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EVALUATIONS I: STRINGS OVER ZP WITH P PRIME
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Abstract. Let α be a string over Zp with p prime. The j-th elementary symmetric function evaluated at α is denoted Tj(α).
We study the cardinalities Sp(n; τ1, τ2, . . . , τt) of the set of length n strings for which Ti(α) = τi. The profile 〈k0, k1, . . . , kp−1〉
of a string α is the sequence of frequencies with which each letter occurs. The profile of α determines Tj(α), and hence Sp. Let

fn : Zp−1
pn 7→ Zpn−1

p be the map that takes 〈k0, k1, . . . , kp−1〉 mod pn to (T1, T2, . . . , Tpn−1) mod p. We show that fn is well-

defined and injective and how to efficiently determine its range. These results are used to efficiently compute Sp(n; τ1, τ2, . . . , τt).
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1. Introduction. The theory of symmetric functions has long been a basic tool of combinatorial enu-
meration. Indeed, Cameron [1] states that “one can appreciate the view held by some people, that if it isn’t
related to symmetric polynomials, then it isn’t combinatorics!”. However the enumeration of the number of
variable assignments to symmetric functions so that the functions achieve given values seems to be new and
interesting.

In order for the problem to make sense, we must choose the variables to come from some finite algebraic
structure, and pick a particular class of symmetric functions. Here we choose the variables to come from the
ring of integers mod a prime p, and the class of elementary symmetric functions. The elementary symmetric
functions are important since they give the coefficients of polynomials in terms of their roots.

The main purpose of this paper and the companion paper [5] is to count certain strings over the ring of
integers mod pn and over the finite field Fpn , where p is prime. We take the point of view espoused by Wilf
[6] that the intrinsic worth of an expression is determined by the amount of computation that it takes to
evaluate it. We will state our running times in terms of the number of ring and arithmetic operations that
it takes to evaluate the expression using the obvious algorithm. The word size of the computer is assumed
to be O(log n) since the largest numbers we deal with have size O(rn) where r, the cardinality of the ring,
is regarded as being a constant.

This work is a continuation of [2] where the number of monic irreducible polynomials over F2 of degree n
with given trace and “subtrace” are enumerated. The trace is the coefficient of xn−1 and the subtrace the
coefficient of xn−2. If such a polynomial is factored in a splitting field, the trace and subtrace can be viewed
as the first and second elementary symmetric functions evaluated at the string of coefficients appearing in
the factorization. The techniques in [2] are elementary in nature and and involve the relationship of Lyndon
words to irreducible polynomials. It therefore seems a natural extension of these ideas to count higher order
“traces” on strings with values in various rings.

2. Preliminaries. Consider a string α = a1a2 · · · an where each ai ∈ Zp. Define the j-trace of α, Tj(α),
to be the sum

Tj(α) =
∑

1≤i1<i2<···<ij≤n

ai1ai2 · · · aij (mod p).
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These are the elementary symmetric functions evaluated at a1, a2, . . . , an. Clearly, (−1)jTj(α) is the negation
of the coefficient of zn−j in the polynomial

(z − a1)(z − a2) · · · (z − an).

By Sp(n; τ1, τ2, . . . , τj) we denote the number of strings α over R of length n for which Ti(α) = τi for
i = 1, 2, . . . , j. Obviously if j = 0, then Sp(n) = rn. It is also true that Sp(n; t) = pn−1 for any t ∈ R, since
T1(αx) takes on distinct values for each x ∈ R.

In what follows, the notation [[P ]] for proposition P has the value 1 if P is true and the value 0 if P is false.
This is “Iverson’s convention,” as used in [3].

The numbers Sp(n; τ1, τ2, . . . , τt) satisfy the following recurrence relation. If n = 1, then Sp(n; τ1, τ2, . . . , τj) =
[[τ2 = · · · = τj = 0]], and for n > 0,

Sp(n; τ1, τ2, . . . , τj) =
∑

x∈Zp

Sp(n− 1; ρ1, ρ2, . . . , ρj),(2.1)

where ρ0 = 1, and for i = 1, 2, . . . , j,

ρi = τi − ρi−1x.

Iterating yields (with τ0 = 1)

ρi =
i∑

`=0

(−1)`τi−`x
`.

Recurrence relation (2.1) implies that the power series
∑

n≥0 Sp(n; τ1, τ2, . . . , τj)zn is rational. We can
evaluate Sp(n; τ1, τ2, . . . , τj) by creating a table of size npj consisting of Sp for all strings of length at most
n and over all j-traces. Each table entry requires Θ(pj) ring operations and Θ(p) arithmetic operations, for
a total of Θ(njpj+1) ring operations and Θ(npj+1) arithmetic operations. An aim of this paper is to reduce
the number of ring and arithmetic operations required to evaluate Sp. We begin in the next subsection by
classifying the strings according to the frequency with which particular characters occur.

2.1. Profiles. Suppose that the string α has kx occurrences of the symbol x for x ∈ Zp. We refer
to the (p − 1)-tuple of natural numbers k = 〈k1, k2, . . . , kp−1〉 as the profile of the string. Note that k0 is
omitted since it doesn’t affect Tj . Subsequently, a bold letter will only denote a profile. We add profiles
componentwise and define rk = 〈rk1, rk2, . . . , rkn〉 for r ∈ Zp.

The j-trace Tj depends only on the profile and we have

Tj(α) =
∑

ν1+ν2+···+νr−1=j

0≤νi≤ki

r−1∏

i=1

iνi

(
ki

νi

)
(mod p)(2.2)

For k = 〈k1, k2, . . . , kp−1〉 ∈ Zp−1, define in Zp[[z]] the formal power series

Ak(z) =
p−1∏

j=1

(1 + jz)kj(2.3)

We make no assumption here that the ki are positive.
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Observe that

Tj(α) = [zj ]Ak(z),(2.4)

where the notation [zj ]A(z) means the coefficient of zj in the generating function A(z).

Lemma 2.1.

Aa+b(z) = Aa(z)Ab(z)(2.5)

Proof. Clear.

Throughout the rest of the paper we assume that p is prime and set Zp = Z/pZ and Zpn = Z/pnZ. We note
that the characteristic of both of these rings is p.

Theorem 2.2. For all n > 0,

Apnk(z) = Ak(zpn

).

Proof. Since p is prime and arithmetic is mod p we have (1 + jz)pn

= 1 + jpn

zpn

= 1 + jzpn

. Thus

Apnk(z) =
p−1∏

j=1

(1 + jz)pnkj =
p−1∏

j=1

(1 + jzpn

)kj = Ak(zpn

).

Corollary 2.3. For all n > 0,

Aa+pnb(z) = Aa(z) mod zpn

Proof. By Lemma 2.1 Aa+pnb(z) = Aa(z)Apnb(z) = Aa(z)Ab(zpn

) = Aa(z) (mod zpn

).

Notice that this corollary implies that if we are only considering traces Tj with j < pn, then we need only
consider values of the profiles taken mod pn.

We also denote the sum in (2.2) by Tj(k) or Tj(〈k1, k2, . . . , kp−1〉) when we wish to emphasize the role of
profiles. Let α and β be strings over Zp. The j-trace satisfies a natural convolution

Tj(αβ) =
∑

0≤i≤j

Ti(α)Tj−i(β)(2.6)

In terms of profiles, this becomes

Tj(k + k′) =
∑

0≤i≤j

Ti(k)Tj−i(k′).(2.7)

The evaluation of Sp in terms of profiles is given below.

Sp(n; τ1, τ2, . . . , τt) =
∑

k0+k1+···+kp−1=n

k:=〈k1,...,kp−1〉

(
n

k0, k1, . . . , kp−1

) t∏

i=1

[[Ti(k) = τi)]](2.8)

In order to evaluate (2.8) efficiently we need to be able to determine efficiently those profiles k for which
Ti(k) = ρi for i = 1, 2, . . . , t. We will do this in the sections to follow.



4 C. R. MIERS AND F. RUSKEY

3. The Rings Zp and Zpn .

3.1. The fundamental correspondence. We first show that the map f that sends the (p− 1)-tuple
k = 〈k1, k2, . . . , kp−1〉 to 〈τ1, τ2, . . . , τp−1〉, where τj = Tj(k) =

∑ ∏
ivi

(
ki

νi

)
, is a bijection on Zp−1

p .

Lemma 3.1. Let p be a prime and V be the (p − 1) × (p − 1) Vandermonde matrix defined by vi,j = ji

(mod p). Then V −1 = W is the (p − 1) × (p − 1) matrix defined by wi,j = −i−j (mod p). Proof. Let
ci,j be the i, j entry of the matrix product V W .

ci,j = −
∑

1≤k<p

ki−j =
{

0 if i 6= j
−(p− 1) if i = j

Thus ci,j = [[i = j mod p]]. The second equality follows from the proof of the first theorem about characters
on finite abelian groups as applied to the map χ : x 7→ xi−j on Zp

∗ = Zp \ {0}. That is,
∑

g∈G χ(g) =
|G| · [[χ is trivial]] (e.g., [4], Theorem 5.4).

Clearly f is a function; we will prove that it has an inverse f−1. We refer to the result of the following
theorem as the “Fundamental Correspondence.”

Theorem 3.2. The map f : Zp−1
p 7→ Zp−1

p defined by f(k) = 〈τ1, τ2, . . . , τp−1〉, where τi = Ti(k), is a
bijection. Both f and f−1 can be computed in O(p2) arithmetic operations.

Proof: The jth power symmetric function in variables x1, x2, . . . , xt, denoted Pj(x1, . . . , xt), is defined as

Pj(x1, x2, . . . , xt) =
t∑

i=1

xj
i .

The Newton-Girard Formula

mTm(x1, x2, . . . , xt) +
∑

1≤j≤m

(−1)jPj(x1, x2, . . . , xt)Tm−j(x1, x2, . . . , xt) = 0(3.1)

allows us to express a power symmetric function as a (unique) polynomial of elementary symmetric functions.
Given fixed values of the variables, Pm = Pm(x1, x2, . . . , xt) and Tm = Tm(x1, x2, . . . , xt) are values, and we
can use (3.1) to compute unique values P1, P2, . . . , Pr from T1, T2, . . . , Tr by iterating the following equation
for m = 1, 2, . . . , r (in that order). The successive computation of P1, P2, . . . , Pr will clearly take a total of
Θ(p2) arithmetic steps.

Pm = (−1)m+1


mTm +

∑

1≤j≤m−1

(−1)jPjTm−j




Note that, as a function of the profile, Pj = Pj(〈k1, k2, . . . , kp−1〉) =
∑p−1

i=1 kii
j . We therefore have the system

of linear equations 〈P1, P2, . . . , Pp−1〉T = Vp〈k1, k2, . . . , kp−1〉T , where Vp is the (p−1)×(p−1) Vandermonde
matrix with Vp[i, j] = ji mod p. Since the Vandermonde matrix is non-singular, this system has a unique
solution 〈k1, k2, . . . , kp−1〉, thereby showing that f−1 is a function, as claimed. Further, the explicit expression
for V −1

p given in Lemma 3.1, allows us to compute the profile in Θ(p2) arithmetic operations in Zp.

The corollary below follows at once from Theorem 3.2 and the observation that Ti(0, 0, . . . , 0) = 0 for any
i > 0.

Corollary 3.3. If Ti(k mod p) = 0 for i = 1, 2, . . . , p− 1, then k1 = k2 = · · · = kp−1 = 0.

Example 1:
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Let us determine, in Z7, the profile that corresponds to the trace values (T1, T2, . . . , Tp−1) = (1, 1, 1, 1, 1, 1).
The Newton-Girard Formula can be written as




P1

P2

P3

P4

P5

P6




=




1
P1 −2
P2 −P1 3
P3 −P2 P1 −4
P4 −P3 P2 −P1 5
P5 −P4 P3 −P2 P1 −6







1
1
1
1
1
1




Solving by back substitution we get (P1, P2, P3, P4, P5, P6)T = (1, 6, 1, 6, 1, 6)T .

We now solve (1, 6, 1, 6, 1, 6)T = V7〈k1, k2, . . . , kp−1〉,



1
6
1
6
1
6




=




1 2 3 4 5 6
1 4 2 2 4 1
1 1 6 1 6 6
1 2 4 4 2 1
1 4 5 2 3 6
1 1 1 1 1 1







k1

k2

k3

k4

k5

k6




,

by using the inverse V −1
7 computed from Lemma 3.1




k1

k2

k3

k4

k5

k6




=




6 6 6 6 6 6
3 5 6 3 5 6
2 3 1 5 4 6
5 3 6 5 3 6
4 5 1 3 2 6
1 6 1 6 1 6







1
6
1
6
1
6




=




0
0
0
0
0
6




Thus the number of strings α of length n over Z7 with Tj(α) = 1 for j = 1, 2, 3, 4, 5, 6 is

SZ7(n; 1, 1, 1, 1, 1, 1) =
∑

k0+k1+···+k6=n

k1≡···≡k5≡0∧k6≡6( mod 7)

(
n

k0, k1, . . . , k6

)
(3.2)

The actual values for n = 1, 2, . . . , 20 are 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 10297, 123137, 906010,
4813368, 20435156, 73540572, 232846824, 1996062481. This computation takes a couple of seconds in Maple,
after re-arranging (3.2) into the form

b(n−6)/7c∑
m=0

(
n

7m + 6

) ∑
ν1+···+ν6=m

νi≥0

(
7m + 6

7ν1, . . . , 7ν5, 7ν6 + 6

)
.

Note that the number of terms in the above sum is about
(
n/7+6

7

)
.

Using classical results about primitive roots of unity (see the Appendix) we can express (3.2) as a sum of 76

terms, each term of which raises a complex number to the power n. Equation (3.2) can be written as

1
76

6∑
ν1=0

· · ·
6∑

ν6=0

ων6(1 + ων1 + · · ·+ ων6)n,(3.3)

where ω is a primitive 7-th root of unity. In infinite precision complex arithmetic we can evaluate sums such
as (3.3) in time Θ(pp−1 log n) by using binary powering. However, in Maple the computation using (3.3) is
much slower for realistic values of n.
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3.2. Extending the fundamental correspondence. In this subsection we will prove that the map
fn : Zp−1

pn 7→ Zpn−1
p that sends k = 〈k1, k2, . . . kp−1〉 mod pn to 〈τ1, τ2, . . . , τpn−1〉 mod p, where τj = Tj(k),

is one-to-one and determine its range for all n ≥ 2. Let Pj = {pj , 2pj , . . . , (p − 1)pj}. We call the union
Rm = P0 ∪ P1 ∪ · · · ∪ Pm the critical set for the sequence T1, T2, . . . , Tpm−1; the elements of Rm are called
critical indices. In extending the fundamental correspondence we will prove that the map fm, restricted to
the values Tj where j ∈ Rm, is a bijection. The values of Tj where j is not critical are determined by the
values of Ti on the critical indices i < j. In the previous subsection we showed that f1 is a bijection on Zp−1

p .

P1, taken mod p︷ ︸︸ ︷
1, 2, . . . , p−1︸ ︷︷ ︸

f1

,

P2, taken mod p2

︷ ︸︸ ︷
p, . . . , 2p, . . . , (p−1)p

︸ ︷︷ ︸
f2

, . . . ,

Pm, taken mod pm

︷ ︸︸ ︷
pm−1, . . . , 2pm−1, . . . , (p−1)pm−1, . . .

︸ ︷︷ ︸
fm

, pm

Lemma 3.4. Aa(z) = Ab(z) mod zpn

if and only if a ≡ b mod pn.

Proof. If a ≡ b mod pn then by Corollary 2.3 Aa(z) = Ab(z) (mod zpn

).

Conversely, assume that Aa(z) = Ab(z) mod zpn

. Then by (2.5) Aa−b(z) = 1 mod zpn

. We proceed by
induction on n. If n = 1 then by the Fundamental Correspondence a ≡ b mod p. If n > 1 then we may
assume inductively that a ≡ b mod pn−1. Thus there is some k ∈ Zp−1

p such that a = b + pn−1k and thus

1 = Aa−b(z) = Apn−1k(z) = Ak(zpn−1
) (mod zpn

).

Since the condition 1 = Ak(zpn−1
) mod zpn

is equivalent to 1 = Ak(z) mod zp, again applying the Funda-
mental Correspondence, k = 0 mod p.

Theorem 3.5. The function fn is one-to-one.

Proof. We now assume that k ∈ Zp−1
pn . Lemma 3.4 shows that fn (i.e., Ak(z) mod zpn

regarded as a function
of k) is an injection.

3.3. The range of fn. Theorem 3.6. The range of fn : Zp−1
pn 7→ Zpn−1

p consists of all vectors

〈a1, . . . , apn−1−1, apn−1 , . . . , a2pn−1 , . . . , a(p−1)pn−1 , . . . , apn−1〉
where

(i) The vector 〈a1, . . . , apn−1−1〉 ∈ Range(fn−1).
(ii) The values of ampn−1 can be assigned arbitrarily from Zp for m = 1, 2, . . . , p− 1.
(iii) For such an assignment, there are unique vectors a ∈ Zp−1

p and b ∈ Zp−1
pn−1 such that Tj(b) = aj for

j = 1, 2, . . . , pn−1 − 1 and Tmpn−1(pn−1a + b) = ampn−1 for m = 1, 2, . . . , p− 1.
(iv) The aj for (m−1)pn−1 < j < mpn−1 where 1 < m ≤ p are determined uniquely as aj = Tj(pn−1a +

b).

Proof. Our proof is by induction on n. Given (a1, . . . , apn−1−1) ∈ Range(fn−1) there is a unique vector
b ∈ Zp−1

pn−1 such that [z`]Ab(z) = T`(b) = a` for ` = 1, 2, . . . , pn−1 − 1. Write k = pn−1a+b. If 1 ≤ ` < pn−1

then [z`]Ak(z) = [z`](Apn−1a+b(z) mod pn−1) = [z`]Ab(z).

[zmpn−1
]Ak(z) = [zmpn−1

]Apn−1a+b(z)

= [zmpn−1
]Aa(zpn−1

)Ab(z)

=
∑

0≤j≤m

Tpn−1j(b)Tm−j(a).
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Thus we are led to consider the equations

ampn−1 =
∑

0≤j≤m

Tpn−1j(b)xm−j

where xj = Tj(a). With x0 = 1, we can uniquely determine the values x1, x2, . . . , xp−1 successively by
substitution in

xm = ampn−1 −
∑

1≤j≤m

Tpn−1j(b)xm−j .

By the Fundamental Correspondence, the equations xj = Tj(a) for j = 1, 2, . . . , p− 1 have a unique solution
a. Thus k = pn−1a+b is a profile for which ai = Ti(k) for all i ∈ Rn = P1∪P2∪· · ·∪Pn. There are exactly
pn(p−1) profiles of the form pn−1a + b and exactly pn(p−1) tuples ai for i ∈ Rn. Therefore, fn is a bijection
when restricted to Rn. Furthermore, the values aj for j ∈ {1, 2, . . . , pn − 1} \ Rn are uniquely determined
as aj = Tj(pn−1a + b).

We showed above that the trace values are determined by the values of traces whose indices are in the critical
set. We refine this below by showing that that the value of Tt for t non-critical depends only on the values
of Tj where j < t and j is critical.

Theorem 3.7. The value of Tt(α) where mpn−1 < t < (m+1)pn−1 is determined by the values of τj = Tj(α)
for j ∈ Rn−1 ∪ {pn−1, 2pn−1, . . . , mpn−1}.
Proof. By our previous results on the range of fn, we know that there are exactly pp−1−m profiles k such
that Tj(k) = τj for j ∈ Rn−1 ∪ {pn−1, 2pn−1, . . . , mpn−1}. Such a profile k can be written as pn−1a + b,
where a ∈ Zp−1

p and b ∈ Zp−1
pn−1 .

Consider profiles k = pn−1a+b and k′ = pn−1a′+b′ where Tj = τj for j ∈ Rn−1∪{pn−1, 2pn−1, . . . , mpn−1}.
Since the profiles agree on Rn−1 we have Ak(z) = Ak′(z) mod zpn−1

and hence b = b′. Since, for j =
1, 2, . . . ,m,

[zjpn−1
]Ak(z) = [zjpn−1

]Ak′(z)

we have, for j = 1, 2, . . . ,m,

[zjpn−1
]Aa(zpn−1

)Ab(z) = [zjpn−1
]Aa′(zpn−1

)Ab(z).

Which implies that

Aa(z) = Aa′(z) (mod zm+1).

Now note that

[zt]Ak(z)− [zt]Ak(z) = [zt](Aa(zpn−1
)−Aa′(zpn−1

))Ab(z)

= [zt](Aa(zpn−1
)−Aa′(zpn−1

))Ab(z) (mod z(m+1)pn−1
)

= 0

3.4. A computational method and examples. In this subsection we give an explicit algorithm in
the form of pseudo-code to determine if τ1, τ2, . . . , τpn−1 ∈ Range(fn), and, if so, how to find the profile
p ∈ Zp−1

pn such that Tj(p) = τj for j = 1, 2, . . . , pn − 1. In particular, we will determine a sequence
a0,a1, . . . ,an−1, where each ai ∈ Zp−1

p , such that

p = a0 + pa1 + · · ·+ pn−1an−1.

The principles underlying the algorithm have already been laid out in Theorem 3.2 and Theorem 3.6.
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(A1) a := 0; x0 := 1;
(A2) for i := 0 to n− 1 do
(A3) for j := 1 to p− 1 do
(A4) xj := τjpi −∑j

i=1 Tjpi(a)xj−i;
(A5) for m := 1 to p− 1 do { Newton-Girard }
(A6) Pm := (−1)m+1

(
mxm +

∑
1≤j≤m−1(−1)jPjxm−j

)
;

(A7) for j := 1 to p− 1 do { inverse of Vandermonde }
(A8) aj :=

∑
1≤i≤p−1(−1)j+1(p− i)p−j−1Pi;

(A9) ai := a;
(A10) p := a0 + pa1 + · · ·+ pn−1an−1;
(A11) for i := 1 to pn − 1 do
(A12) if i 6∈ Rn and Ti(p) 6= τi then return( “no profile exists” );
(A13) return( p );

Example 2:

Let us determine, in Zp2 , the profile p, if any, that corresponds to the trace values (T1, T2, . . . , Tp2−1) =
(1, 1, . . . , 1), with p = 7.

The i = 0 iteration of the algorithm was done in the Example 1; a = a0 = (0, 0, 0, 0, 0, 6). For i = 1, the
repeated substitution of lines A3–A4 yields (with b = a1)

(T1(b), T2(b), T3(b), T4(b), T5(b), T6(b)) = (x1, x2, x3, x4, x5, x6) = (1, 1, 1, 1, 1, 1),

which is solved (lines A5–A8) as in the previous example to give (b1, b2, b3, b4, b5, b6) = (0, 0, 0, 0, 0, 6). Thus
p = 7b + a = (0, 0, 0, 0, 0, 48), where 48 = 7 · b6 + a6 = 7·6 + 6. We now need to check at lines A11–A12
whether Tj(p) = 1 for 7(m− 1) < j < 7m for m = 2, 3, 4, 5, 6, 7. Consider a string of 48 6’s. Clearly,

Tj(p) = 6j

(
48
j

)
= (−1)j(−1)j = 1 (mod 7),

so long as j ≤ 48. (To see that
(
48
j

) ≡ (−1)j argue by induction using the recurrence relation 0 ≡ (
72

j

)
=(

48
j

)
+

(
48

j−1

)
.) In terms of generating functions (1− z)48 = 1 + z + · · ·+ z48 mod 7. Thus the Tj values are

indeed all 1, and we can therefore determine that the number of strings of length n whose first 48 traces are
all 1’s is

SZ7(n; 1, 1, . . . , 1︸ ︷︷ ︸
48

) =
∑

k0+k1+···+k6=n

k1≡···≡k5≡0∧k6≡48 (mod 72)

(
n

k0, k1, . . . , k6

)
.(3.4)

Note that 748 > 3× 1040 so there is no hope of using the recurrence relation (2.1) for the computation.

Example 3:

Going in the other direction, specifying fewer traces to be 1, we show how to determine SZ7(n; 1, 1, 1).
Since we don’t have the complete set P1 we do not have a one-to-one correspondence. However, we can
sum SZ7(n; 1, 1, 1, x, y, z) over all x, y, z ∈ Z7 to determine our answer. Feeding (1, 1, 1, x, y, z) through the
Newton-Girard and Vandermonde formulae gives us:

k1 ≡ 3 + 2x + 3y + 6z (mod 7)
k2 ≡ 5 + 5x + 5y + 6z (mod 7)
k3 ≡ 6 + 2x + 6z (mod 7)
k4 ≡ 6 + 2y + 6z (mod 7)
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k5 ≡ 5 + 6x + 4y + 6z (mod 7)
k6 ≡ 2 + 6x + 6y + 6z (mod 7)

These equations can in turn be used to eliminate x, y, z, obtaining:

k4 ≡ k1 + 4k2 + 3k3 (mod 7),
k5 ≡ 3k1 + 6k2 + 6k3 (mod 7),
k6 ≡ 6 + 6k1 + 6k2 + 3k3 (mod 7).

This gives us the equation

SZ7(n; 1, 1, 1) =
∑

k0+k1+···+k6=n

k4≡k1+4k2+3k3 (mod 7)
k5≡3k1+6k2+6k3 (mod 7)

k6≡6+6k1+6k2+3k3 (mod 7)

(
n

k0, k1, . . . , k6

)
.

Example 4:

As another example we will determine a formula for the number of binary strings of length n whose first 2m

traces are all 0’s. I.e., we will determine the number

A(n,m) := SZ2(n; 0, 0, . . . , 0︸ ︷︷ ︸
2m

)

According to Theorem 3.6 the relevant trace values are Tj for j = 1, 2, . . . , 2m. From (.1) of the Appendix,

A(n,m) =
∑
j≥0

j≡0 (mod 2m)

(
n

j

)
=

1
2m

2m−1∑

j=0

(1 + ωj)n =
1

2m

2m−1∑

j=0

(
2 cos

πj

2m

)n

cos
πjn

2m
,

where ω is a primitive 2m-th root of unity. The last equality follows from the observation that (1 + ωj) =
ωj/2(ω−j/2 + ωj/2).

Acknowledgement. We wish to thank Nate Kube for help with programming and for helpful discus-
sion. We also thank the referee for carefully reading the paper and suggesting the polynomial based approach
that we now adopt.
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4. Appendix. Roots of Unity

For fixed n, it is well know that the sum of every other binomial coefficient is 2n−1. But what about sums
of every k-th binomial coefficient? What about similar sums of multinomial coefficients? It turns out that
we can derive formulae for these whose computation is more efficient than directly summing the coefficients.
We start with binomial coefficients, and then proceed to the multinomial coefficients.

Let ω be a primitive q-th root of unity, say ω = e2πi/q. Consider the geometric sum below for q - n.

q−1∑

k=0

ωnk =
1− ωqn

1− ωn
= 0

On the other hand if q | n, then ωnk = 1. Thus

1
q

q−1∑

k=0

ωnk = [[q | n]]

Let A(z) =
∑

n≥0 f(n)zn. We wish to find an expression for the related generating function that picks off
every q-th element, starting with the r-th element (0 ≤ r < q).

Aq;r(z) =
∑

n≥0

f(nq + r)znq+r.

Set m = nq + r. Note that

Aq;r(z) =
∑

m≥0

[[q | (m− r)]]f(m)zm

=
∑

m≥0

1
q

q−1∑

k=0

ω(m−r)kf(m)zm

=
1
q

q−1∑

k=0

∑

m≥0

f(m)zmωmkω−rk

=
1
q

q−1∑

k=0

ω−rkA(zωk)

An entirely analogous argument in the multidimensional case gives us the following lemma.

Lemma .1. Let A(z1, z2, . . . , zm) be the ordinary generating function of f(n1, n2, . . . , nm). Define

Aq;r1,...,rm(z1, z2, . . . , zm) =
∑

n1≥0

· · ·
∑

nm≥0

f(n1q + r1, . . . , nmq + rm)zn1q+r1
1 · · · znmq+rm

m .

where each ri ∈ Zq. Then

Aq;r1,...,rm(z1, z2, . . . , zm) =
1

qm

q−1∑
ν1=0

· · ·
q−1∑

νm=0

ω−(ν1r1+···+νmrm)A(ωz1ν1 , . . . , ωzmνm)

Recall that

B(z) = (1 + z)n =
n∑

r=0

(
n

r

)
zr.
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Substituting z = 1 into Bq;r(z) we obtain

∑

j≡r(q)

(
n

r

)
=

1
q

q−1∑

j=0

ω−rj(1 + ωj)n.(.1)

Introduce the notation

Mq(n; r1, r2, . . . , rm) =
∑

ν0+ν1+···+νm=n

ν1≡r1(q),...,νt≡rm(q)

(
n

ν0, ν1, . . . , νm

)

Plugging z1 = z2 = · · · = zm = 1 into the ordinary generating function (1+z1+· · ·+zm)n for the multinomial
coefficients we obtain the following lemma which generalizes (.1).

Lemma .2. For all q ≥ 2, n ≥ 0, and ri ∈ Zq,

Mq(n; r1, r2, . . . , rm) =
1

qm

q−1∑
ν1=0

· · ·
q−1∑

νm=0

ω−(ν1r1+···+νmrm)(1 + ων1 + · · ·+ ωνm)n.

(Note: in the binomial case, see Knuth vol 1, exercise 38, page 70. He attributes the roots of unity formula
to C. Ramus, 1834).


