to refer to diagrams with fewer than 2n

regions, for example in using them to illustrate set inclusion and exclusion, but here we exclusively use the
term as defined. When fewer than 2n regions occur, they are properly called Euler diagrams.
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Previous research on generating symmetric diagrams has focused on generating
such a sector of the diagram that can be rotated n times to create the entire diagram; see,
for example, [1], [5], and [3].

1. Monochrome Symmetry

An n-Venn diagram is said to be (n, p)-monochrome symmetric if it possesses a p-fold
rotational symmetry when the labels (i.e., colours) of the curves are ignored. Since the
individual curves can be uniquely recovered from a simple Venn diagram, the concept
is of interest only for non-simple diagrams.

Theorem 1. In any (n, k)-monochrome symmetric Venn diagram, k is prime and n is
a power of k.

Proof. Each 1/k sector of the diagram contains the same number of i-regions. Thus k
must divide

(n
i

)
for all 0 < i < n, which in turn is equivalent to the condition that k is

prime and n is a power of k. See, for example, Theorem 13 of [8].

Figure 2 shows an example of the smallest non-trivial monochrome symmetric Venn
diagram in which n = 4 and k = 2.

2. Pseudo-Symmetry

We now study a restricted version of monochrome symmetry. Consider the (4, 2)-
monochrome Venn diagram shown in Figure 2: we see that the diagram maps onto
itself under a rotation of 180 degrees about the centre point. Another way of viewing it
is that the diagram is composed of two copies of the “pie-slice” forming the top half of
the diagram, with the curves labelled in the second copy from the first by a permutation
of the colours in the first pie-slice; we can generalize this to consider a monochrome
symmetric diagram in which every pie-slice is formed by relabelling under the same
permutation. This example leads us to make the following definition.

Fig. 2. A (4, 2)-monochrome Venn diagram.
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Definition 1. An n-Venn diagram V has p-fold pseudo-symmetry with 1 < p < n
if there is a pie-slice making up 1/pth of V so that the rest of V can be generated
by repeatedly rotating the pie-slice and recolouring the curves according to a fixed
permutation π . We call π the defining permutation, and refer to a diagram with this type
of symmetry as (n, p)-pseudo-symmetric.

The diagram in Figure 2 is (4, 2)-pseudo-symmetric, and the curves are labelled so
that the permutation to be applied is (1234): since p = 2 the permutation is only applied
once, to obtain the bottom half of the diagram from the top half.

This idea forms a natural extension of traditionally symmetric Venn diagrams: there,
a single pie-slice forming 1/nth of the diagram was rotated n times. Thus, we can
generalize this idea to a Venn diagram with two parameters, namely n and p, and a
similar process of generating the rest of the diagram from the pie-slice forming 1/pth
of the diagram; namely copying the pie-slice and rotating the curve labels. However,
unlike symmetric Venn diagrams, pseudo-symmetric diagrams do not have the property
that permuting the labels of the last pie-slice will yield the labelling of the first pie-slice
since applying (1 2 · · · n) exactly p < n times will not return a curve label to itself.

This definition also implies that the diagram maps onto itself by a rotation of 360/p
degrees ignoring the curve colourings, however, the extra condition about the permutation
being fixed between successive copies of the pie-slice seems to be necessary in that there
exist diagrams that map onto themselves by a rotation of 360/p degrees but do not use
the same permutation between successive copies of the pie-slice before the last and the
first: we refer to this condition as weak pseudo-symmetry. The diagram in Figure 3 has
monochrome symmetry but not pseudo-symmetry, and thus is weakly pseudo-symmetric;
Figure 4 illustrates that there are different permutations between successive pie-slices.
Though an interesting idea, we do not consider weak pseudo-symmetry further.

The diagrams in Figures 2 and 3 also possess dihedral symmetry ignoring curve
colourings, but this property in general will not apply to other pseudo-symmetric dia-
grams we construct.

Fig. 3. A monochrome symmetric but not pseudo-symmetric 5-Venn diagram with some curves congruent
and some not; part (b) shows the separate curves.
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Fig. 4. The dual graph of the 5-Venn diagram in Figure 3 showing the distinct permutations between each
pie-slice.

Note that we do not say that a normal symmetric n-Venn diagram is (n, n)-pseudo-
symmetric, as this would lead to confusion when we consider the differences between
pseudo-symmetry and normal symmetry.

3. Properties of Pseudo-Symmetric Diagrams

In considering symmetric Venn diagrams, one can use the fact that the permutation to
be applied is always circular and can thus be assumed to be the permutation (1 2 · · · n)
by relabelling the curves. For pseudo-symmetric diagrams, this is also true:

Lemma 1. The defining permutation π of a pseudo-symmetric diagram must be a
circular permutation.

Proof. Consider labelling each region in the diagram by a bitstring x of length n, where
xi is 1 if the region is in the interior of curve i , and 0 otherwise. Since a diagram with
(n, p)-pseudo-symmetry can be viewed as being composed of p copies of a pie-slice
forming 1/pth of the diagram, the 2n−2 different labels of regions (ignoring the internal
and external regions) must be divided into p sets of equal size, one per pie-slice. We can
consider all sets but the first as being generated from the first by one or more applications
of π to each region, viewed as a bitstring.

We assume π is not circular and derive a contradiction. If π is not circular, it can be
written as π = (π1π2 · · ·πj )π

′, with 0 < j < n and π ′ is disjoint from (π1π2 · · ·πj ).
By relabelling we can assume that π = (1 2 · · · j)π ′. Any Venn diagram must contain a
region corresponding to the bitstring w = 1 j 0n− j , which is a fixed point of the action of
π . However, each label in the non-final sets must have a corresponding label in the final
set that they map onto via repeated applications of π . This implies that w is an extra
element in that final set, as no other set can map onto it, contradicting the fact that the
sets must have the same cardinality.

Since curve labellings are arbitrary, for convenience we can always relabel the curves
so that the permutation π is (1 2 · · · n). For example, the curves in Figure 2 are labelled
so that the top half maps onto the bottom half by applying the permutation (1234).

The following lemma illustrates a major difference between pseudo-symmetry and
symmetry in Venn diagrams.
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Lemma 2. In an (n, p)-pseudo-symmetric Venn diagram, if p < n, then no two curves
are congruent.

Proof. Assume the diagram is (n, p)-pseudo-symmetric, with 1 < p < n. Consider
the pie-slice forming 1/pth of the entire diagram, which rotates p times to give the entire
diagram, and the permutation π = (1 2 · · · n) as given above that is applied to the curve
labels each time to obtain the next pie-slice.

Consider the set of edges of a given colour, say colour 1, in this pie-slice. These
edges form a connected path of that colour from one side to the other. We call this path a
curve segment. There are n different curve segments passing through the pie-slice, one
corresponding to each colour, and we can label these n segments by their colour in the
first pie-slice: call si the segment with colour i . Each segment must be distinct in shape
from all others. In the final diagram this pie-slice is rotated p times and the curve labels
are incremented each time by applying the permutation π .

Thus, for example, in the second copy s1 becomes colour 2 by applyingπ , in the third
copy s1 becomes colour 3, and in general in the j th rotation of the pie-slice, 1 < j ≤ p,
s1 becomes colour ( j+1) mod n. Moreover, segment si must be colour (i+ j−1) mod n
in the j th copy, with 0 ≡ n.

Consider the inverse permutation function π−1 defined by π−1[x] = y if and only
if π [y] = x . In general the segment of colour i is si in the first copy, sπ−1[i] in the
second copy (i.e., it is the segment whose colour shifts to colour i), so the curve segment
of colour i in the j th copy of the pie-slice must be s(i− j+1)modn , with 1 ≤ i ≤ n and
1 ≤ j ≤ p.

Now consider that the curve of colour i is made up of the cycle formed by joining
all of the segments of colour i . Define the sequence of segments followed by curve
i as the circular sequence S(i) = (si , s(i−1)modn, . . . , s(i−p+1)modn), with 1 ≤ i ≤ n.
Since p < n it is clear that S(i) �= S( j) for i �= j given the permutation π . The
sequence of segments of length p can be thought of as a “window” of size p moving
around the circular list of segments, which has length n. Thus curves i and j are com-
posed of a different circular sequence of distinct segments, and thus are distinct (not
congruent).

As an example of Lemma 2, consider the (4, 2)-pseudo symmetric diagram in Fig-
ure 2. In the top half of the diagram that is rotated to obtain the bottom half, we can label
the segments as black = 1, thin dotted = 2, thick dotted = 3, and light grey = 4. Then
S(1) = (s1, s4) (i.e., the black curve follows segments 1 and then 4), S(2) = (s2, s1),
S(3) = (s3, s2), and S(4) = (s4, s3). The four distinct curves are shown in Figure 5.

Fig. 5. The four distinct curves of the diagram in Figure 2.
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Fig. 6. An (8, 2)-pseudo-symmetric Venn diagram.

The Griggs, Killian, Savage (GKS) [3] result, mentioned earlier, involves generating
symmetric Venn diagrams by creating the dual graph of the sector that is rotated n times
to form the complete diagram. Both of the larger diagrams that follow were created by
using an algorithm for the GKS construction and then modifying the output to ensure
that it was a pseudo-symmetric Venn diagram.

An (8, 2)-pseudo-symmetric Venn diagram is shown in Figure 6. Though at first
glance the diagram looks symmetric, upon closer inspection there are several differences
between pie-slices that show that the diagram does in fact have only two-fold pseudo-
symmetry.

Figure 7 shows a 9-Venn diagram with (9, 3)-pseudo-symmetry. Areas of the diagram
that differ from sector to sector are magnified to clarify the differences. Further details
of the construction of the two larger diagrams can be found in [9].

The smallest open case is (16, 2), which is far too large to construct by hand: each
sector forming 1

16 of the diagram would contain 4096 regions.
An interesting open problem is to create a general construction for pseudo-symmetric

diagrams, extending the GKS result.

Conjecture 1. A (pk, p)-pseudo symmetric Venn diagrams exist for all primes p and
integers k > 1.
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Fig. 7. A (9, 3)-pseudo-symmetric Venn diagram, with blown-up regions to illustrate the small differences
between successive sectors.

4. Symmetric Non-Venn Diagrams

In the case that n is not prime, symmetric Venn diagrams cannot exist. Thus, it is natural
to consider diagrams that are symmetric and in some sense “close” to Venn diagrams: if
we can ensure the number of regions in a diagram is close to (either greater or lesser than)
the 2n required for an n-Venn diagram, we will in some sense “bracket” non-symmetric
Venn diagrams of non-prime n both from above and below by symmetric (non-Venn)
diagrams.

In [4] Grünbaum generalized the concept of symmetry in Venn diagrams to indepen-
dent families of n sets. If n is not prime, there will be some i , 0 < i < n, such that regions
enclosed by i curves must be repeated to create a symmetric diagram, and thus we must
have more than 2n regions in any symmetric diagram. Grünbaum gave the lower bound
M(n) on the number of required regions: M(n) = 2+n(Cn−2), where Cn is the number
of binary necklaces of length n. The numbers Cn are well-studied, see pages 139–141
of [2] for explicit formulae and further references. We say that symmetric independent
families that attain this lower bound are minimal, in the sense that they cannot have any
regions deleted without either losing their symmetry or losing some regions altogether
and ceasing to be independent families. Table 1 gives M(n) for small values of n.

Grünbaum also conjectured in [4] that symmetric independent families with only
M(n) regions exist for every integer n (this includes the special case that n is prime, and
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Table 1. M(n) and M ′(n) for small values of n.

n M ′(n) 2n M(n)

4 14 16 18
6 56 64 74
8 242 256 274
9 506 512 524

10 1012 1024 1062
12 4070 4096 4202

the symmetric independent family is just a symmetric Venn diagram—it has no repeated
regions), and gave examples for n = 4 and n = 6 of such diagrams. Figure 8 shows a
symmetric independent family of eight curves with M(8) regions. We have generated
many such diagrams for non-prime n up to 10, see [9] for more examples.

In addition to the above approach of adding extra regions to create symmetric di-
agrams, we can also create them by removing as few regions as possible from a Venn
diagram to create a diagram that is not an independent family (as some regions will be
missing) but will retain rotational symmetry. Since these diagrams are not Venn

Fig. 8. A minimal symmetric independent family of eight curves.
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diagrams but are “close” to being Venn diagrams in that they are missing few regions
and every region is connected, we call them near-Venn diagrams. Symmetric near-Venn
diagrams for non-prime n are maximally symmetric Euler diagrams in the sense that they
cannot have any more regions added without either losing their symmetry or repeating
regions.

Like the function M(n), which provided a lower bound on the number of regions
in a symmetric independent family of order n, we define a new function M ′(n), which
provides an upper bound on the number of regions in a symmetric near-Venn diagram
of order n with no repeated regions. An explicit expression is

M ′(n) = 2+ n
n−1∑
k=1

⌊(
n

k

)
/n

⌋
.

We give M(n) and M ′(n) for small n in Table 1, and 2n for comparison. For both
symmetric independent families and for symmetric near-Venn diagrams the bound on
the number of regions is asymptotic to 2n .

An example of a near-Venn diagram generated in this fashion is shown in Figure 9.
This diagram has M ′(6) = 56 regions, eight fewer than the 64 required for a Venn
diagram of order 6.

Figures 9 and 8 are also interesting in that they are as close as possible to being
simple without being simple: the diagram in Figure 9 has six points where three or more
curves intersect (every other point has the property, common to every point in simple
diagrams, that at most two curves cross at that point). Grünbaum suggested in [4] that
we cannot do better than this: he conjectured that if n is not prime, no simple symmetric
independent family of n curves exists with M(n) regions, and in fact we have been
unable to find a simple example of either a symmetric independent family or near-Venn
diagram for any n not prime. Thus, mirroring Grünbaum, we conjecture:

Conjecture 2. A simple symmetric near-Venn diagram of n curves, with n non-prime,
does not exist.

Fig. 9. A symmetric near-Venn diagram of six curves.
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We have generated examples of maximal symmetric near-Venn diagrams for n =
4, 6, 8, 9 and more can easily be produced; in fact, most symmetric independent families
can easily be turned into symmetric near-Venn diagrams by deleting regions. These
diagrams were generated by a backtracking methodology; details on the generation
process as well as pictures of the larger examples of both symmetric independent families
and near-Venn diagrams can be found in [9]. An interesting area of future work is to find
a general construction for symmetric independent families and near-Venn diagrams for
n non-prime, and further explore their properties.
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Note added in proof. In his Master’s thesis, “Symmetric chain decompositions and
independent families of curves” (Computer Science Dept., N.C. State University, 2003),
Zongliang Jiang gives examples of symmetric independent families with M(n) regions
for n ≤ 16, when n is composite.


