
Information Processing Letters 79 (2001) 281–284

Ranking and unranking permutations in linear time

Wendy Myrvold1, Frank Ruskey∗,2

Department of Computer Science, University of Victoria, Victoria, B.C. V8W 3P6, Canada

Received 17 April 2000; received in revised form 31 October 2000
Communicated by F.Y.L. Chin

Abstract

A ranking function for the permutations onn symbols assigns a unique integer in the range[0, n! − 1] to each of then!
permutations. The correspondingunranking function is the inverse: given an integer between 0 andn! − 1, the value of the
function is the permutation having this rank. We present simple ranking and unranking algorithms for permutations that can be
computed using O(n) arithmetic operations. 2001 Elsevier Science B.V. All rights reserved.

Keywords: Permutation; Ranking; Unranking; Algorithms; Combinatorial problems

A permutation of ordern is an arrangement of
n symbols. For convenience when applying modu-
lar arithmetic, this paper considers permutations of
{0,1,2, . . . , n − 1}. The set of all permutations over
{0,1,2, . . . , n − 1} is denoted bySn.

There are many applications that call for an array
indexed by the permutations inSn [2]. One example is
the development of programs that search for Hamilton
cycles in particular types of Cayley graphs [10,11]. To
do such indexing, what is desired is a bijectiveranking
function r that takes as input a permutationπ and
producesr(π), a number in the range 0,1, . . . , n! − 1.
The inverse ofr is also often useful, and is called the
unranking function.

The traditional approach to this problem is to first
define an ordering of permutations and then find rank-
ing and unranking functions relative to that ordering.

* Corresponding author.
E-mail addresses: wendym@csr.uvic.ca (W. Myrvold),

fruskey@csr.uvic.ca (F. Ruskey).
1 Research supported in part by NSERC grant OGP0041927.
2 Research supported in part by NSERC grant OGP0003379.

For example, in lexicographic order, the rank of a per-
mutation is simply the number of permutations that
precede it in lexicographic order. Naive implementa-
tions of ranking and unranking functions for lexico-
graphic order require O(n2) time [7,9].

Given a permutationπ = π0π1 . . .πn−1, its inver-
sion vector v = v0v1 . . . vn−1 hasvi equal to the num-
ber of entriesπj such thatπj > πi and j < i. Hall
(see [12, p. 203]) first observed that the inversion vec-
tor uniquely determines a permutation.

More sophisticated algorithms for ranking and un-
ranking permutations in lexicographic order calculate
the inversion vector as an intermediate step. The first
step in ranking is to determine the inversion vector of
a permutation. Unfortunately, naive implementations
require O(n2) time and even the O(n logn) implemen-
tations using modular arithmetic [5, Ex. 6, p. 18] or
mergesort [5, Ex. 21, p. 168] are too slow. The last
step in unranking is to determine the permutation from
its inversion vector. Again, the naive approach takes
O(n2) time. A balanced binary search tree can be used
to improve this to O(n logn). Using the complicated

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00141-7



282 W. Myrvold, F. Ruskey / Information Processing Letters 79 (2001) 281–284

data structure of Dietz [3] the running time can be
reduced to O((n logn)/(n log logn)), but we know of
no implementations of this algorithm. Conversion be-
tween the inversion vector and the rank is straightfor-
ward and can be done in O(n) arithmetic operations.
So the bottleneck is the translation between a permu-
tation and its inversion vector.

The whole problem of ranking permutations in lex-
icographic order seems inextricably intertwined with
the problem of computing the number of inversions
in a permutation, and it seems that a major break-
through will be required to do that computation in lin-
ear time, if indeed it it possible at all. Our new algo-
rithm achieves linear time by not insisting that the per-
mutations are lexicographically ordered.

Other ranking algorithms for permutations have
been published, for example, in the Steinhaus–John-
son–Trotter order, but these offer no running-time ad-
vantages over the lexicographic algorithm. See Rein-
gold, Nievergelt, and Deo [9] or Kreher and Stin-
son [6] for a description of these algorithms.

Our approach to this problem differs from previous
approaches in two important aspects. First, instead
of selecting an ordering of the permutations and
then finding the corresponding ranking and unranking
algorithms, the ordering is defined by the unranking
algorithm and it is not particularly easy to describe.
The second difference is that the unranking algorithm
is developed first and then the ranking algorithm is
derived from it. Traditionally, ranking algorithms have
been developed first, then the unranking algorithms.
Furthermore, in all other cases that we know of, the
unranking algorithm is more complicated than the
ranking algorithm — but that is not the case here!

1. Ranking and unranking

In this section we present two slightly different
approaches for ranking and unranking permutations.
The first (rank1 andunrank1) has simpler code. The
second approach (rank2 andunrank2) is included as it
is easier to understand the ordering of the permutations
according to their ranks.

Our inspiration is the standard algorithm [8,4,1]
for generating a random permutation. The array
π[0..n−1] is initialized to the identity permutation (or

some other permutation) and then the following loop
is executed:

for k := n − 1, n − 2, . . . ,1 do

swap(π[k],π[rand(k)]);
where the callrand(k) should produce a random
integer in the range 0..k.

This algorithm produces a permutation selected
uniformly at random from amongst all permutations
in Sn. Let rn−1, . . . , r1, r0 be the sequence of random
elements produced by the algorithm, where 0� ri � i.
Since there are exactlyn(n − 1)(n − 2) · · ·2 · 1 = n!
such sequences, each different sequence must produce
a different permutation. Thus we should be able to
unrank if we can take an integerr in the range
0..n! − 1 and turn it into a unique sequence of values
rn−1, . . . , r1, r0, where 0� ri � i. The details are
given below.

To unrank a permutation we first initializeπ to be
the identity permutation:π[i] := i for i = 0,1, . . . ,

n − 1.

procedure unrank1(n, r,π)

if n > 0 then
swap(π[n − 1],π[r modn]);
unrank1(n − 1, �r/n
,π);

fi;
end {of unrank1};

It should be fairly obvious why this function works.
We can use the argument alluded to above or argue
directly as follows. We need only show that every
permutation inSn is a possible outcome for some
r ∈ {0,1, . . . , n! − 1}. Clearly, every possible value
of π[0..n − 1] can appear in positionn − 1 after the
interchange. Afterπ[n − 1] is set it is never again
modified. Further,
{�r/n
: r ∈ {0,1, . . . , n! − 1}}

= {
0,1, . . . , (n − 1)! − 1

}
,

so, inductively, we may assume that every possible
permutation ofπ[0..n − 2] can occur.

To rank, first computeπ−1. This can be done in
O(n) operations by iterating

π−1[π[i]] := i for i = 0,1, . . . , n − 1.

In the algorithm below, bothπ andπ−1 are modified.



W. Myrvold, F. Ruskey / Information Processing Letters 79 (2001) 281–284 283

0: 1 2 3 0 6: 3 0 1 2 12: 2 1 3 0 18: 0 3 1 2

1: 3 2 0 1 7: 2 0 1 3 13: 2 3 0 1 19: 0 2 1 3

2: 1 3 0 2 8: 1 3 2 0 14: 3 1 0 2 20: 3 1 2 0

3: 1 2 0 3 9: 3 0 2 1 15: 2 1 0 3 21: 0 3 2 1

4: 2 3 1 0 10: 1 0 3 2 16: 3 2 1 0 22: 0 1 3 2

5: 2 0 3 1 11: 1 0 2 3 17: 0 2 3 1 23: 0 1 2 3

Fig. 1. Ranks of permutations forrank1, n = 4.

function rank1(n,π,π−1) : integer;
if n = 1 then RETURN(0) fi;
s := π[n − 1];
swap(π[n − 1],π[π−1[n − 1]]);
swap(π−1[s],π−1[n − 1]);
RETURN(s + n · rank1(n − 1,π,π−1));

end {of rank1};
These algorithms obviously use O(n) operations.

The corresponding ranks for the permutations forn =
4 are as illustrated in Fig. 1.

We now present another unranking algorithm, dif-
ferent than the first, but based on the same underlying
principle. In this algorithm the permutations occur in
a different order; and order which is easier to describe
than the order produced by the first algorithm. Before
calling unrank2, initialize π to be the identity permu-
tation;π[i] := i for i = 0,1, . . . , n − 1. Computeπ−1

before callingrank2.

procedure unrank2(n, r,π)

if n > 0 then
s := �r/(n − 1)!
;
swap(π[n − 1],π[s]);
unrank2(n − 1, r mod(n − 1)!, π );

fi;
end {of unrank2};
function rank2(n,π,π−1) : integer;

if n = 1 then RETURN(0) fi;
s := π[n − 1];
swap(π[n − 1],π[π−1[n − 1]]);
swap(π−1[s],π−1[n − 1]);
RETURN(s · (n − 1)! + rank2(n − 1,π,π−1));

end {of rank2};
The order of generation forn = 4 is given in Fig. 2.

In general this order may be described as follows. Let

0: 1 2 3 0 6: 3 2 0 1 12: 1 3 0 2 18: 1 2 0 3

1: 2 1 3 0 7: 2 3 0 1 13: 3 1 0 2 19: 2 1 0 3

2: 2 3 1 0 8: 2 0 3 1 14: 3 0 1 2 20: 2 0 1 3

3: 3 2 1 0 9: 0 2 3 1 15: 0 3 1 2 21: 0 2 1 3

4: 1 3 2 0 10: 3 0 2 1 16: 1 0 3 2 22: 1 0 2 3

5: 3 1 2 0 11: 0 3 2 1 17: 0 1 3 2 23: 0 1 2 3

Fig. 2. Ranks of permutations forrank2, n = 4.

Ln denote the list of permutations of 0..n − 1. Let
Lm

n denote the listLn, but with every occurrence of
m replaced withn. Then

Ln+1 = L0
n · 0◦L1

n · 1◦ · · · ◦Ln−1
n · (n − 1) ◦Ln

n · n.

For example, in the last column of Fig. 2 is the list
L3

3 · 3 = L3 · 3. By ◦ we denote concatenation of lists,
and the notationL · x means to append the characterx

to the end of every permutation in the listL.

2. Possible extensions

If the algorithm for generating random permuta-
tions is terminated at thekth step then positions
n − k..n − 1 hold a randomk-permutation of 0,1, . . . ,

n − 1. Hence, our ranking and ranking algorithms are
easily modified to dok-permutations of ann-set.

References

[1] G. de Balbine, Note on random permutations, Math. of
Comput. 21 (1967) 710–712.

[2] F. Critani, M. Dall’Aglio, G. Di Biase, Ranking and unranking
permutations with applications, in: Innovation in Mathemat-
ics (Rovaniemi, 1997), Comput. Mech., Southampton, 1997,
pp. 99–106.

[3] P.F. Dietz, Optimal algorithms for list indexing and sub-
set rank, in: Workshop on Algorithms and Data Structures
(WADS), Lecture Notes in Comput. Sci., Vol. 382, Springer,
Berlin, 1989, pp. 39–46.

[4] R. Durstenfeld, Algorithm 235: Random permutation, Comm.
ACM (1964) 420.

[5] D.E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching, 2nd edn., Addison-Wesley, Reading,
MA, 2000 (first published in 1973).

[6] D.L. Kreher, D.R. Stinson, Combinatorial Algorithms: Gener-
ation, Enumeration, and Search, CRC Press, Rockville, MD,
1999.



284 W. Myrvold, F. Ruskey / Information Processing Letters 79 (2001) 281–284

[7] J. Liebehenschel, Ranking and unranking of lexicographically
ordered words: An average-case analysis, J. Automat. Lan-
guages Combinatorics 2 (1997) 227–268.

[8] L.E. Moses, R.V. Oakland, Tables of Random Permutations,
Stanford University Press, Stanford, CA, 1963.

[9] E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algo-
rithms: Theory and Practice, Prentice-Hall, Englewood Cliffs,
NJ, 1977.

[10] F. Ruskey, M. Jiang, A. Weston, The Hamiltonicity of directed
σ -τ Cayley graphs (or: A tale of backtracking), Discrete Appl.
Math. 57 (1) (1995) 75–83.

[11] F. Ruskey, C. Savage, Hamilton cycles that extend transpo-
sition matchings in Cayley graphs ofSn, SIAM J. Discrete
Math. 6 (1) (1993) 152–166.

[12] C.B. Tompkins, Machine attacks on problems whose vari-
ables are permutations, in: Numerical Analysis, Proceedings
of Symposia in Applied Mathematics, Vol. 6, American Math-
ematical Society, Providence, RI, 1956.


