
Faster Generation of Shorthand Universal Cycles
for Permutations

Alexander Holroyd1 Frank Ruskey2 Aaron Williams2

1Microsoft Research
Redmond, Washington, USA.

2Department of Computer Science
University of Victoria, CANADA.

Talk at COCOON Conference,
Nha Trang, Vietnam, July 20, 2010

The underlying problem

I An example with n = 3: Consider the circular string

321312

I Its length 2 substrings are

32, 21, 13, 31, 12, 23.

These are exactly the 2-permutations of a 3-set.

I Question: Given n and k , can you construct a circular string
of length (n)k := n(n − 1) · · · (n − k + 1) such that every
k-permutation of [n] := {1, 2, . . . , n} occurs (uniquely) as a
substring?

I Yes, existence shown by Brad Jackson: “Universal cycles of
k-subsets and k-permutations”, Discrete Mathematics, 149
(1996) 123–129, for all k < n.

I No such string for permutations (k = n) if n ≥ 3.

I In this talk, we are only concerned with the case k = n − 1.

Knuth’s challenge for the k = n − 1 case

I The problem for k = n − 1 is discussed by D.E. Knuth, The
Art of Computer Programming, Volume 4, Generating All
Tuples and Permutations, Fascicle 2, in Exercise 112 of
Section 7.2.1.2. On page 121 we find the following quote:

“At least one of these cycles must almost surely be
easy to describe and to compute, as we did for de
Bruijn cycles in Section 7.2.1.1. But no simple
construction has yet been found.”

I This challenge was answered in Ruskey and Williams, An
explicit universal cycle for the (n − 1)-permutations of an
n-set, ACM Transactions on Algorithms, June 2010.

I We present in this talk two additional constructions, both of
which are better in some respect.

As a result of that TALG paper:

Dear Frank,
I finally have gotten Section 7.1.4 to the point where I could take a
small breath and look at the mail that has come in since last
summer about the other fascicles and prefascicles.
One of the most exciting things, of course, was to learn about your
nice explicit universal cycles of permutations. In the next printing
of Volume 4 Fascicle 2 I shall replace exercise 7.2.1.2–112 by two
exercises, 112 and 113; 112 asks for (and gives hints towards) your
explicit construction, while 113 is the former 112.
These updates will be posted in the TAOCP errata listing all4f2.ps,
later this week. I also stuck in a very brief mention of the multiset
case, although you have apparently not yet written that paper.
Beautiful: stringology is really coming of age!
...
Thanks again for keeping me informed.
Best regards, Don

Obviously, (n)k = n · (n − 1) · · · 3 · 2 = n!

I By adding the missing numbers, a (n − 1)-permutation of [n]
becomes a permutation of [n].

I

32 → 321
21 → 213
13 → 132
31 → 312
12 → 123
23 → 231

I A Ucycle := a universal cycle for the (n − 1)-permutations of
[n].

I

↗ 7152634 rotate first n − 1 symbols left.
3715264

↘ 7152643 rotate all symbols left.

Obviously, (n)k = n · (n − 1) · · · 3 · 2 = n!

I By adding the missing numbers, a (n − 1)-permutation of [n]
becomes a permutation of [n].

I

32 → 321
21 → 213
13 → 132
31 → 312
12 → 123
23 → 231

I A Ucycle := a universal cycle for the (n − 1)-permutations of
[n].

I In a Ucycle for the 6-permutations of [7]:
↗ 7152634 rotate first n − 1 symbols left.

3715264
↘ 7152643 rotate all symbols left.

Obviously, (n)k = n · (n − 1) · · · 3 · 2 = n!

I By adding the missing numbers, a (n − 1)-permutation of [n]
becomes a permutation of [n].

I

32 → 321
21 → 213
13 → 132
31 → 312
12 → 123
23 → 231

I A Ucycle := a universal cycle for the (n − 1)-permutations of
[n].

I In a Ucycle for the 6-permutations of [7]:
↗ 7152634 rotate first n − 1 symbols left.

3715264
↘ 7152643 rotate all symbols left.

Obviously, (n)k = n · (n − 1) · · · 3 · 2 = n!

I By adding the missing numbers, a (n − 1)-permutation of [n]
becomes a permutation of [n].

I

32 → 321
21 → 213
13 → 132
31 → 312
12 → 123
23 → 231

I A Ucycle := a universal cycle for the (n − 1)-permutations of
[n].

I As permutations:
↗ 7152634 rotate first n − 1 symbols left.

3715264
↘ 7152643 rotate all symbols left.

Obviously, (n)k = n · (n − 1) · · · 3 · 2 = n!

I By adding the missing numbers, a (n − 1)-permutation of [n]
becomes a permutation of [n].

I

32 → 321
21 → 213
13 → 132
31 → 312
12 → 123
23 → 231

I A Ucycle := a universal cycle for the (n − 1)-permutations of
[n].

I As permutations:
↗ 7152634 rotate first n − 1 symbols left.

3715264
↘ 7152643 rotate all symbols left.

The Cayley Graph Connection

I

↗ 7152634 σ6 = σn−1

3715264
↘ 7152643 σ7 = σn

I Define the directed Cayley graph

Ξn :=
−−→
Cay({σn, σn−1}; Sn)

In this graph the vertices are the permutations, Sn, and edges
are of the form π −→ σj(π) for j ∈ {n − 1, n}.

I Observe that Ξn is a 2-in 2-out digraph.

I The problem of finding a Hamilton cycle in Ξn is equivalent to
finding a Ucycle of (n − 1)-permutations of an n-set.

I (Which is equivalent to finding an Eulerian cycle in Jk,n, the
graph that Jackson used in his existence proof.)

Objective: maximize σn edges
Consider the Cayley graph Ξ4:
Straight edges are σ4, circular arc edges are σ3.

Objective: maximize σn edges
The cosets (equivalence classes) induced by σn = σ4 are shaded.

Note that σnσ
−
n−1 is a 2-cycle and thus (σnσ

−
n−1)(σnσ

−
n−1) = id .

Objective: maximize σn edges
I Note that σnσ

−
n−1 = (n n−1) and so (σnσ

−
n−1)(σnσ

−
n−1) = id .

I Thus the Cayley coset graph (shrink the cosets to vertices) is
undirected, call it Cn. (The graph C4 shown below.)

I Each vertex of Cn is labeled by the unique permutation in the
coset that starts with n.

Spanning trees and Hamilton cycles
There is a one-to-one correspondence between spanning trees of Cn
and Hamilton cycles in Ξn that minimize the number of σn−1s
used.

Recall our objective...

I Using the spanning tree idea will minimize the number of
σn−1s and therefore maximize the number of σns.

I The number of nodes in Cn is n!/n = (n − 1)!, so there are
(n − 1)!− 1 edges in the spanning tree.

I Each spanning tree edge gets used in both directions in Ξn

and it follows that the number of σns used is

n!− 2(n − 1)! + 2.

I The proportion of σns is about (n − 2)/n; so asymptotically
all of them are σns.

What are natural spanning trees of Cn?

Two natural parent rules:

I For both rules n(n − 1) · · · 21 is the root.

I For both rules the parent is obtained by swapping two
adjacent elements (and so uses edges of Cn).

I Decrementing rule:

parent(n(n−1) · · · (n−s+1)x1x2 · · · xt−1 xt(n−s) γ)

= n(n−1) · · · (n−s+1)x1x2 · · · xt−1 (n−s)xt γ

Example: 98724613→ 98726413

I Decreasing rule:

parent(n > π2 > · · · > πs−1 > πs < x γ)

= n > π2 > · · · > πs−1 ≶ x > πs γ

Example: 98642713→ 98647213

The decrementing and decreasing trees for n = 5

An unexpected property

I Universal cycle from the decrementing rule:
4 321 4 213 4 231 4 312 4 123 4 132

I Universal cycle from the decreasing rule:
4 321 4 213 4 123 4 231 4 312 4 132

I Observe that in both: n = 4 occurs in every n-th position.
This is true in for both rules for any n (but not for every
spanning tree).

I Natural question(s): Is there an elegant way to describe the
order of the permutations that are between the ns? We call
those permutations of [n−1], sub-permutations.

I YES!

Sub-permutations from the decrementing rule

I We call this order of permutations 7n-order.

I Recursive rule: Each permutation π = π1π2 · · ·πn−1 in
7n−1-order is expanded into the following list of n
permutations.

nπ1π2 · · ·πn−1

π1π2 · · ·πn−1n

π1π2 · · · nπn−1

...
... · · ·

...

π1nπ2 · · ·πn−1

I See how the path of the n is like a 7?

I The graphic below: 7-order for n = 5.

Examples of 7-order

21
12

321
213
231
312
123
132

4321 4132 4123
3214 1324 1234
3241 1342 1243
3421 1432 1423
4213 4312 4132
2134 3124 1324
2143 3142 1342
2413 3412 1432

n = 5

Sub-permutations from the decreasing rule

I Amazingly, these are exactly the permutations arising from
cool-lex order as applied to permutations, recently presented
in Aaron Williams, Loopless Generation of Multiset
Permutations Using a Constant Number of Variables by Prefix
Shifts, SODA 2009, pp. 987–996.

I However, the decrementing/7-order results are easier to
understand and will be the main focus of the rest of this talk.

Ranking 7-order
Suppose π = π1π2 · · ·πk−1nπk+1 · · ·πn

R(π) =

0 if n = 1,

n · R(π2 · · ·πn) if k = 1,

(n−k+1) + n · R(π1π2 · · ·πk−1πk+1 · · ·πn) if k > 1.

If π is a permutation let invπ(i) denote the number of pairs i > j
such that π−i < π−j (inversions). For i = 1, 2, . . . , n define

ai =

{
0 if invπ(i) = i − 1,

1 + invπ(i) if invπ(i) < i − 1.

Then we can iterate our ranking recursion to obtain

R(π) =
n−1∑
j=0

an−j · (n)j .

This expression can be evaluated using O(n log n) operations.

Consequences and Further Results

I Given a permutation π in the Ucyle (in either order), its
successor can be determined in time O(n).

I Ranking of the 7-order Ucycle can be done in time
O(n + ν(n)), where ν(n) is the time required to compute the
inversion vector invπ. It is known that
ν(n) = O(n log n/ log log n).

I Note: Ranking of Ucycles has applications in robotics.

I Setting 0 = σn and 1 = σn−1, a Hamilton cycle in Ξn

becomes a binary string of length n!.

I The underlying recursive structure of 7-order is similar to that
of counting with multi-radix numbers from
(n − 1)× · · · × 3× 2.

I Blocks of n bits can be output for each multi-radix number.

I In fact, we can generate those blocks of bits by a loopless
algorithm.

Consequences and Further Results

I Given a permutation π in the Ucyle (in either order), its
successor can be determined in time O(n).

I Ranking of the 7-order Ucycle can be done in time
O(n + ν(n)), where ν(n) is the time required to compute the
inversion vector invπ. It is known that
ν(n) = O(n log n/ log log n).

I Note: Ranking of Ucycles has applications in robotics.

I Setting 0 = σn and 1 = σn−1, a Hamilton cycle in Ξn

becomes a binary string of length n!.

I The underlying recursive structure of 7-order is similar to that
of counting with multi-radix numbers from
(n − 1)× · · · × 3× 2.

I Blocks of n bits can be output for each multi-radix number.

I In fact, we can generate those blocks of bits by a loopless
algorithm.

Consequences and Further Results

I Given a permutation π in the Ucyle (in either order), its
successor can be determined in time O(n).

I Ranking of the 7-order Ucycle can be done in time
O(n + ν(n)), where ν(n) is the time required to compute the
inversion vector invπ. It is known that
ν(n) = O(n log n/ log log n).

I Note: Ranking of Ucycles has applications in robotics.

I Setting 0 = σn and 1 = σn−1, a Hamilton cycle in Ξn

becomes a binary string of length n!.

I The underlying recursive structure of 7-order is similar to that
of counting with multi-radix numbers from
(n − 1)× · · · × 3× 2.

I Blocks of n bits can be output for each multi-radix number.

I In fact, we can generate those blocks of bits by a loopless
algorithm.

The loopless algorithm

anan−1 · · · a1 ← 0 0 · · · 0;
dn−1 · · · d1 ← 1 1 · · · 1;
fn−1 · · · f1 ← n n−2 · · · 1;
repeat

j ← f1; f1 ← 1;
aj ← aj + dj ;

(L1) if dj = −1
(L2) if aj = n−j−2 then output(001n−2)
(L3) else output(001j−10aj+110n−j−aj−3)
(L4) else
(L5) if aj = 1 then output(001n−2)
(L6) else output(001j−10n−aj−j10aj−2)

if aj = 0 or aj = n−j−1
then dj ← −dj ; fj ← fj+1; fj+1 ← j + 1;

until j ≥ n;

An “Application”

Task: list all n! Hamilton paths in a weighted directed
complete graph to solve some Traveling Salesperson
style problem, so as to minimize the total number of
changes between successive directed paths.

I Transpositions, central and extremal: new arcs = 3 or 2
Before: · · · abcd · · · bcd · · ·

After: · · · acbd · · · cbd · · ·
New arcs: +−→ac +

−→
cb +

−→
bd +

−→
cb +

−→
bd

I Rotations, σn or σn−1: new arcs = 1 or 2
Before: abcd · · · xyz abcd · · · xyz

After: bcd · · · xyza abc · · · xyaz
New arcs: +−→za +−→ya +−→az

I Conclusion: rotations are better than transpositions.

I Conclusion: σns are better than σn−1s.

Final thoughts

I Is there a way to generalize these results to k-permutations of
an n-set where k < n − 1?

I Are there other natural rules for obtaining spanning trees of
Cn besides the decrementing and the decreasing rules?

The end

Thanks for coming! I hope you enjoyed the talk. Any questions?

Photo of smiling Buddha taken in Da Lat.

	The underlying problem problem
	Graph Models
	Cayley graphs
	Ranking
	An application

	Open problems

