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Abstract. Let α be a string over an alphabet that is a finite ring, R. The k-th elementary
symmetric function evaluated at α is denoted Tk(α). In a companion paper we studied the properties
of SR(n; τ1, τ2, . . . , τk), the set of of length n strings for which Ti(α) = τi. Here we consider the set,
LR(n; τ1, τ2, . . . , τk), of equivalence classes under rotation of aperiodic strings in SR(n; τ1, τ2, . . . , τk),
sometimes called Lyndon words. General formulae are established, and then refined for the cases
where R is the ring of integers Zq or the finite field Fq .
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1. Introduction. The main purpose of this paper is to count certain equiva-
lence classes of strings over Zq the ring of integers mod q, and over the finite field Fq.
The equivalence classes contain all strings that are rotationally equivalent (sometimes
called conjugate, [7]), and that achieve specified values when regarded as the param-
eters of elementary symmetric functions. Aside from the intrinsic interest of the enu-
merative formulae and the techniques used to derive them, this paper can be viewed
as part of a program to enumerate certain classes of polynomials with coefficients in
a finite ring and whose coefficients are prescribed. In [2], degree n monic irreducible
polynomials over F2 with prescribed coefficients for xn−1 and xn−2 were enumerated.
If such a polynomial is factored in a splitting field, these coefficients can be interpreted
as the first and second elementary symmetric functions evaluated at the string of coef-
ficients in the factorization. The techniques in [2] (and in [11]) rely on the relationship
between Lyndon words and irreducible polynomials. The relationship between strings,
polynomials and elementary symmetric functions generalizes. If a string α has its al-
phabet in a finite commutative ring R, we can evaluate the k-th elementary symmetric
function Tk at α. This evaluation depends on the profile k = 〈k1, k2, . . . , k|R|−1〉 where
ki is the frequency with which ring element xi occurs in α. The relationship between
strings, polynomials, and elementary symmetric functions is contained in the map
α 7→ Ak(z) =

∏|R|−1
j=1 (1 + xjz)kj , since Tm(α) = [zm]Ak(z). In [8] we exploit this

relationship to compute SZp(n; τ1, τ2, . . . , τt), the number of strings over Zp of length
n for which Tm(α) = τm. Related results can be found in [5], [9], [11].

2. Notation and Preliminaries. In what follows we will assume R is a finite
commutative ring with identity, denoted 1. In this case R has a characteristic c which
is the least positive integer such that the c-fold sum 1 + 1 + · · · + 1 = 0. If d ∈ Z+,
then d ∈ R where d is the d-fold sum 1 + 1 + · · ·+ 1 mod (c).

We consider strings α = a1a2 · · · an where each ai ∈ R, and define the k-trace of
α, denoted Tk(α), as the sum

Tk(α) =
∑

1≤i1<i2<···<ik≤n

ai1ai2 · · · aik
.
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These are the elementary symmetric functions of a1, a2, . . . , an. Occasionally we will
call T1 the trace, T2 the subtrace, and T3 the subsubtrace. The trace terminology is
used, in analogy with the theory of finite fields, since (−1)kTk(α) is the coefficient of
zn−k in the polynomial (z − a1)(z − a2) · · · (z − an) (see [10]).

By SR(n; τ1, τ2, . . . , τk) we denote the number of strings α over R of length n for
which Ti(α) = τi for i = 1, 2, . . . , k. Obviously if k = 0, then SR(n) = qn, where q is
the number of elements in R. It is also true that SR(n; t) = qn−1 for any t ∈ R, since
T1(αx) takes on distinct values for each x ∈ R; we use here only the fact that R is an
additive group.

The notation [[P ]] for a proposition P has the value 1 if P is true and the value 0
if P is false. This is “Iverson’s convention,” as used in [6].

The numbers SR(n; τ1, τ2, . . . , τk) satisfy the following recurrence relation. If n =
1, then SR(n; τ1, τ2, . . . , τk) = [[τ2 = · · · = τk = 0]], and for n > 0,

SR(n; τ1, τ2, . . . , τk) =
∑

x∈R

SR(n− 1; ρ1, ρ2, . . . , ρk),(2.1)

where ρ0 = 1, and ρj = τj − ρj−1x for j = 1, 2, . . . , k. This recurrence relation holds
even if R is not commutative. It allows us to evaluate SR(n; τ1, τ2, . . . , τk) in O(nrk)
ring and integer operations (by, in effect, creating a size nrk table of SR evaluated
on all strings of length at most n on all possible values of the first k k-traces). The
properties of SZp for p prime are studied in [8].

A rotation of a string α is any string β that can be written as β = γδ, where
α = δγ. A string α is aperiodic if there are no non-empty strings γ and δ such
that α = γδ = δγ. Let AR(n; τ1, τ2, . . . , τk) denote the number of aperiodic strings
α over R of length n for which Ti(α) = τi for i = 1, 2, . . . , k. Since every rotation
of an aperiodic string is distinct, AR(n; τ1, τ2, . . . , τk) is divisible by n. The number
LR(n; τ1, τ2, . . . , τk) = (1/n)AR(n; τ1, τ2, . . . , τk) is the number of equivalence classes
of aperiodic strings under rotation. The lexicographically least representatives of
these equivalence classes are often called Lyndon words [7].

Lemma 2.1. For all k ≥ 1 and d ≥ 1,

Tk(αd) =
∑

ν1+2ν2+···+kνk=k

(
d

ν1, . . . , νk, d−(ν1+ · · ·+νk)

)
T1(α)ν1T2(α)ν2 · · ·Tk(α)νk .

Proof. From the string αd = α1α2 · · ·αd, where αi = α for all i, we need to
select k positions in all possible ways. We classify those ways according to the
distribution (ν1, ν2, . . . , νk) where νj is the number of αi’s containing j of the se-
lected positions. Such an αi will contribute a multiplicative factor of Tj(α) to the
sum, with T1(α)ν1T2(α)ν2 · · ·Tk(α)νk being the total contribution for a given dis-
tribution and selection of the αi’s. There are

(
d

ν1,...,νk,d−(ν1+···+νk)

)
ways to asso-

ciate a distribution with particular αi’s. Finally, a distribution is valid if and only if
ν1+2ν2+ · · ·+kνk = k.

Note that the multinomial coefficient can be written as
(

d

ν1, . . . , νk, d−Vk

)
=

(
d

ν1

)(
d− V1

ν2

)
· · ·

(
d− Vk−1

νk

)
,(2.2)

where Vj = ν1 + ν2 + · · ·+ νj .
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If t = (t1, t2, . . . , tk) ∈ Rk = R × R × · · · × R and d is a natural number, define
the map θd : Rk → Rk as θd(t) = u, where u = (u1, u2, . . . , uk) has the value, mod c,

uj =
∑

ν1+2ν2+···+jνj=j

(
d

ν1, . . . , νj , d−(ν1+ · · ·+νj)

)
tν1
1 tν2

2 · · · tνj

j(2.3)

=
∑

ν1+2ν2+···+jνj=j

d(ν1+ν2+···+νj)
tν1
1

ν1!
tν2
2

ν2!
· · · t

νj

j

νj !
(2.4)

We use in (2.4) the notation d(m) = d(d−1) · · · (d−m+1) for the falling factorial.
In light of Lemma 2.1, since every periodic string is the repeated concatenation of an
aperiodic string,

SR(n;u) =
∑

d|n

∑

t∈Rk

[[θd(t) = u]] AR(
n

d
; t).(2.5)

In principle (2.5) may be inverted recursively as long as all the solutions t to the
equations u = θd(t) can be determined. That is, when d = 1, the only solution is
tj = uj for j = 1, 2, . . . , k, giving the term AR(n; t1, t2, . . . , tk) All other terms have
first parameter smaller than n. However, our aim is to invert (2.5) explicitly whenever
possible.

In the sequel it often happens that the equation u = θd(t) has has at most one
solution for particular values of n and u; i.e., if it has a solution then t = θ−1

d (u).
Then (2.5) becomes

SR(n;u) =
∑

d|n
[[θ−1

d (u) exists]]AR(
n

d
; θ−1

d (u)).(2.6)

Let us explicitly write out (2.4) for k = 1, 2, 3, 4 as a preparation for some exam-
ples to follow and to better understand the nature of the equation.

u1 = dt1(2.7)

u2 = dt2 +
(

d

2

)
t21(2.8)

u3 = dt3 + d(d− 1)t1t2 +
(

d

3

)
t31(2.9)

u4 = dt4 + d(d− 1)t1t3 +
(

d

2

)
t22 + (d− 2)

(
d

2

)
t21t2 +

(
d

4

)
t41(2.10)

Next we state a fundamental multiplicative property of the mapping θ.
Lemma 2.2. For all natural numbers a and b,

θa(θb(t)) = θab(t).
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Proof. Let hd(z) =
∑

n≥1 unzn =
∑

n≥1(n!un)zn/n!. Then hd(z) = fd(g(z)),
where

fd(z) =
∑

n≥1

dn zn

n!
=

∑

n≥1

(
d

n

)
zn and g(z) =

∑

n≥1

n!tn
zn

n!
=

∑

n≥1

tnzn,

by the Faà di Bruno formula (see Comtet [3], pp. 137–138). Our lemma then reduces
to the statement that fa(fb(g(z))) = fab(g(z)), which we can prove by showing that
fa(fb(z)) = fab(z). But this is a trivial substitution since fa(z) = (1 + z)a − 1.

Note that the lemma holds where a and b are formal variables; but we will use it
only when they are members of Zq.

For fixed k and q, we will be interested in the period of the sequence
(
n
k

)
mod q,

for n = 0, 1, 2, . . .. The value of this period has been determined by Zabek [12], and
we state this result below.

Theorem 2.3 (Zabek). Let the prime factorization of q be

q = pn1
1 pn2

2 · · · pne
e

where the pi’s are distinct primes and the ni’s are positive integers. The period of the
sequence (

(
0
j

)
,
(
1
j

)
,
(
2
j

)
, . . .) mod q is denoted q′j and is equal to

q′j =
e∏

i=1

pni+di
i , where di = blogpi

jc.

Corollary 2.4. If p is prime then the period of the sequence (
(
0
j

)
,
(
1
j

)
,
(
2
j

)
, . . .)

mod p is p1+blogp jc.
We note that Zabek’s Theorem (together with (2.2) ) implies that θa(t) : Rk → Rk

is periodic in the sense that

θa+q′k(t) = θa(t).(2.11)

Hence we will consider the integer subscripts of θa as integers mod q′k; i.e., a ∈ Zq′k .
By Z∗q we denote the group of units (invertible elements) of Zq.

Corollary 2.5. If a ∈ Z∗q′k then θa is invertible and θ−1
a = θa−1 .

Proof. This follows from fact that θ1 is the identity mapping and Lemma 2.2.

3. A Generalized Möbius Inversion. In this section we prove a generalized
Möbius inversion that is very useful in obtaining expressions for AR(n; τ1, τ2, . . . , τk)
and LR(n; τ1, τ2, . . . , τk), when R = Zq or R = Fq. In this section q can be any
positive integer. In the expressions below the reader should be careful about the
context in which d is used. We use, here and throughout the remainder of the paper,
the notation d ≡ x(q) to mean d ≡ x mod q.

Lemma 3.1. If n mod q ∈ Z∗q , then

∑

x∈Z∗q

∑
d|n

d≡x(q)

µ(
n

d
) = [[n = 1]].

Proof. The defining recurrence relation for the Möbius function is
∑

d|n µ(d) =
[[n = 1]] (e.g., [6]). The lemma follows from this and the observation that if n mod q ∈
Z∗q and d|n, then d mod q ∈ Z∗q .
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The following theorem was proven for q = 2 in [4] and for q = 4 in [2].
Theorem 3.2. Let fx and gx be sets of functions indexed by x ∈ Z∗q . The

following two statements are equivalent. For all x ∈ Z∗q ,

fx(n) =
∑

a∈Z∗q

∑
d|n

d≡a(q)

gax(
n

d
).(3.1)

For all x ∈ Z∗q ,

gx(n) =
∑

a∈Z∗q

∑
d|n

d≡a(q)

µ(d)fax(
n

d
).(3.2)

Proof. Let X be the right-hand side of (3.1) and assume that (3.2) is true. Then

X =
∑

a∈Z∗q

∑
d|n

d≡a(q)

gax(
n

d
)

=
∑

a∈Z∗q

∑
d|n

d≡a(q)

∑

b∈Z∗q

∑
d′|(n/d)
d′≡b(q)

µ(d′)fabx(
n/d

d′
).

We now make the substitutions dd′ = m and ab = c and interchange the order of
summation to obtain

X =
∑

c∈Z∗q

∑

b∈Z∗q

∑
m|n

m≡c(q)

∑
d|m

d≡cb−1(q)

µ(
m

d
)fcx(

n

m
)

=
∑

c∈Z∗q

∑
m|n

m≡c(q)

fcx(
n

m
)

∑

b∈Z∗q

∑
d|m

d≡cb−1(q)

µ(
m

d
)

=
∑

c∈Z∗q

∑
m|n

m≡c(q)

fcx(
n

m
)[[m = 1]]

= fx(n).

The second equality above uses Lemma 3.1, noting that the condition m ≡ c(q) on
the second summation implies that m mod q ∈ Z∗q .

Verification in the other direction is similar and is omitted.

4. General Results. In this section we present some results that apply over
various finite commutative rings. We assume throughout that R has r elements and
prime characteristic p.

The following formula for AR(n) is well known and depends only on the number
of elements in the ring and not its algebraic structure.

AR(n) =
∑

d|n
µ(

n

d
)rd =

∑

d|n
µ(d)rn/d.(4.1)

The following two lemmas will be useful in simplifying certain later sums.
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Lemma 4.1. Let a be a natural number, b and j be a positive integers, and f a
function from the positive integers to a commutative ring with identity. Then

∑
d|n

d≡ja(jb)

f(d) = [[j|n]]
∑
d|n

j
d≡a(b)

f(jd).(4.2)

Proof. The condition d ≡ ja(jb) implies that j | d. Let d = jd′. Observe that

[[d | n]][[d ≡ ja(jb)]] = [[jd′|n]][[jd′ ≡ ja(jb)]] = [[j|n]][[d′|n
j
]][[d′ ≡ a(b)]].

Summation index d is used on the left-hand side of (4.2) and d′ is used on the
right-hand side.

In the arguments to follow, we will use Lemma 4.1 with two sets of values for
j, a, b. First, in the next lemma we use j = q, a = 0, and b = 1. In this case the
congruence in the right-hand sum becomes d ≡ 0(1) which is vacuously satisfied and
can be omitted. Later, we will use j = 2, a = 1, and b = 2.

Lemma 4.2. Let n and q be positive integers. Then

∑
d|n

d≡0(q)

AR(
n

d
) = [[q|n]]

∑

d|n
q

AR(
n/q

d
) = [[q|n]]rn/q.

Proof. The first equality follows from Lemma 4.1, the second from the fact that
every string is the repeated concatenation of some aperiodic string.

Lemma 4.3. Let R have prime characteristic p. If k < p (and 0 is the k-tuple
(0, 0, . . . , 0)), then

SR(n;0) =
∑
d|n

d≡0(p)

AR(
n

d
) +

∑
d|n

d6≡0(p)

AR(
n

d
;0) = [[p|n]]rn/p +

∑
d|n

d6≡0(p)

AR(
n

d
;0).

Proof. The second equality follows from Lemma 4.2. To prove the first equality,
take equation (2.5) and break the sum into two parts depending on whether d ≡ 0(p)
or not. Recall (2.4).

Consider first the case where d ≡ 0(p). From p|d and j ≥ 1 it follows that
p|d(ν1+ν2+···+νj). Since νi ≤ k < p, we have p - ν1!ν2! · · · νj !. Thus p divides
d(ν1+ν2+···+νj)/(ν1!ν2! · · · νj !) from which it follows that uj = 0 irrespective of the
values of t. Thus

∑

t∈Rk

[[θd(t) = 0]] AR(
n

d
; t) =

∑

t∈Rk

AR(
n

d
; t) = AR(

n

d
).

Now consider the case where d 6≡ 0(p). In the notation of Theorem 2.3, q′k = p
since k < p. Since d ∈ Z∗p, by Corollary 2.5 the function θd is invertible, and θ−1

d =
θd−1 . Thus t = θd−1(0) = 0 and hence

∑

t∈Rk

[[θd(t) = 0]] AR(
n

d
; t) =

∑

t∈Rk

[[t = 0]] AR(
n

d
; t) = AR(

n

d
;0).
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Corollary 4.4. If R is a ring of prime characteristic p with k < p, then

LR(n;0) =
1
n

∑
d|n

d 6≡0(p)

µ(d)
(
SR(

n

d
;0)− [[pd|n]]rn/(pd)

)
,

where R contains r elements and 0 is the k-tuple (0, 0, . . . , 0).
Proof. Note that the sum in Lemma 4.3 is over {1, 2, . . . , p − 1} = Z∗p for prime

p. Apply Theorem 3.2 with fx(n) = SR(n;0) and gx(n) = AR(n;0) for all x.

5. Strings over the ring Zq. In [9] we showed that

LZq (n; t) =
1
qn

∑
d|n

gcd(d,q)|t

µ(d) gcd(d, q)qn/d.(5.1)

From this the next lemma follows.
Lemma 5.1. If gcd(q, t) = gcd(q, t′) then LZq

(n; t) = LZq
(n; t′).

Note that x ∈ Z∗q if and only if x ∈ Z∗q′k since gcd(x, q) = 1 if and only if
gcd(x, q′k) = 1.

Lemma 5.2. For all n ≥ 1 and primes p

∑
d|n

d 6≡0(p)

AZp(
n

d
; 1) = pn−1.(5.2)

Proof. This follows from the equation

pn−1 = S(n; 1) =
∑

d|n

∑

de=1

AR(
n

d
; e) =

∑

e∈Z∗p

∑

d|n
AR(

n

d
; e−1).

Let us say that a parameter pair (n; t) is unit invertible if the equation u = θd(t)
has a unique solution for all d ∈ Z∗q′k , and has no solution if d 6∈ Z∗q′k . For example,
(n; t) is unit invertible if t1 ∈ Z∗q or if n ∈ Z∗q .

Theorem 5.3. If (n; t) is unit invertible, then

LZq (n; t) =
1
n

∑

r∈Z∗
q′
k

∑
d|n

d≡r−1(q′
k
)

µ(d)SZq (
n

d
; θr−1(t)).(5.3)

Proof. Under the stated hypotheses we can write equation (2.6) as

S(n; t) =
∑

a∈Z∗
q′
k

∑
d|n

d≡a(q′
k
)

A(
n

d
; θ−1

a (t)).(5.4)

By Corollary 2.5, we have θ−1
a (u) = θa−1(u). Substitute t = θx(u) in (5.4) and

use the multiplicative property θa−1(θx(u)) = θa−1x(u) to obtain

S(n; θx(u)) =
∑

a∈Z∗
q′
k

∑
d|n

d≡a(q′
k
)

A(
n

d
; θa−1x(u)).(5.5)
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Written in this form we can apply Theorem 3.2 with fx(n) = S(n; θx(u)) and gx(n) =
A(n; θx−1(u)) to obtain equation (5.3)

Example: If q = k = 3 then q′k = 9 and θd−1(1, 0, 0) takes on the values

{(1, 0, 0), (2, 1, 0), (1, 0, 1), (2, 1, 1), (1, 0, 2), (2, 1, 2)}
for d = 1, 2, 4, 5, 7, 8. The number, LZ3(n; 1, 0, 0), of length n Lyndon words over Z3

with (t1, t2, t3) = (1, 0, 0) is therefore equal to

1
n

∑

j∈Z3




∑
d|n

d≡(3j+1)−1(9)

µ(d)SZ3(
n

d
; 1, 0, j) +

∑
d|n

d≡(3j+2)−1(9)

µ(d)SZ3(
n

d
; 2, 1, j)


 ,

giving rise to the sequence of numbers 1, 1, 1, 1, 1, 1, 6, 36, 141, 422, 1062, 2371,
4995, 11082, 29230, 90735, for n = 1, 2, . . . , 16.

According to the results of [8], over Z3 the traces (t1, t2, t3) determine the traces
t4 and t5, so that LZ3(n; 1, 0, 0) = LZ3(n; 1, 0, 0, 0, 0). Furthermore, the SZ3 numbers
can be expressed as sums of multinomial coefficients; e.g., for SZ3(n; 1, 0, 0) we have

SZ3(n; 1, 0, 0) =
∑

k0+k1+k2=n

k2≡0(3)
k1−k2≡1(9)

(
n

k0, k1, k3

)
.

6. Strings over the ring Fq.

6.1. The field Fq for q odd. In this section we consider the computation of the
number of strings in the various classes over Fq, where q = pm, with p an odd prime.

In [9] we reproved a result of Carlitz [1] that, if t 6= 0, then

LFq (n; t) =
1
qn

∑
d|n
p-d

µ(d)qn/d.

Here we generalize this to the first p− 1 traces.
Theorem 6.1. If q = pm, where p is an odd prime and k < p, then

LFq (n; t) =





1
n

∑
d|n
p-d

µ(d)
(
SFq (

n

d
;0)− [[pd|n]]qn/(pd)

)
if t = 0

1
n

∑
d|n
p-d

µ(d)SFq (
n

d
; θd−1(t)) otherwise.

Proof: The t = 0 case follows from Corollary 4.4. In the other case there is
some index j ≤ k such that t1 = · · · = tj−1 = 0 and tj 6= 0. Consider the equation
t = θd(u) in (2.5). If d ≡ 0(p) then we must have t = 0. Thus d 6≡ 0(p). Hence
u1 = u2 = · · · = uj−1 = 0 and tj = duj so that uj = d−1tj . Repeated substitution
will give unique values for uj , uj+1, . . . , uk. We can therefore use (2.6) and write

SFq (n; t) =
∑
d|n

d 6≡0(p)

AFq (
n

d
; θd−1(t))

=
∑

x∈Z∗p

∑
d|n

d≡x−1(p)

AFq (
n

d
; θx−1(t)),
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which can then be inverted by Theorem 3.2 to obtain the stated result. 2

The case where p = 2 will be handled in the next section.

6.2. The field F2m . In this section p = 2. Since p = 2, if k < p then k = 0 or
k = 1. However, the value of LZ2m (n; t) is known for k = 0, 1 (equations (4.1) and
(6.1)), so unlike the previous subsection here we have k ≥ p. In this section we will
consider in detail the k = 3 case, which is the largest value for which p′k = 22 = 4. In
other words, we derive a formula for LF2m (n; t1, t2, t3). We also state without proof
the result for LF2m (n; t1, t2).

Here the values of
(
d
2

)
mod 2 follow the pattern 0,0,1,1 mod 4 and the values

of
(
d
3

)
mod 2 follow the pattern 0,0,0,1, so we consider the value of d mod 4 in the

equations (2.7),(2.8),(2.9) taken mod 2 (but with the roles of u and t reversed). If
d ≡ 0(4), then t1 = t2 = t3 = 0, but u1, u2 and u3 are unrestricted. If d ≡ 1(4), then
u1 = t1, u2 = t2 and u3 = t3. If d ≡ 2(4), t1 = 0, u2

1 = t2, and t3 = 0. Fortunately,
in a field of characteristic 2, square roots always exist and are unique, so we can set
u1 =

√
t2. Finally, if d ≡ 3(4), then u1 = t1, u2 = t2 + t21, and t3 = u3 + t31. Thus,

SF2m (n; t1, t2, t3) = [[t1 = 0]][[t2 = 0]][[t3 = 0]]
∑
d|n

d≡0(4)

AF2m (
n

d
)

+
∑
d|n

d≡1(4)

AF2m (
n

d
; t1, t2, t3)

+[[t1 = 0]][[t2 = 0]]
∑
d|n

d≡2(4)

AF2m (
n

d
;
√

t2)

+
∑
d|n

d≡3(4)

AF2m (
n

d
; t1, t2 + t21, t3 + t31).

We now consider the different values of the trace, subtrace and sub-subtrace. If
t1 = t2 = t3 = 0, then

SF2m (n; 0, 0, 0) =
∑
d|n

d≡0(4)

AF2m (
n

d
) +

∑
d|n

d≡2(4)

AF2m (
n

d
, 0) +

∑
d|n

d odd

AF2m (
n

d
, 0, 0, 0).(6.1)

If s 6= 0 but t1 = t3 = 0, then

SF2m (n; 0, t2, 0) =
∑
d|n

d≡2(4)

AF2m (
n

d
;
√

t2) +
∑
d|n

d odd

AF2m (
n

d
; 0, t2, 0).(6.2)

If t1 = 0 but t3 6= 0, then

SF2m (n; 0, s, r) =
∑
d|n

d odd

AF2m (
n

d
; 0, t2, t3).(6.3)

The equations where t1 6= 0 come in parameter pairs, (t1, t2, t3) and (t1, t2 +
t21, t3 + t31). The quantity SF2m (n; t1, t2, t3) is equal to

∑
d|n

d≡1(4)

AF2m (
n

d
; t1, t2, t3) +

∑
d|n

d≡3(4)

AF2m (
n

d
; t1, t2 + t21, t3 + t31).(6.4)
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We can use Theorem 3.2 to invert the pairs (6.4) to obtain

LF2m (n; t1, t2, t3) =
1
n

∑
d|n

d≡1(4)

µ(d)SF2m (
n

d
; t1, t2, t3)

+
1
n

∑
d|n

d≡3(4)

µ(d)SF2m (
n

d
; t1, t2 + t21, t3 + t31).

To invert (6.2) we will need the following lemma and corollary. The lemma holds
over general finite fields.

Lemma 6.2. Let q = pm with p prime. For all n ≥ 1,
∑
d|n

d 6≡0(p)

AFq (
n

d
; 1) = qn−1, and(6.5)

∑
d|n

d6≡0(p)

AFq
(
n

d
; 0) = qn−1 − [[p|n]]qn/p(6.6)

Proof. To prove (6.5) consider the equation below, where y ∈ Z∗p.

qn−1 = SFq (n; y) =
∑

d|n

∑

dx≡y

AFq (
n

d
; x) =

∑
d|n

d∈Z∗p

AFq (
n

d
; d−1y) =

∑
d|n

d∈Z∗p

AFq (
n

d
; 1)

The second equality is a restatement of (2.5). The equation dx = y has a solution
only if d ∈ Z∗p = {1, 2, . . . , p− 1}, namely x = d−1y mod p, giving the third equality.
The equalities SFq (n; y) =

∑
d|n

d∈Z∗p
AFq (

n
d ; d−1y) can be inverted by Theorem 3.2 to

obtain

AFq (n; y) =
∑
d|n

d∈Z∗p

µ(d)SFq (
n

d
; d−1y),(6.7)

thereby implying that AFq (n; y) = AFq (n; 1) for all y ∈ Z∗p and justifying the last
equality.

The following corollary generalizes Lemma 5 from [2].
Corollary 6.3. Let m be a positive integer. Then

∑
d|n

d≡2(4)

AF2m (
n

d
, 1) = [[n even]](2m)n/2−1,(6.8)

∑
d|n

d≡0(4)

AF2m (
n

d
) +

∑
d|n

d≡2(4)

AF2m (
n

d
, 0) = [[n even]](2m)n/2−1.(6.9)

Proof. To prove (6.8) we first use Lemma 4.1 with j = b = 2 and a = 1. This
produces a sum of the form of (6.5), except with n/2 substituted for n, and 2m

substituted for q.
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To prove (6.9), note that the first term of the left-hand side is [[4|n]](2m)n/4 by
Lemma 4.2 with q = 4. By Lemma 4.2 the second term of the left-hand side is
equal to [[n even]]

∑
d|(n/2),d 6≡0(2) A(n/(2d), 0). By Lemma 6.3 this is in turn equal

to [[n even]]((2m)n/2−1 − [[2|(n/2)]](2m)n/4). Adding the two terms together we get
[[n even]](2m)n/2−1.

Note from (6.1) that AF2m (n; 1) = AF2m (n;
√

t2) for any t2 6= 0. In view of Lemma
6.3, for any t2, we can write

SF2m (n; 0, t2, 0) = [[n even]](2m)n/2−1 +
∑
d|n

d odd

AF2m (
n

d
; 0, t2, 0).

This equation can be inverted using the Möbius inversion of Theorem 3.2 to obtain

LF2m (n; 0, t2, 0) =
1
n

∑
d|n

d odd

µ(d)(SF2m (
n

d
; 0, t2, 0)− [[n/d even]](2m)n/(2d)−1).

The various cases are summarized in the following theorem.
Theorem 6.4. If q = 2m, then the value of LFq

(n; t1, t2, t3) is




1
n

∑
d|n

d odd

µ(d)
(
SFq (

n

d
; 0, t2, 0)− [[r = 0]][[2|n

d
]]qn/(2d)−1)

)
if t1 = 0

1
n

∑
d|n

d odd

µ(d) SFq (
n

d
; t1, t2 +

d−1
2

t21, t3 +
d−1
2

t31) if t1 6= 0.

By similar arguments, or by summing over t3 in the preceding theorem we obtain
the theorem below.

Theorem 6.5. If q = 2m, then

LFq (n; t1, s1) =





1
n

∑
d|n

d odd

µ(d)
(
SFq (

n

d
; 0, t2)− [[

n

d
even]]qn/(2d)−1)

)
if t1 = 0

1
n

∑
d|n

d odd

µ(d) SFq (
n

d
; t1, t2 +

d−1
2

t21) if t1 6= 0.

7. Acknowledgement. We wish to thank the referee and editor for helpful
comments.

8. Final Remarks. Tables of some of the numbers discussed in this paper for
k = 1, 2 may be accessed from the page www.theory.cs.uvic.ca/∼cos/inf/trs/.
There are many relevant sequence numbers in Neil J. Sloane’s online encylopedia
of integer sequences. For example, over Z3 it contains: LZ3(n; 0, 0) = A053548,
LZ3(n; 0, 1) = A053560, LZ3(n; 0, 2) = A053561, LZ3(n; 1, 0) = LZ3(n; 2, 0) = A053562,
LZ3(n; 1, 1) = LZ3(n; 2, 1) = A053563, LZ3(n; 1, 2) = LZ3(n; 2, 2) = A053564.
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