Auspicious tatami mat arrangements

Alejandro Erickson, Frank Ruskey, Mark Schurch, Jennifer Woodcock

University of Victoria

August 8, 2010

Lucky Tea House Floors

Tatami mats

Traditional Japanese floor mats made of soft woven straw.

Certain floors, like tea houses, required that no four mats touch at any point.

Monomer-dimer tiling Tile a subset of the grid with monomers , and dimers and .

Monomer-dimer tiling Tile a subset of the grid with monomers , and dimers and

Tatami condition Forbid configurations with four tiles at one point.

Every interior grid intersection is on a long edge of at least one dimer , . For example

Adjacent tiles force the placement of a dimer:

Small tilings

All tatami tilings of the 3×4 grid.

Previous work on tatami dimer-tilings: Dean Hickerson, 2002 OEIS a068920 http://www.research.att.com/~njas/sequences/ Donald Knuth, 2009 The Art of Computer Programming, volume 4, fascicle 1B Frank Ruskey and Jenni Woodcock, 2009 Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics Alhazov, Morita, Iwamoto, 2009 A note on [monomer-dimer] tatami tilings, Proceedings of 2009 LA Winter Symposium.

Larger tilings expose patterns

A closer look

A closer look

These boundaries form *rays*. Rays force the structure.

- 1. Rays propagate to the boundary.
- 2. Rays cannot cross.

Where do rays begin?

The "beginning" of a ray: **¬**

▶ Not the beginning **T**.

The "beginning" of a ray: **u**

- ▶ Not the beginning **₽**.
- ► Case 1, *hamburger*: ■. Occurs anywhere.

The "beginning" of a ray: **u**

- Not the beginning ¹.
- ► Case 1, *hamburger*: ■. Occurs anywhere.
- - ► Case 2(a), *simplex*: **—**. Only on boundary.
 - ► Case 2(b), *vortex*: □. Not on boundary.
 - ► Case 2(c), *vee*: □. Only on boundary.

Results from our paper

Theorem

Let m be the number of monomers in an $r \times c$ tatami tiling. Then m has the same parity as rc and $m \leq \max(r+1, c+1)$.

Results from our paper

Theorem

Let m be the number of monomers in an $r \times c$ tatami tiling. Then m has the same parity as rc and $m \leq \max(r+1, c+1)$.

Lemma

An $n \times n$ square tiling has n monomers \square if and only if it has no sources of type \square or \square .

Theorem

In an $n \times n$ grid there are $t(n) = n2^{n-1}$ tilings with n monomers.

Some 7×7 tilings with 7 monomers

A piece of the proof

"Diagonal slices" can be flipped to give a new tiling.

A piece of the proof

"Diagonal slices" can be flipped to give a new tiling.

Fix the black cornermonomers. Use recursion.

Recurrence for fixed black monomers is $s(n) = 4s(n-2) + 2^{n-2}$.

Generating functions

For height 3

Let A(c) be the number of $3 \times c$ tilings which start with the blue tile shown on the right.

Recurrences for A(c)

Similarly for B(c) and C(c)

This is a linear recurrence relation in A, B, C so we have rational generating functions.

The number of tilings with r rows and c columns is the coefficient of z^c in the generating function $T_r(z)$.

This is a linear recurrence relation in A, B, C so we have rational generating functions.

The number of tilings with r rows and c columns is the coefficient of z^c in the generating function $T_r(z)$.

Theorem

For height r = 1, 2, 3 the generating functions $T_r(z)$ are

$$T_1(z) = rac{1+z}{1-z-z^2}, \qquad T_2(z) = rac{1+2z^2-z^3}{1-2z-2z^3+z^4},$$
 and

$$T_3(z) = \frac{1+2z+8z^2+3z^3-6z^4-3z^5-4z^6+2z^7+z^8}{1-z-2z^2-2z^4+z^5+z^6}.$$

More tatami problems

Given an arbitrary shaped grid, what is the minimum number of monomers in a tatami tiling?

More tatami problems

Given an arbitrary shaped grid, what is the minimum number of monomers in a tatami tiling?

Tomography

Is it possible to tile a grid with these row and column projections? What is the complexity of this?

Solution

Play this flash game at http://miniurl.org/tomoku (or http://tiny.cc/tomoku). Use "CC" in your high score's name to identify yourself as a COCOON attendee.