Auspicious tatami mat arrangements

Alejandro Erickson, Frank Ruskey, Mark Schurch, Jennifer Woodcock

University of Victoria

August 8, 2010

Lucky Tea House Floors

Tatami mats

Traditional Japanese floor mats made of soft woven straw.

Certain floors, like tea houses, required that no four mats touch at any point.

Monomer-dimer tiling

Tile a subset of the grid with monomers \square, and dimers \square and $\boldsymbol{\square}$.

Monomer-dimer tiling

Tile a subset of the grid with monomers \square, and dimers \square and \square.

Tatami condition
Forbid configurations
with four tiles at one point.

Every interior grid intersection is on a long edge of at least one dimer $\square \square$, \square.
For example

Adjacent tiles force the placement of a dimer:

Small tilings

All tatami tilings of the 3×4 grid.

昜

是| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |

Previous work on tatami dimer-tilings:

Dean Hickerson, 2002
OEIS a068920
http://www.research.att.com/~njas/sequences/
Donald Knuth, 2009
The Art of Computer Programming, volume 4, fascicle 1B
Frank Ruskey and Jenni Woodcock, 2009
Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics.
Alhazov, Morita, Iwamoto, 2009
A note on [monomer-dimer] tatami tilings,
Proceedings of 2009 LA Winter Symposium.

Larger tilings expose patterns

A closer look

A closer look

T-diagram

These boundaries form rays. Rays force the structure.

1. Rays propagate to the boundary.
2. Rays cannot cross.

Where do rays begin?

The "beginning" of a ray: ■

- Not the beginning T.

The "beginning" of a ray:

- Not the beginning T.
- Case 1, hamburger. \quad. Occurs anywhere.

The "beginning" of a ray: ©

- Not the beginning T.
- Case 1, hamburger. \quad l. Occurs anywhere.
- Case 2: monomer at beginning IT.
- Case 2(a), simplex: T. Only on boundary.
- Case 2(b), vortex: ∇^{\square}. Not on boundary.
- Case 2(c), vee: $\square_{\text {I }}$. Only on boundary.

Results from our paper

Theorem
Let m be the number of monomers in an $r \times c$ tatami tiling. Then m has the same parity as $r c$ and $m \leq \max (r+1, c+1)$.

Results from our paper

Theorem
Let m be the number of monomers in an $r \times c$ tatami tiling. Then m has the same parity as $r c$ and $m \leq \max (r+1, c+1)$.
Lemma
An $n \times n$ square tiling has n monomers \square if and only if it has no sources of type or $\boldsymbol{\square}$.

Theorem
In an $n \times n$ grid there are $t(n)=n 2^{n-1}$ tilings with n monomers.

Some 7×7 tilings with 7 monomers

A piece of the proof

"Diagonal slices" can be flipped to give a new tiling.

A piece of the proof

"Diagonal slices" can be flipped to give a new tiling.

Fix the black cornermonomers. Use recursion.

Recurrence for fixed black monomers is $s(n)=4 s(n-2)+2^{n-2}$.

Generating functions

For height 3
Let $A(c)$ be the number of $3 \times c$ tilings which start with the blue tile shown on the right.

Similarly for $B(c)$ and $C(c)$

This is a linear recurrence relation in A, B, C so we have rational generating functions.

	$A(c-2)$	$A(c-3)$		

Recurrences for $B(c)$

The number of tilings with r rows and c columns is the coefficient of z^{c} in the generating function $T_{r}(z)$.

This is a linear recurrence relation in A, B, C so we have rational generating functions.

The number of tilings with r rows and c columns is the coefficient of z^{c} in the generating function $T_{r}(z)$.

Theorem

For height $r=1,2,3$ the generating functions $T_{r}(z)$ are

$$
\begin{aligned}
& T_{1}(z)=\frac{1+z}{1-z-z^{2}}, \quad T_{2}(z)=\frac{1+2 z^{2}-z^{3}}{1-2 z-2 z^{3}+z^{4}}, \quad \text { and } \\
& T_{3}(z)=\frac{1+2 z+8 z^{2}+3 z^{3}-6 z^{4}-3 z^{5}-4 z^{6}+2 z^{7}+z^{8}}{1-z-2 z^{2}-2 z^{4}+z^{5}+z^{6}} .
\end{aligned}
$$

More tatami problems

Given an arbitrary shaped grid, what is the minimum number of monomers in a tatami tiling?

More tatami problems

Given an arbitrary shaped grid, what is the minimum number of monomers in a tatami tiling?

Tomography

Is it possible to tile a grid with these row and column projections? What is the complexity of this?

Time: 2.81

Solution

Play this flash game at
http://miniurl.org/tomoku (or http://tiny.cc/tomoku). Use "CC" in your high score's name to identify yourself as a COCOON attendee.

