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Abstract. The Rand distances of two set partitions is the number of
pairs {x, y} such that there is a block in one partition containing both
x and y, but x and y are in different blocks in the other partition. Let
R(n, k) denote the number of distinct (unordered) pairs of partitions of
n that have Rand distance k. For fixed k we prove that R(n, k) can be
expressed as

∑
j ck,j

(
n
j

)
Bn−j where ck,j is a non-negative integer and Bn

is a Bell number. For fixed k we prove that there is a constant Kn such
that R(n,

(
n
2

)
− k) can be expressed as a polynomial of degree 2k in n

for all n ≥ Kn. This polynomial is explicitly determined for 0 ≤ k ≤ 11.
The block distance of two set partitions is the number of elements that
are not in common blocks. We give formulae and asymptotics based on
N(n), the number of pairs of partitions with no blocks in common. We
develop an O(n) algorithm for computing the block distance.

1 Introduction and Motivation

In statistics, particularly as it is applied to cluster analysis, it is sometimes useful
to have a measure of the difference between two set partitions [4]. The Rand
distance is one such measure, and was introduced in Rand [8]. In this paper we
will initiate a combinatorial study of the properties of the Rand distance, taken
over all unordered pairs of partitions of an n-set. We will also introduce another
measure, which we call the block distance, and determine some of its properties.
For example, we will determine an exact expression for the number of pairs of
partitions that have no blocks in common. Furthermore, we will show how to
compute the block distance efficiently.

The Rand distance of two set partitions is the number of unordered pairs
{x, y} such that there is a block in one partition containing both x and y,
but x and y are in different blocks in the other partition. We use R(P,Q)
to denote the Rand distance between two set partitions P and Q. For exam-
ple, R({{1, 2}, {3}}, {{1}, {2, 3}}) = 2 (the pairs are {1, 2} and {2, 3}) and
R({{1, 2, 3}}, {{1}, {2}, {3}}) = 3 (the pairs are {1, 2}, {1, 3}, and {2, 3}). In
general, if P and Q are partitions of an n-set, then 0 ≤ R(P,Q) ≤

(
n
2

)
.

Let R(n, k) be the number of distinct (unordered) pairs of partitions of an
n-set that have Rand distance k. See Table 2 in Section 3.1. This table was
computed from exhaustive computer listings of all partitions of {1, 2, . . . , n} up
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to n = 11. The column sums are
(
Bn

2

)
. Note that the numbers for fixed n are

not unimodal in general.
We define the block distance B(P,Q) between two partitions of n as the

number of elements in the blocks that are not common to both P and Q. For
example,

B({{1, 2}, {3}}, {{1}, {2}, {3}}) = 2

since the only block that is common to both partitions is {3} and there are 2
elements in the remaining blocks. By B(n, k) we denote the number of pairs
of partitions of n that have block distance k. See Table 1 in Section 2. The
Rand distance can be cleverly computed using a linear number of arithmetic
operations; see Filkov and Skiena [2] and we will show that the block distance
is also efficiently computable.

Organizationally, we will finish this section by giving some background on
set partitions. In the succeeding two sections, we discuss first the block distance
and then the Rand distance. The focus is mainly on the elucidation of some
enumerative results along with a clever O(n) algorithm for computing the block
distance.

1.1 Background on set partitions

A partition of a set S is collection of disjoint subsets of S, say {S1, S2, · · · , Sk}
whose union is S. Each Si is referred to as a block. The number of partitions
of an n-set into k blocks is the Stirling number (of the second kind), which is
denoted as

{
n
k

}
. We use [n] to denote {1, 2, . . . , n}.

In the computer, partitions are usually represented by restricted growth strings.
We assume that the blocks of a partition X are numbered S1, S2, . . . , Sk accord-
ing to the size of the smallest element in each block. That is, S1 contains 1, S2

contains the smallest element not in S1, and so on. Then the restricted growth
string r[1..n] of X is defined by taking r[i] to be the distance of the block con-
taining i. The Gray code algorithms for generating restricted growth strings
developed in [9] and discussed in [5] were used to generate the numbers in Ta-
bles 1 and 2; as each string was generated the O(n) algorithms for computing
the Rand distance and the block distance were applied.

The n-th Bell number, Bn, is the total number of partitions of an n-set, irre-
spective of block size. Thus Bn =

∑
k

{
n
k

}
. The exponential generating function

(egf) of the Bell numbers is well-known (e.g., Stanley [10], pg. 34)) to be

B(z) =
∑
n≥1

Bn
zn

n!
= ee

z−1. (1)

The number of pairs of partitions is
(
Bn

2

)
. For n = 1, 2, 3, . . . , 10 these num-

bers are

0, 1, 10, 105, 1326, 20503, 384126, 8567730, 223587231, 6725042325.

They give the row sums in Tables 1 and 2.
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We use several times a generalization of the fact that if f(z) =
∑

n≥0 fnz
n/n!

is the egf of a sequence fn, then zf(z) is the egf of the sequence nfn−1. See Knuth,
Graham, Patashnik [3], page 350. Furthermore, for k ≥ 0,

zkf(z) =
∑
n≥k

n(n− 1) · · · (n− k + 1)fn−k
zn

n!

= k!
∑
n≥0

(
n

k

)
fn−k

zn

n!
. (2)

Thus k!
(
n
k

)
fn−k is the n-th coefficient of zkf(z).

2 The Block Distance

Recall that the block distance B(P,Q) of two partitions of n is the number of
elements in the blocks that are not common to both P and Q, and that B(n, k)
is the number of pairs of partitions of n that have block distance k. See Table 1.

n\k 2 3 4 5 6 7 8 9

2 1
3 3 7
4 12 28 65
5 50 140 325 811
6 225 700 1950 4866 12762
7 1092 3675 11375 34062 89334 244588
8 5684 20384 68250 227080 714672 1956704 5574956
9 31572 119364 425880 1532790 5360040 17610336 50174604 148332645

Table 1. The values of B(n, k) for 1 ≤ k ≤ n ≤ 9.

Let N(n) = B(n, n); this is the number of unordered pairs of partitions that
have no blocks in common. The numerical values of N(n), for 0 ≤ n ≤ 10, are

0, 0, 1, 7, 65, 811, 12762, 244588, 5574956, 148332645, 4538695461.

Determining N(n) for i = 1, . . . , n is sufficient to determine B(n, k) since, by
direct combinatorial considerations,

B(n, k) = N(k)

(
n

k

)
Bn−k. (3)

We also note that(
Bn

2

)
=

n∑
k=0

B(n, k) =
n∑

k=0

N(k)

(
n

k

)
Bn−k. (4)
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Letting N(z) be the egf of the N(n) numbers, from (4) we obtain the equation

P (z) :=
∑
n≥0

(
Bn

2

)
zn

n!
= N(z)ee

z−1.

And thus
N(z) = P (z)e1−ez . (5)

The egf e1−ez is known; it is the egf of the “complementary Bell numbers” (OEIS
A000587). The complementary Bell numbers, Cn, for n = 0, 1, 2, . . . , 14 are

1,−1, 0, 1, 1,−2,−9,−9, 50, 267, 413,−2180,−17731,−50533, 110176.

It is known that

Cn =
n∑

k=0

(−1)k
{
n

k

}
.

Thus, from (5) we get a “closed-form” formula for N(n), namely

N(n) =

n∑
j=0

(
n

j

)
Cj

(
Bn−j

2

)
=

n∑
j=0

(
n

j

)(
Bn−j

2

) j∑
k=0

(−1)k
{
j

k

}
.

2.1 Linear Time Algorithm to Compute the Block Distance

In this subsection we present a linear time algorithm to compute the block
distance of two partitions.

Closely related to the restricted growth string, we define the block string,
b[1..n], of P as follows: b[i] is the smallest element in the block containing i.
Every block string has the characterizing property that b[1] = 1, and for i > 1,

b[i] ∈ {i, b[1], b[2], . . . , b[i− 1]}.

It is relatively simple to convert a restricted growth string into the corresponding
block string in O(n) time.

The following code takes as input a restricted growth function r[1..n] and
returns the corresponding block string b[1..n]. It uses a temporary array m[1..n]
that maintains the invariant b[i] = m[r[i]].

for i ∈ {1, 2, . . . , n} do m[i] := 0;
for i := 1, 2, . . . , n do

if m[r[i]] = 0 then m[r[i]] := i;
b[i] := m[r[i]];

Before describing the algorithm for computing the block distance, we encour-
age the reader to consider the following small example. Suppose

P = {1}{2}{3, 4}{5, 7}{6}, Q = {1, 2}{3, 4, 6}{5, 7}.
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Then the restricted growth strings for P and Q are

rP = 1, 2, 3, 3, 4, 5, 4, rQ = 1, 1, 2, 2, 3, 2, 3

and the block strings are

p = 1, 2, 3, 3, 5, 6, 5, q = 1, 1, 3, 3, 5, 3, 5.

Comparing the elements, we find that the blocks labelled 1, 2, 3, and 6 are not
common to P and Q and that the block labelled 5 is common to P and Q. Since
there are 5 elements in blocks 1, 2, 3, and 6, the block distance of P and Q is 5.

The algorithm maintains a boolean array C[1..n] with the property that,
upon termination, C[i] is true if i is in a block common to P and Q, and is false
otherwise. The block distance is thus equal to the number of entries in this array
that are false.

The algorithm makes two passes over p, one pass over q, and one pass over
C. Consider p[i] and q[i]; there are three mutually exclusive cases: (a) p[i] ̸= q[i]
and i is not in a common block, (b) p[i] = q[i] and i is in a common block, and
(c) p[i] = q[i] and i is not in a common block. (Because we are using the block
string and not the restricted growth string, it is not possible that p[i] ̸= q[i] and
i is in a common block.) In the first pass we test only for case (a). In the second
pass we (indirectly) distinguish cases (b) and (c).

The key observation is this: If i is not in a common block and p[i] = q[i],
then there is some value j ̸= i such that j is in the same block as i in P but is
in a different block than i in Q, or vice-versa. In other words, p[i] = p[j] ̸= q[j]
or p[j] ̸= q[j] = q[i]. Thus, in the first pass C[p[j]] and C[q[j]] were set to false.

So on the second pass, we test whether C[p[i]] is false to determine whether
i is in a common block or not. On the final pass, we find the block distance by
counting the number of false values in C. Below is the code in detail.

for i ∈ {1, 2, . . . , n} do C[i] := true
for i := 1, 2, . . . , n do

if p[i] ̸= q[i] then C[p[i]] := C[q[i]] := false;
for i := 1, 2, . . . , n do

if ¬C[p[i]] then C[i] := false;
c := 0;
for i ∈ {1, 2, . . . , n} do

if ¬C[i] then c := c+ 1;
return(c);

3 Results on the Rand distance

Now recall that R(P,Q) is the number of unordered pairs {x, y} such that there
is a block in one partition containing both x and y, but x and y are in different
blocks in the other partition, and that R(n, k) is the number of distinct (un-
ordered) pairs of partitions of an n-set that have Rand distance k. See Table 2.
Let R(n) be the sum of the Rand distance over all unordered pairs of partitions.
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k\n 2 3 4 5 6 7 8 9 10 11

1 1 3 12 50 225 1092 5684 31572 186300 1163085
2 6 30 150 780 4200 23772 141624 887220 5835060
3 1 32 280 1720 10885 69272 452508 3060360 21482340
4 24 300 3360 25200 183960 1341648 9883440 74471760
5 6 240 3426 42672 391356 3266172 26969040 222185304
6 1 220 4100 56889 696178 7234374 67288830 612903720
7 60 2400 60165 941088 12259368 141778440 1469224350
8 15 2700 57750 1182888 18992502 256463820 3164268690
9 10 1075 46585 1150520 23324140 399874640 5762811670

10 1 471 31374 1165416 28129626 547907454 9538994388
11 150 24528 815640 26605908 670419540 13513772745
12 35 14140 780570 26190612 742419510 18112131840
13 45 4725 413840 21568932 744780330 20675910420
14 15 1890 369180 17119818 701747010 23653643310
15 1 1302 178080 13040280 607809750 22677991578
16 252 115780 8948079 520591950 22923998460
17 210 43512 6244308 377521875 19287053775
18 140 20734 3679032 312082260 17554312490
19 105 6860 2431044 198307620 13495597225
20 21 7098 1250109 158606532 11143736604
21 1 3508 640908 87210930 8029798920
22 574 315828 63688410 6035010960
23 840 197568 33243120 4254456690
24 665 57288 25703205 2872892550
25 476 46116 11343906 1924619235
26 210 30366 6764940 1215058680
27 28 25732 3272500 789847190
28 1 7695 2003805 453548480
29 4104 1532340 306871290
30 2226 757080 177358500
31 3780 211410 112440900
32 2205 212625 53211510
33 1344 198345 35497935
34 378 138600 16793040
35 36 82512 13781493
36 1 21080 10664335
37 16200 6744100
38 15750 2483415
39 14910 1445565
40 13545 802164
41 7245 1320165
42 3270 860640
43 630 580965
44 45 215325
45 1 104313
46 62205
47 103950
48 70455
49 74250
50 45045
51 21945
52 7095
53 990
54 55
55 1

Table 2. The values of R(n, k) for 2 ≤ n ≤ 11 and 1 ≤ k ≤ 55. This table is inverted
in the sense that k increases down columns and n varies along the columns.
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Theorem 1.

R(n) =

(n2)∑
k=0

k R(n, k) =

(
n

2

)
Bn−1(Bn −Bn−1).

Proof. Choose a pair {x, y}. The number of partitions in which this pair appears
in the same block is Bn−1. The number of partitions in which this pair appears in
different blocks is the difference Bn−Bn−1. Thus in total, each pair contributes
Bn−1(Bn − Bn−1) to the sum. Since there are

(
n
2

)
ways to choose a pair, the

proof is finished. ⊓⊔

The average value of the Rand distance is thus

R(n)(
Bn

2

) =
n(n− 1)Bn−1(Bn −Bn−1)

Bn(Bn − 1)
.

Since the Bell numbers grow exponentially,

R(n)(
Bn

2

) ∼ n2Bn−1

Bn
,

which experimentally appears to be Θ(n log n).

3.1 Determining R(n, k) for small values of k

We now consider R(n, k) for small values of k.
Clearly R(n, 0) = 0.

Theorem 2. For all n ≥ 1,

R(n, 1) =

(
n

2

)
Bn−2.

Proof. The only way that the Rand distance can be 1 is if there is a block {x, y}
in one partition and two blocks {x}, {y} in the other, and all other blocks in one
partition are present in the other. There are

(
n
2

)
ways to choose the pair and

Bn−2 ways to determine the other blocks. ⊓⊔

Corollary 1. The egf of the R(n, 1) numbers is

∑
n≥1

R(n, 1)
zn

n!
=

z2

2
B(z) =

z2

2
ee

z−1.

Proof. Apply (2) with k = 2. ⊓⊔

The previous two results were warm-ups for the more technical results that
follow.
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Theorem 3. For fixed k, there are non-negative integer constants ck,j such that,
for all n ≥ 1,

R(n, k) =
2k∑

j=⌈(1+
√
1+8k)/2⌉

ck,j

(
n

j

)
Bn−j .

Proof. Any two partitions P and Q will have a largest subpartition X that is
common to both P and Q. Thus R(P,Q) = R(P \X,Q \X).

In the sum above j represents n − |X|, given that R(P,Q) = k. The lower
bound in the summation follows from the fact that the maximum Rand distance
between two partitions of n is

(
n
2

)
and thus k ≤

(
j
2

)
. Solving the implied quadratic

yields j ≥ (1 +
√
1 + 8k)/2, which gives us the lower bound. We hereafter use

α = ⌈(1 +
√
1 + 8k)/2⌉ for ease of reading.

For the upper bound, consider two partitions P and Q of an j-set that have
no block in common, and have Rand distance k. We claim that ≥ ⌈j/2⌉. Consider
some arbitrary integer x ∈ {1, 2, . . . , j}. Since P and Q have no common blocks,
there is some integer y that is in the same block as x in one partition, and
in another block in the other partition. Thus we have j distinct ordered pairs
(x, y), one for each different value of x. At least ⌈j/2⌉ of them have to be distinct
as unordered pairs, and each such unordered pair contributes 1 to the Rand
distance. Thus k ≥ ⌈j/2⌉ as claimed. From this it follows that j ≤ 2k, which is
the upper bound in the sum above. ⊓⊔

Theorem 4. For all n ≥ 1,

R(n, 2) = 6

(
n

3

)
Bn−3 + 6

(
n

4

)
Bn−4.

Proof. Theorem 3 tells us that

R(n, 2) = c2,3

(
n

3

)
Bn−3 + c2,4

(
n

4

)
Bn−4.

From the k = 2 row of Table 2 we then have the following two equations.

R(3, 2) = 6 = c2,3

(
3

3

)
B0 + c2,4

(
3

4

)
B−1 = c2,3 and

R(4, 2) = 30 = c2,3

(
4

3

)
B1 + c2,4

(
4

4

)
B0 = c2,34 + c2,4.

This system of equations can be solved to obtain c2,3 = c2,4 = 6. ⊓⊔

Corollary 2. The egf of the R(n, 2) numbers is

∑
n≥1

R(n, 2)
zn

n!
=

(
z3 +

z4

4

)
B(z) =

(
z3 +

z4

4

)
ee

z−1.
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In a similar fashion we can solve systems of linear equations to obtain the
following theorems and corollaries.

Theorem 5. For all n ≥ 1,

R(n, 3) =

(
n

3

)
Bn−3 + 28

(
n

4

)
Bn−4 + 120

(
n

5

)
Bn−5 + 60

(
n

6

)
Bn−6.

Corollary 3. The egf of the R(n, 3) numbers is∑
n≥1

R(n, 3)
zn

n!
=

(
z3

6
+

7z4

6
+ z5 +

z6

12

)
B(z) =

(
z3

6
+

7z4

6
+ z5 +

z6

12

)
ee

z−1.

Theorem 6. For all n ≥ 1, the value of R(n, 4) is

24

(
n

4

)
Bn−4 +180

(
n

5

)
Bn−5 +1560

(
n

6

)
Bn−6 +2520

(
n

7

)
Bn−7 +840

(
n

8

)
Bn−8.

Corollary 4. The egf of the R(n, 4) numbers is∑
n≥1

R(n, 4)
zn

n!
=

(
z4 +

3z5

2
+

13z6

6
+

z7

2
+

z8

48

)
B(z).

Intuitively, ck,j is the number of pairs of j-element set partitions with no
common blocks that have Rand Distance k. We summarize the known values
of ck,j in Table 3. Although we don’t know the value of ck,j in general, we can
determine a few specific infinite sequences, which are given in the next lemma.

Lemma 1. For all k ≥ 1,

ck,2k =
(2k − 1)!

(k − 1)!
and ck,α = R(α, k).

Proof. For a pair of 2k element set partitions P and Q to have Rand distance
k with no common blocks, the 2k elements must be paired, and each pair of
elements is a block in either P or Q. Further, if {a, b} is a block in set P then set
B contains the singleton blocks {a} and {b} and vice versa. Since the order of
the blocks doesn’t matter, we can assume the blocks (pairs) are sorted by their
smallest elements. So, for i = 1, 2, . . . , k, once we have chosen the elements for
blocks 1, 2, . . . , i− 1, the first element in block i must be the smallest remaining
element and there are 2k − (2(i − 1) + 1) = 2k − 2i + 1 choices for the second
element in block i. Thus the number of ways to pair the elements is

k∏
i=1

(2k − 2i+ 1) =
(2k − 1)!

2k−1(k − 1)!

If we assume, without loss of generality, that a pair, say {a, b}, is in partition
P , then there are 2k−1 unique ways to distribute the remaining pairs between
P and Q. So we have

cj,2k =
(2k − 1)!

2k−1(k − 1)!
2k−1 =

(2k − 1)!

(k − 1)!
.
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k\j 2 3 4 5 6 7 8 9 10 11

1 1
2 6 6
3 1 28 120 60
4 24 180 1560 2520 840
5 6 210 1986 18900 63840 60480 15120
6 1 215 2780 28224 253246 1340640 2520000 1663200
7 60 2040 43365 463128 3998736 26878320 82328400
8 15 2610 38850 721728 8575200 74028240 554843520
9 10 1015 39060 778400 13061020 172444150 1568364600
10 1 465 28077 914480 17680572 270474480 3714220092
11 150 23478 619416 19277748 407335320 6281694045
12 35 13895 667450 19168422 482217540 10078945140
13 45 4410 376040 17848152 529667460 12553128060
14 15 1785 354060 13798458 530778780 15995950740
15 1 1295 167664 11437644 477563400 16021896264
16 252 113764 7906059 431141400 17216673870
17 210 41832 5852700 315103995 15141561930
18 140 19614 3492426 275308740 14124874940
19 105 6020 2369304 174009780 11315379955
20 21 6930 1186227 146107962 9400242852
21 1 3500 609336 80801970 7071057840
22 574 310662 60530130 5334533160
23 840 190008 31267440 3888920970
24 665 51303 25130325 2590267020
25 476 41832 10882746 1799914809
26 210 28476 6461280 1140678990
27 28 25480 3015180 753854310
28 1 7686 1926855 431506790
29 4104 1491300 290015550
30 2226 734820 169030620
31 3780 173610 110115390
32 2205 190575 50872635
33 1344 184905 33316140
34 378 134820 15268440
35 36 82152 12873861
36 1 21070 10432455
37 16200 6565900
38 15750 2310165
39 14910 1281555
40 13545 653169
41 7245 1240470
42 3270 824670
43 630 574035
44 45 214830
45 1 104302
46 62205
47 103950
48 70455
49 74250
50 45045
51 21945
52 7095
53 990
54 55
55 1
Table 3. Known values of ck,j for 2 ≤ j ≤ 11. The bold value at the beginning of each
row is ck,α = R(α, k).



Rand and block distances 11

Since Bi = 0 when i < 0, B0 = 1, and
(
i
i

)
= 1,

R(α, k) =
2k∑
j=α

ck,j

(
α

j

)
Bα−j = ck,α.

⊓⊔

Lemma 2. For all j ≥ 1,

c(j2),j
= R

(
j,

(
j

2

))
= 1.

For all j ≥ 4:

c(j2)−1,j = R

(
j,

(
j

2

)
− 1

)
=

(
j

2

)
.

For all j ≥ 5:

c(j2)−2,j = R

(
j,

(
j

2

)
− 2

)
=

((j−1
2

)
2

)
.

For all j ≥ 2 + x:

c(j2)−x,j = R

(
j,

(
j

2

)
− x

)
.

Proof. Omitted in this extended abstract. ⊓⊔

3.2 The numbers R(n,
(n
2

)
− k) for small k

We now consider the numbers at the bottom of the columns in Table 2. Clearly
R(n,

(
n
2

)
) = 1 (the pair is {1, 2 . . . n} and {1}{2} . . . {n}).

Theorem 7. For all n ≥ 4,

R(n,

(
n

2

)
− 1) =

(
n

2

)
, and R(3, 2) = 6.

Proof. For n ≥ 4, the two partitions are the full set {1, 2, . . . , n} and the partition
consisting of one pair and n− 2 singleton sets. ⊓⊔

Theorem 8. For all n ≥ 5,

R(n,

(
n

2

)
− 2) =

((n−1
2

)
2

)
=

1

8
n(n− 1)(n− 2)(n− 3),

and R(3, 3) = 3, R(4, 5) = 24.
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Proof. For n ≥ 5 the two partitions are the full set {1, 2, . . . , n} and the partition
consisting of two pairs and n− 4 singleton sets. The order of the two pairs does
not matter so we have

R(n,

(
n

2

)
− 2) =

1

2

(
n

2

)(
n− 2

2

)
,

which can be shown to be equal to the two values given in the statement of the
theorem. ⊓⊔

The numbers in Theorems 7 and 8 are a shifted versions of OEIS A000217
and OEIS A050534, respectively.

Theorem 9. For all n ≥ 6,

R(n,

(
n

2

)
− 3) =

1

6

(
n

2

)(
n− 2

2

)(
n− 4

2

)
+

(
n

3

)
,

and R(4, 3) = 32, R(5, 7) = 60.

Proof. For n ≥ 5 the two partitions are either the full set {1, 2, . . . , n} and
the partition consisting of three pairs and n − 6 singleton sets, or the full set
{1, 2, . . . , n} and the partition consisting of one triple and n− 3 singleton sets.

⊓⊔

Theorem 10. For fixed k there is a constant Kk such that R(n,
(
n
2

)
− k) is a

polynomial of degree 2k in n for all n ≥ Kk.

Proof. Omitted in this extended abstract. ⊓⊔
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