Algorithmica manuscript No.
(will be inserted by the editor)

Shorthand Universal Cycles for Permutations

Alexander Holroyd - Frank Ruskey -
Aaron Williams

Received: date / Accepted: date

Abstract The set of permutations ¢h) = {1,...,n} in one-line notation ig7(n).
The shorthand encoding af - - -a, € [1(n) isa; - - - a,—1. A shorthand universal cycle
for permutations (SP-cycle) is a circular string of lengtkvhose substrings of length
n—1 are the shorthand encodingsf@fn). When an SP-cycle is decoded, the order
of [1(n) is a Gray code in which successive permutations differ bytleéx-rotation
g = (1 2cdots) fori € {n—1,n}. Thus, SP-cycles can be representedlhits. We
investigate SP-cycles with maximum and minimum ‘weightifrber ofg,_1s in the
Gray code). An SP-cycleanb---nz is ‘periodic’ if its ‘sub-permutationsa, b, ...,z
equall(n—1). We prove that periodic min-weight SP-cycles corresporgpamning
trees of the(n—1)-permutohedron. We provide two constructioBgn) and C(n).
In B(n) the spanning trees use ‘half-hunts’ from bell-ringing, &me(n) the sub-
permutations use cool-lex order by Williams (SODA (20097 9®6). Algorithmic
results are: 1) memoryless decodindgh) andC(n), 2) O((n—1)!)-time generation
of B(n) and C(n) using sub-permutations, 3) loopless generatioB@f)'s binary
representation bits at a time, and 4p(n+ v(n))-time ranking ofB(n)’s permuta-
tions wherev(n) is the cost of computing a permutation’s inversion vect@sitts
1)-4) improve on those for the previous SP-cycle constonddi(n) by Ruskey and
Williams (ACM Transactions on Algorithms, Vol. 6 No. 3 Art542010)), which we
characterize here using ‘recycling’.

Keywords Ucycles- Gray codes Cayley graphs permutohedronalgorithms

Research supported in part by NSERC

A. Holroyd
Microsoft Research, Redmond, WA, USA
E-mail: holroyd@math.ubc.ca

F. Ruskey
Dept. of Computer Science, University of Victoria, CANADA
E-mail: ruskey@cs.uvic.ca

A. Williams
Dept. of Mathematics, Carleton University, CANADA
E-mail: haron@uvic.ca

1 Introduction

A universal cyclgUcyclg is a circular string containing every object of a particula
type exactly once as substring. Ucycles were introduced tloyn@, Diaconis, and
Graham [1] as generalizationsaé Bruijn cycleswhich are circular strings of length
2" that contain every binary string of lengthA basic set of strings without a Ucycle
is 1(n), the permutations ofn) := {1,...,n} in one-line notation. For example, if
there was a Ucycle fafl (8), then it would contain 87654321 as illustrated below.

65 43 2 permutations
AN O 87654321
! 76543210

Since 7654321 < 1(8), the symbol in thédmust be 8. Similar reasoning fixes
each successive symbol, and Ucycles fibm) only exist whenn < 2. However,
Ucycles do exist if we omit the final (redundant) symbol frdme bne-line notation.
The shorthand encodingf a;---an € I1(n) is a;---ay,—1. A shorthand Ucycle for
permutationgSP-cyclg is a Ucycle that contains the (unique) shorthand encoding
of each string in7(n). Thesubstringsof an SP-cycle are ita! substrings of length
n—1. These substrings are tlie—1)-permutations ofn), so SP-cycles fofT(n)
are also Ucycles of thén — 1)-permutations ofn). Each substring of an SP-cycle
can bedecodedinto a string inf1(n) by appending itanissing symbofrom (n).
These decoded strings are the SP-cygbesmutations For example, an SP-cycle
for 1(8) must contain the substring 8765432 that is shorthand fguetsnutation
87654321 I1(8) as illustrated below.

6543 substrings permutations
SPoydlefor o 1 () 8765432 87654321
®) 7654320 7654320

Since 765432 is shorthand for a string ifl (8), the[dcontains 1 or 8 and the next
permutation is 76543218 or 76543281. These two permutatiom obtained by ap-
plying gg or oy to the indices of 87654321, wheeg := (1 2 cdots) is the prefix-
shift or prefix-rotationof lengthi. Decoding an SP-cycle gives(a,-o,_1)-Gray
codesince successive permutationgiin) differ by o, or g,_1. An SP-cycle'shi-
nary representatiomasn! bits equaling 0/1 when successive permutations differ by
onlon_1. Theweightof an SP-cycle is the number of 1s in its binary representatio
The two choices for successive substrings, permutatioefixgshifts, and bits from
the previously illustrated SP-cycle f6t(8) appear below.

6543 6543
& Q. or & ‘@

binary substrings permutations Gray code binary substrings permutations Gray code

o 8765432 87654321 Og 8765432 87654321

O
7654321 76543218 7654328 76543281 !

By convention, SP-cycles will ‘start’ clockwise from 12 @dck with the substring
nn—1 ... 2thathagsank0. An SP-cycle fol1 (n) is periodicif everynth symbol isn.

If nanb---nzis a periodic SP-cycle fafl (n), thena, b, ...,z are itssub-permutations
andna,nb,...,nz are itsblocks The (n—1)! sub-permutations in a periodic SP-cycle

equalll(n—1). The substrings, permutations, Gray code, binary reptaten, sub-
permutations, and blocks of a periodic SP-cycleffd#) are summarized below.

243, rank 0, 1, 2, 3, 4, .. 19, 20, 21, 22, 23
™ 7 |substrings 432, 321, 214, 142, 421,.. 341, 413, 132, 324, 243
™ ¥ |permutations 4321, 3214,2143,1423,4213, 3412,4132,1324,3241,2431
j ‘: Graycode 04, Oy, O3, 03, O, ... 03, 0Oy, 04, 03, O3
= «, |binary 0 0 1 1 0o ... 1 0 0 1 1
6/ ’L:Q blocks 4321,4213,4231,4312,4123,4132
Ep1 o sub-permutations 321, 213, 231, 312, 123, 132

Figure 1 illustrates the three periodic SP-cycle consimastthat are discussed in
this article: (b) thebell-ringer SP-cycld3(4), (c) thecool SP-cycleC(4), and (d) the
direct SP-cycld(4) from [12]. It also illustrates (a) aaperiodicSP-cycle, and (e) a
circular string of length 4! ovef4) that is not an SP-cycle fdn (4).

»143 243 2243 143 143
W >, WO °, W0 2, 0 SR 2,
~ » ™ (b) N c > & d = m -
“ capardicr = bell-ringer” > “coc()l—)lex" Do “di(re)ct” R~ () -
« “aperiodic” — RN oo - -
-~ O > B@W % c4 S = D@ S < eroneous’ ™
“ ~ < e < e Q
Cop Cepq et Copetd Zepoed PPN

Fig. 1 (a) an aperiodic SP-cycle, (b) the bell-ringer SP-cycleth(e cool SP-cycle, (d) the direct SP-cycle,
and (e) is not an SP-cycle due to erroneous substring 141raextia@ copy of 342.

1.1 History

Jackson [5] proved that Ucycles exist for tkgermutations ofn) whenk < n.
Knuth [8] (pg. 75, ex. 111) suggested uskg n—1 for encoding permutations, and
asked for a construction. Ruskey and Williams [12] answéhexdrequest by defin-
ing the direct SP-cyclB(n) and generating its symbols in worst-case O(1)-time using
O(n)-space. Permutations have also been encoded using esdadigr [1]. For exam-
ple, 321341 is anmrder-isomorphic Ucyclsince its substrings amder-isomorphic
to 321,213 123 231,312 132. Johnson [6] verified a conjecture [1] by constructing
these Ucycles fof1(n) using(n+1). Johnson’s Ucycles can also be represented by
n! bits, but do not provide simple Gray codesl®fn) when decoded.

Gray codes for permutations and their generation algostlne well-studied
(see Sedgewick [14] or [8]). These algorithms store a sitmlerent’ permutation
in an array or linked list, and this data structure is modifiectreate successive
permutations. The run-time accounts only for these datetsire changes, and not
the output of each permutation. In this conteodnstant amortized time (CAand
looplessalgorithms are said taisit successive permutations in amortized and worst-
case O(1)-time, respectively. An important permutatioayGeode is the Johnson-
Trotter-Steinhaus order [7] in which successive permontetidiffer by anadjacent-
transposition(or swap from applyingt; := (i i4+1) to the indices of the current per-
mutation. For example, thETS-orderfor 1(3) appears below.

123132,312,321,231, 213 1)

1.2 Applications

De Bruijn cycles have myriad applications including opitislaape acquisition [11],
psychology experiments [15], and planar location [13].sTéubsection highlights
potential applications for SP-cycles. In many cases thghteif an SP-cycle directly
influences the application, and this motivates our focusnimmum-weight (min-
weight)andmaximum-weight (max-weigt$P-cycles later in this article.

Efficient Encoding. SP-cycles encode th permutations if7(n) usingn! sym-
bols over(n), and the binary representation reduces this requirementdtits. Sim-
ilarly, Johnson’s Ucycles [6] requim@ symbols ovefn+ 1) or n! bits.

Efficient Decoding.In a circular array or linked listg,, increments the starting
position, whilegy,, 1 increments the starting position and swaps the last two sjsnb
This is illustrated below with arrows depicting the ordesgimbols in the array.

The operations can also be performed in O(1)-time in a sitigked list, so long as
a pointer to the second-last node is maintained.

[B-HE BT then [THeHsHaEH2HEHE or [HeHsH4-{32H8H]

Suppose an SP-cycle fét(n) contains the consecutive symbals- - Uiyn_1, where
indices are taken moduld. Then theith permutation can be transformed into the
(i4+ 1)st permutation by applying,_1 if Ui = Uiin—1 and by oy if U # Ujn_1.
Therefore, a given SP-cycle can be decoded by a looplesstalgavhen the current
permutation is stored in a circular array or linked list. Teeoding algorithm is not
loopless using a conventional array, simgeando,_1 would both require2 (n)-time.
Efficient Operations. In cycling, breakaway groups organize themselves into a
tightly-packed single-file line. Riders in the front redube wind-resistance for the
riders behind, and at regular intervals the lead rider sigiges their position to con-
serve energy. If the front rider reinserts themselves ihelast position (viaoy)
or second-last position (vie,_1), then at most one other rider must slow down to
accommodate this change. This is illustrated below forsideveling right-to-left
B &b b &b &b ob o &b then &b ob ob ob b 6b db &b O &b db &b &b &b &b &b &b,

8 765 4321 76 5432 1 8 76543281
Proceeding in ad,-0,,_1)-Gray code ensures that riders spend an equal time in each
position (equalizing expended energy) and teams haveritieiis in consecutive po-
sitions at the front equally often (equalizing their chafarea further breakaway).

Efficient Evaluation. In some applications thealueof a permutation depends
on its ordered pairs of adjacent symbols. For example, denihe complete directed
graph with distancd(i, j) from node to nodej for 1 <i, j <n. The order of nodesin
a Hamilton path can be representedby a; - - - a, € I1(n) and the length of this path
isd(a) =d(ag,ap) +d(ag,a3) +---+d(an—1an). If on or on_1 is applied taa, then at
most two ordered pairs of adjacent symbols are changedesueti length changes
by at most two additions and two subtractioasypdate), as illustrated below.

path 87654321 path 76543218 path 76543281

—d(8,7)+d(1,8) —d(8,7)—d(2,1)+d(2,8)+d(8,1)

Therefore, an SP-cycle provides a loopless algorithm foeggting and evaluating
all n! paths, so long asd(i, j) can be added and subtracted in O(1)-time. This al-
gorithm could be used to determine the distribution of Hénilpath lengths, as is
required when judging heuristic or human solutions to thevéling Salesman Prob-
lem (TSP) [10]. The algorithm could also be used when it isifda (or necessary)
to solve the NP-hard problem of determining the shortessipteslength (TSP), or
the existence of a path with a given length. Similarly, ttgpathm could be used to
solve generalizations of TSP such as $kecker crane problertsee Williams [17]).

Notice that Gn-0,_1)-Gray codes are ‘better’ in these applications than adjace
transposition Gray codes. Each swap requires two or thre@dates;r; and 1, 1
require two=s since they swap the first and last symbohaf 71(n), respectively.
In JTS-order, the proportion of successive permutatiogsirang two + updates,
tn, satisfiesty < 2(n—1)! +t,_1. Thus,t, < 2(1!'+2!+---+ (n—1)!) and so the
proportion requiring three- updates is asymptoticaliyn—2) /n. We will show that in
the Gray codes arising froBi(n) andC(n), the proportion requiring on¢ update is
asymptoticallyn—2)/n; this is optimal in the sense that lim.(n—2) /n= 1. In any
Gray code, the proportion requiring ofteupdate is at mogin— 1) /n. This is because
o, andoy, * are the only operations requiring ofteupdate, an@) = oy ;=id. The
exact proportion(n— 1)/n was obtained by Compton and Williamson [2] from a
Hamilton cycle in the undirected Cayley graph Cégh, 02},Sn), whereS;, is the
symmetric group corresponding fa(n). Their Hamilton cycle has edge labels in
blocks of the formo,a1~* or op(g; 1) 1.

Efficient Ranking. Therank of a substring in a Ucycle is its starting position
in the Ucycle relative to some fixed starting point, aadking algorithmscompute
the rank of an arbitrary substring. A de Bruijn cycle with akeng algorithm using
O(nlogn) operations exists [8] (pg. 25). An oft-cited applicationtiois result is as
follows: Suppose a robot wishes to know its position alonfpaex route. If the route
is painted with the 2black and white squares of a de Bruijn cycle, then the robot ca
determine its position after readimgconsecutive squares and applying the ranking
algorithm (see [13] for a related real-world applicatioim)these applications, SP-
cycles offers two small advantage (at the expense of usisygnbols instead of 2):
(i) each substring of length—1 contains unique symbols iim) so a single misread
color can be detected with probabilitgy—2)/(n—1), and (ii) fewer squares need to
be read when determining the position. In this article, wef&(n) usingO(nlogn)
operations. As far as the authors are aw&@) is now the second example of a
Ucycle that can be ranked this quickly. Furthermore, it«kinagn algorithm appears
to be simpler than the algorithm for ranking the aforemargbde Bruijn cycle. A
ranking algorithm requiring2 (n?) operations was provided f@(n) in [12].

1.3 Notation

Strings are given by lowercase bold letters and their syméia indexed by increas-
ing subscripts. For example,&f= 54123, theray = 5 anda, = 4. Symbols can be
concatenated to strings as ia & 654123. Circular strings are given by uppercase
and are indexed circularly. For examplelif= 321312, the; = u; = 3. Permuta-
tions in cycle notation are given by Greek letters, and arkiptied left-to-right. For
example, ifa = (1 2) and8 = (1 3), thena3 = (12 3). Recallg;=(12--- i) and

T, = (i i4+1). Exponentiation is repeated multiplication, 86 = aa. Permutations
are applied to the indices of a string written to its left. Tl if a=a;---a, and
M= (m --- Th), thenarm= ay, ---an,. For example, ii= 54123, theraos = 41523.
Brackets fix the order of operations. For examplea i 54123, then(6a)os =
65412373 = 546123 and (os3) = 6(5412373) = 641523.

1.4 Article Outline

Section 2 investigates max-weight and min-weight SP-cy®ction 3 constructs
min-weight periodic SP-cycleB(n) andC(n). Memoryless rules for decodirig(n)
andC(n) are in Section 4. CAT algorithms that generate sub-permouisbr blocks
of B(n) andC(n) are in Section 5. Section 6 gives a loopless algorithm tha¢gees
blocks ofn bits in the binary representationBfn). Section 7 ranks the permutations
in B(n). Algorithms in Sections 4-7 improve upon those i(n) [12]. ThecOCOON
2010 conference included a preliminary version of thischtj4].

2 Characterizations

In this section we show that SP-cycles correspond to ceBalerian and Hamilton
cycles in Section 2.1. We bound the weight of an SP-cycle @ii@®22.2 and discuss
those with min-weight and max-weight in Section 2.3. Fipathin-weight periodic

SP-cycles correspond to spanning trees of the permutohégr8ection 2.4.

2.1 The Jackson Gragl{n) and the Cayley Grapk(n)

This subsection defines two directed graphs and discusseséhationship to SP-
cycles. Nodes in thdackson graph (h) are the(n—2)-permutations ofn), and arcs
labeleda,_; are directed fronaiay - --an_2 toapag---an_1 if a1ap---ay_1isan(n—
1)-permutation ofn). SinceJ(n) is strongly connected and the in- and out-degree of
each node is twal(n) is Eulerian. Figure 2 shows (d]4) and (b)=(4).

Theorem 1 [5] SP-cycles forl1(n) are in one-to-one correspondence with the arc
labels on directed Eulerian cycles irfrd).

Let=(n):= ay({on, On-1},Sn) denote the directed Cayley graph @tin) with
generatorg, anday, ;. Each arc4,b) hassymbol label & If b =aog, then @,b) is a
o, arc and hasaction labelagy; otherwise §,b) is ag,,_1 arc with action labelg;, ;.

@

Fig. 2 (a) Jackson grapb(4), and (b) Cayley grapi (4). The straight arcs iz (4) are foros arcs, and
the curved arcs are farz arcs. The action labels i&(4) are omitted.

Theorem 2 SP-cycles foi1(n) are in one-to-one correspondence with the symbol
labels on directed Hamilton cycles E(n).

Proof Notice that=(n) is the directed line graph dfn); arcs fromaya,---a,_2 to
apas---an_1in J(n) become the unique nodga; - - - a, in =(n), and each arc i&(n)
represents a directed path of length twal{m). Since directed Eulerian cycles of a
directed graph translate into directed Hamiltonian cyoess directed line graph,
then SP-cycles fof7 (n) are precisely the directed Hamilton cycles3tn). O

Corollary 1 SP-cycles fof(n) are in one-to-one correspondence withh{on_1)-
Gray codes of1(n).

Proof Action labels on Hamilton cycles df (n) are in one-to-one correspondence
with (on-0n-1)-Gray codes of1(n), so this corollary follows from Theorem 2. O

Hamilton paths in=(n) extend to Hamilton cycles i&(n) (Lemma 2.3 [12]), so
Corollary 1 implies that Gray codes 0f(n) usingo, ando,_; are alway<syclic.

2.2 Maximum and Minimum Weight SP-Cycles

In this subsection we provide upper and lower bounds on thghwef an SP-cycle.
We discuss an arbitrary finite directed Cayley graph- ay({a,ﬁ}, G) of a group
G with generatorsr and, and the special case afn) where{a,} = {0n, On_1}.
Notice thata and B! (equivalentlya— and B8) form alternating cycles irE, as
illustrated by Figure 3 (a). We call these alternating cycde3 cycles Each node in
= belongs to twoa-f3 cycles, and the length of am-8 cycle is twice the order of
aB~1. In the special case & (n), theseoy-0y,_1 cycleshave length four because

On0, Y = 0n 10,1 = (n—1n) 2)

(b)

Fig. 3 (a) An alternatingz-B cycle in =, and (b) aon-0n—1 cycle in the special case &(n).

and(n—1 n) has order two. Aroh-0,-1 cycle in=(n) is illustrated in Figure 3 (b).
A cycle partitionof = is a set of directed cycles in which each node appears in
exactly one directed cycle. Hamilton cycles are cycle paris with a single cycle.

Remark 1Given ana-f3 cycleC, a cycle partition of= either contains all of ther
arcs ofC and none of it§3 arcs, or all of thg3 arcs ofC and none of iter arcs.

We use Remark 1 to prove Theorem 3, whose bounds are not agbesght.

Theorem 3 Consider the finite directed Cayley graph:= (ﬁ’y({a,ﬁ},G) of a

group G with two generatore and 8. Supposear, B andp := a3~! have respec-
tive orders A, B, and P. In any directed Hamilton cycle, thenber N of8 arcs is a
multiple of P, and satisfies

P (IS P [lG|
(P} en<el- — (B 1),
P—1(A >— =lel P—l(B

Proof It suffices to prove the first inequality; the second therofe$ by exchanging
a andf. Remark 1 proves the number @farcs is a multiple oP.

Given any cycle partition, changing @larcs toa arcs (or vice versa) in ore-f3
cycle results in a new cycle partition. Furthermore, at nRastcles are altered during
each of these changes, so the number of cycles in the cydiéigrawill change
by at mostP — 1 (in either direction). If we start from a cycle partitionrtaining
a single (Hamilton) cycle withN total B arcs, then we may changg arcs toa
arcs ina-f cycles until we get to the cycle partition consisting of @larcs, which
has|G|/A cycles. Obtaining the addition&lG|/A)—1 cycles in the cycle partition
requires changing(|G|/A)—1)/(P—1) individual a- cycles. Each change reduces
the 3 arcs in the cycle partition bl until all are removed. Therefore, the numiber
of B arcs in the initial Hamilton cycle was at md3t(P—1) - ((|G|/A)—1). O

We now apply Theorem 3 to the special cas&@h).
Corollary 2 The number of occurrences Nafin a Hamilton cycle of (n) satisfies
2n-(n—2)' —2<N<n —2(n—1)! +2. (3)
Similarly, the number of occurrences Nayf_; in a Hamilton cycle oE(n) satisfies
2n—1)!—-2<N<n-(n=3)-(n—2)! +2. 4)

The above inequality also bounds the weight of an SP-cyclg {a).

Proof The bounds ow, in (3) are obtained from Theorem 3 wiB| =n!, A=n—1,

B =n, andP = 2, wherea = 0,1, 3 = gn, andp = (n—1 n). Similarly, the bounds
onag,_1 in (4) are obtained from Theorem 3 except that nandB = n— 1, where

o = o0, andf = g,_1. The final claim of the theorem is true since the weight of an
SP-cycle equals the numbera@f_1 arcs used in its Hamilton cycle &(n). O

2.3 Quotients Graphsp(n) and=p_1(n)

In this subsection we prove that the upper and lower boundbh®mweight of an
SP-cycle from Section 2.2 can be obtained. The simple caedemdirected graph
=n(n) is obtained fronE(n) by contracting each directed cycle usimguccessiver,
arcs into a single vertex. Two vertices are adjacetdj(n) if and only if their cycles
have adjacent nodes H(n). The vertices o=,(n) represent each coset & with
respect to its subgroup generateddyy Thus,=y(n) is thequotient graphof =(n)
where the underlying equivalence relation is string rotatiVe label each vertices in
=n(n) with the appropriate string rotation that begins withFigure 4 illustrates (a)
Z(4) (arc labels omitted) and (l54(4) (the octahedron).

(@) (b)

Fig. 4 (a) Cayley graple(4) with directed cycles usings arcs highlighted, and (b) the quotient graph
=4(4) obtained by contracting these cycles.

Each vertex in=p(n) has degree, and each edge i&n(n) represents exactly
two oppositely directed arcs i(n). In particular, if the label on a vertex i, (n) is
treated as a circular string, then its neighbors are olddigeach of the ‘adjacent’-
transpositions around the circular string. This is illaged in Figure 5 by (a) a di-
rected cycle using eiglhdg arcs in=g(8), and (b) its corresponding vertex &y(8)
with a circular label. To understand why this adjacency isikeue in general, notice
thatifa=a;---apistreated as a circular string, thaa,, 1 =a,...a,_ 1318, gives an
‘adjacent’-transposition betwean anda, whenas ... a,_1a;1a, is viewed circularly.

The correspondence given in Theorem 4 is illustrated inreigu

10

Fig. 5 (a) The directed cycle usings arcs containing 87654321 in Cayley grap(B), and (b) the neigh-
borhood of 87654321 in its quotient graph(n). Straight and curved arcs represegpiando; arcs respec-
tively in (a); vertex labels are written circularly in (b) thiarrows highlighting ‘adjacent’-transpositions.

Theorem 4 Min-weight SP-cycles af (n) are in one-to-one correspondence with
the spanning trees &y (n).

Proof The number of nodes ifn(n) is (n—1)!, and so a spanning tree &f(n) con-
tains(n—1)!—1 edges. Given a spanning tree®f(n), construct a cycle partition of
Z=(n) in two steps: (1) For each edge in the spanning tree, add thedwesponding
On_1 arcs to the cycle partition, then (2) add arcs to the cycle partition until each
node has out degree 1. This cycle partition is a Hamiltonecg€E (n), and the num-
ber of g, arcs in the Hamilton cycle is(B—1)!—2. Therefore, the corresponding
SP-cycle is a min-weight SP-cycle by Corollary 2.

Given an SP-cycle of weight(8—1)!—2, its Hamilton cycle in=(n) contains
exactly oneg,,_; to and from eaclo,, coset. Furthermore, each pair of arcs correspond
to an edge irEp(n). These(n— 1)! — 1 edges form a spanning subgraph=fn).
Therefore, the min-weight SP-cycle corresponds to a sparnee of=,(n). O

Fig. 6 The correspondence between (a) a Hamilton cyclg (i), and (b) a spanning tree i#4(4). The
resulting SP-cycle is the aperiodic SP-cycle 43214213223812312431 from Figure 1 (a).

11

Similarly, the following theorem was previously observadi2] (Lemma 4.1).
The simple connected undirected graph1(n) is obtained fronE(n) by contracting
each directed cycle usimg-1 successive,_; arcs into a single vertex.

Theorem 5 [12] Max-weight SP-cycles dfl(n) are in one-to-one correspondence
with the spanning trees &,_1(n).

2.4 The Permutohedrdin—1)

In this subsection we show that min-weight periodic SP-eyaorrespond to the
spanning trees of the—1)-permutohedron. Th@)-permutohedrofP(n) is a simple
connected graph with! vertices labeled byl (n), and edges between two vertices if
they differ by one of the— 1 adjacent-transpositions. Figure 7 (a) illustrdtés).

3421 4321 4321

RN

3421 4231 4312

3241 2431 3412 4213 4132

XN XN/

2341 3214 2413 3142 4123 1432

\N/N\ XN\ X7

2314 3124 2143 1342 1423

2134 1324 1243

NI

1234

(b)

Fig. 7 (a) The permutohedrofi(4), and (b) the weak Bruhat order 6q.

Recall that the neighborhood of a vertexdp(n) is visualized by it31 ‘adjacent’-
transpositions around its label ifl(n) written circularly (see Figure 5 (b)). The
(n—1)-permutohedron is obtained frof,(n) by removing the edges for the two
‘adjacent’-transpositions involving, and then by removing the leadingrom each
vertex labels. Figure 8 illustrates this transformationtfe vertex labeled 87654321
in Zg(8) and the corresponding vertex labeled 7654321 in(#)epermutohedron.
Figure 8 (a) is identical to Figure 5 (b) except the labelsvarigten linearly. The
following lemma relates periodic SP-cycles to the 1 arcs in its Hamilton cycle.

Lemma 1 An SP-cycle of1(n) is periodic if and only if its Hamilton cycle i&(n)
does not follow a,,_1 arc from a node whose label begins or ends with n.

Proof LetU be an SP-cycle aofl (n) andH be its Hamiltonian cycle ik (n). If each
node labeled € I1(n) with a; = n or a, = n is followed by ao, arc inH, thenn

is the label of everyith arc inH, and sdJ is periodic. The other direction has two
cases. If a node labelede 1(n) with a; = nis followed by ag,_1 arc inH, thenn
will appear as the first and last label amangpnsecutive arcs iH. If a node labeled
a€ (n) with a, = nis followed by ag,_1 arc inH, thenn will not appear as an arc
label amongsh consecutive arcs iH. In both cased) is not periodic. O

12

(@ (b) (c)

Fig. 8 (a) The neighborhood of the vertex labeled 8765432%n), (b) removing the two edges for the
‘adjacent’-transpositions involving 8, and (c) removinfy@n each vertex label to obtain the neighborhood
of the vertex labeled 7654321 (7). The adjacent-transpositions in (b) and (c) are highlighte

7653421 7564321

7645321

Now we prove that min-weight periodic SP-cycles corresgorspanning trees of
permutohedron. To illustrate this fact, notice that thensjiag tree of=4(4) in Figure
6 (b) is not a spanning tree &{3), and so its min-weight SP-cycle is aperiodic.

Theorem 6 Min-weight periodic SP-cycles dfl(n) are in one-to-one correspon-
dence with the spanning treesfn — 1).

Proof Theorem 4 proved that min-weight SP-cyclegtin) are in one-to-one corre-
spondence with the spanning treessafn). Therefore, by Lemma 1 we must prove
that the two types of ‘missing’ edgeslit{n — 1) correspond to they,_1 arcs in=(n)
that originate from nodes whose label begins or ends mwith

Letae M(n— 1) and defind € 1(n— 1) andc € 1(n) as follows

bi=an 18 ---an2
Ci=a1 --"an—2Nadn-1

Notice (na,nb) is an edge irEn(n). Sincec is a rotation ofb, this edge corresponds
to theg,_1 arc(na,c) in =(n). However, the edgé,b) is notinP(n—1).
Letae M(n— 1) and defind € 1(n— 1) andc € 1(n) as follows

bi=na ---a_1a1
C:=ap --- ap_1a1 N.

Notice (na,nb) is an edge irEy(n). Sincec is a rotation ohb, this edge corresponds
to theg,_1 arc(an,c) in =(n). However, the edgé,b) is notinP(n—1).

Therefore, spanning treesBfn— 1) correspond to Hamilton cycles i, (n) that
do not useg,,_1 arcs from nodes whose label begins or ends with O

An inversionin a € [1(n) is a pair {,j) with i < j anda; > a;. Theweak Bruhat
order of Sy, is the transitive closure of the cover relatienp wherea < b if a andb
differ by an adjacent-transposition aathas one fewer inversion thdm The order is
visualized by drawing an edge fraodown toa if a < b. The order fon = 4 is given
in Figure (b) and is respected by the embedding @) in Figure 7 (a). In Section 3,
the spanning trees of the permutohedron can also be viewteegkasub-posets of the
weak Bruhat order d$,,.

13

3 Explicit Constructions

In Section 3.2 we define the min-weight periodic SP-cy&és) and C(n) by pro-
viding two spanning trees of the permutohedron in Secti@n 3.

3.1 Spanning Trees: Decrementig(n) and Decreasing” (n)

In this subsection we define two spanning trees of the pefmedi@n. The spanning
trees are ‘rooted’ at the vertex labeled—1 --- 1, and the parent-child relations in
the trees depend on the following definitions for a gieen 1(n):

— The decrementing prefiis the longest prefix of the form n—1 --- j and the
incrementing symbas j—1.

— Thedecreasing prefiis the longest prefiaia, - - - ax such thaby > ap > --- > a
and theincreasing symbak ay 1.

The following pair of examples illustrate: (i) values in fgdecrementing / decreasing)
prefix differ by (one / at least one), (ii) the (decrementingtreasing) prefix begins
with (n/ any symbol), and (iii) the (incrementing / increasing) pohhas the next
(value / index) compared to the (decrementing / decreagpirgdix

inclining symbol increasing symbol inclining symbol increasing symbol
87624153 87624153 6543287 65432B7.
declining prefix decreasing prefix decreasing prefix

Inthe case och=nn-1 --- 1, the decrementing and decreasing prefixes include the
entire string, and the incrementing symbol and increasingo®| are undefined.

In the decrementing spanning tre&’(n), the parent of a non-root vertex is ob-
tained by swapping the incrementing symbol in its label ®l#it. In thedecreasing
spanning tree¥(n), the parent of a non-root vertex is obtained by swappingrihe i
creasing symbol in its label to the left. Since each nonvedex has a unique parent
whose label has one fewer inversiof,(n) and.”(n) are spanning trees &{n) that
respect the weak Bruhat order 8n Figure 9 shows (ay7’(4) and (b).”(4).

3421 4321 3421 4321

4132

1432 1432

2314

1423 ® 1423
1324
2134 @
1243 ® 1243

1234 1234

(@ (b)
Fig. 9 (a) The decrementing spanning tcé®€(4), and (b) the decreasing spanning u#é4) of P(4).

14

Now we characterize the children of vertices in these spayinées. In both trees
we distinguish two types of children. Figure 10 illustratBe neighborhood of the
vertex in (a)27(8) and (b).#(8) with previously discussed label 87624153.

In 22 (n) the children of vertexa € 1(n) are obtained as follows:

— If g is in the decrementing prefix and is neither the first nor lasti®l ina, then
adecrementing childs obtained by swapping to the right,

— If g is the incrementing symbol ane: n, then thancrementing childs obtained
by swappingg; to the right.
In .(n) the children of vertexa € 1(n) are obtained as follows:

— If g isinthe decreasing prefix and is neither the first nor lastmyim this prefix,
then adecreasing childs obtained by swapping to the right,

— If & is the increasing symbol and< n anda;_1 > a1, then theéncreasing child
is obtained by swapping to the right.

> >
87624613 87642153
paren parel
87624153 87624153

7862415 7862415 —
32 87621453
86724153 87624135 &724153 . increasing

)) incrementing 87264153 child

decrementing children child

decreasing children

(@) (b)

Fig. 10 The neighborhood of the vertex 87624153 in (a) the decrangespanning treex’(8), and (b)
the decreasing spanning tre€(8). The decrementing prefix and incrementing symbol of 876344r®
shown in (a), and the decreasing prefix and increasing syofl#1624153 are shown in (b).

The symbol fors#’(n) was chosen for its relationship to ‘half-hunts’. This bell-
ringing term refers to a sweeping motion made by a symbolidina permutation.
Figure 9 (b) illustrates the left-to-right motion of the syat 4 in the paths rooted
from vertices whose labels begin with 4.i# (4). The symbol for# (n) was chosen
for its relationship to ‘scuts’. Thecutof a 1(n) is the shortest suffix ad that is not
also a suffix o n—1 --- 1 (see Williams [16]). Figure 9 (c) illustrates that subtree
of .#(4) contain each of the scuts: 421, 41, 4, 31, 3, and 2.

3.2 SP-Cycles: Bell-Ringdé8(n) and Cool-lexC(n)

From Theorem 6, the spanning trees defined in this sectiorgmond to min-weight
periodic SP-cycles. The SP-cycle corresponding the demméng spanning treg?’(n—
1) is thebell-ringer SP-cycld3(n) of I1(n). The SP-cycle corresponding the decreas-
ing spanning tree”(n— 1) is the cool SP-cycleC(n) of I1(n). The SP-cycles are
named for their relationship to ‘half-hunts’ and their quérmutations, respectively.
The rest of this article focuses on decoding the SP-cyclaseigting the SP-cycles
and their sub-permutations, the binary representatid{of, and ranking3(n).

15

B(4) M(4) next m d Theorem 7 C(4) (4 next m d Theorem 8
4 4321 g4 4 1 m=n 4 4321 o4 4 4 m=n
3 3214 g4 4 4 m=n 3 3214 o4 4 4 m=n
2 2143 o3 3 3 2 2143 o3 3 4
1 1423 o3 3 4 1 1423 o3 3 3
4 4213 g4 4 4 m=n 4 4213 o4 4 3 m=n
2 2134 o4 4 4 m=n 2 2134 o4 4 4 m=n
1 1342 g4 2 4 d-1>mj|l 1 1342 o3 2 4
3 3421 o3 3 4 3 3412 04 3 3 d=n-1landa; >a, 1
4 4231 g4 4 4 m=n 4 4123 o4 4 2 m=n
2 2314 o4 4 4 m=n 1 1234 o4 4 4 m=n
3 3142 o3 3 4 2 2341 o3 2 4
1 1432 o3 2 2 3 3421 o3 3 4
4 4312 o4 4 3 m=n 4 4231 o4 4 2 m=n
3 3124 o4 4 4 m=n 2 2314 o4 4 4 m=n
1 1243 o3 3 3 3 3142 03 3 4
2 2413 o3 3 4 1 1432 o3 2 4
4 4123 o4 4 4 m=n 4 4312 o4 4 3 m=n
1 1234 o4 4 4 m=n 3 3124 o4 4 4 m=n
2 2341 04 2 4 d-1>mj|| 1 1243 o3 3 4
3 3412 o3 3 4 2 2413 g4 3 3 d=n-1landa; >an 1
4 4132 o4 4 4 m=n 4 4132 o4 4 2 m=n
1 1324 oo 4 4 m=n 1 1324 o4 4 4 m=n
3 3241 o3 3 4 3 3241 o3 3 4
2 2431 o3 2 3 2 2431 o3 2 4
@ () () () (e ® @ () O @ K (0

Table 1 Memoryless decoding rules for the bell-ringer SP-cyclean(f), and the cool SP-cycle in (g)-(I)
with n— 4. The SP-cycles are given in (a) and (g), their permutaiio(is) and (h), the difference between
successive permutations in (c) and (i), the values useceidéicoding rules in (d)-(e) and (j)-(k), and the
reason for applying, according to the two theorems in (f) and (1).

4 Decoding the SP-Cycles

This section describes how to efficiently decode the SPesydéfined in Section 3.
We provide decoding rules that take an arbitrary permutatid] (n) and determines
the changeg, or g,,_1, that creates the SP-cycle’s next permutation. The rulkes ar
memorylessince they can be applied in @¢time without requiring any additional
storage. The rules are presented in Theorems 7 and 8, arltisiraied by Table 1.

If a € IM(n) anda, = n, the decrementing substrinig the decrementing prefix
of ahan1---an and thedecreasing substrinig the decreasing prefix @f,an 1 - - - an.
For example, the decrementing and decreasing substring@5h8764c I1(8) are
876 and 8764, respectively.

Theorem 7 Suppose € I1(n) where m= max(ai,an) and d is the minimum value
in its decrementing substring. The permutatioBé) that followsa is

—aop_1ifd—1<m<n,
— aop otherwise.

Proof Letnb be a rotation o, and letnc be a rotation o&g;,_1. Notice that nb, nc)
is an edge ircp(n). We must prove thath, c) is an edge inZ’(n— 1) if and only if
d—1<m<n. Thisis proven by the following three observations:

1. cis a decrementing child df if and only ifd < m< n.
2. cis the incrementing child df if and only ifd —1=m< nanda, =d — 1.

16

3. cisthe parentobifandonlyifd—1=m<nanda; =d— 1. O

Theorem 8 Supposea € 1(n) where m= max(as,a,) and d is the last index in its
decreasing substring. The permutatior(gh) that followsa is

— aon_1ifm<nandeither (i) d=nor(i)d =n—1and a < a,_1,
— aon, otherwise.

Proof Letnb be a rotation o, and letnc be a rotation o&g;,_1. Notice that nb, nc)
is an edge in=n(n). We must prove thafb,c) is an edge in#(n— 1) if and only
if m< nand either (i)Jd = n or (ii) d = n—1 anda; < a,_1. This is proven by the
following three observations:

1. cis a decreasing child df if and only if m < nandd = nanda; < a.
2. cis the increasing child df if and only if m< nandd = n—1 anda; < a,_1.
3. cis the parent ob if and only if m< nandd = nanda; > ay. O

Theorems 7 and 8 providmemoryless algorithmthat require Ot)-time and
O(1)-memory to generate successive (i) symbolB(n) or C(n), (ii) substrings or
permutations ifB(n) or C(n), or (iii) bits in the binary representation B{n) or C(n).

5 Generating the SP-Cycles

In Sections 5.2 and 5.3 we determine the sub-permutatioB&gfandC(n), respec-
tively. This leads to efficient algorithms in Section 5.4tthanerate successive blocks
of the SP-cycles in constant amortized time. In Section ®%averse our investiga-
tion by discussing when an order Bf(n — 1) can be ‘recycled’ into an SP-cycle for
(n). Several useful identities are first presented in Sectitn 5.

5.1 ldentities usingr andt

This subsection gives identities that facilitate our irtigegtion of sub-permutations.
Each identity applies a series mpermutations i gn, 0,1} to a string of lengthn,
and equates this to applyirgand/ort to a string of lengtin — 1. The first identity
is a special case of the second identity, but is stated sehadaie to its frequent use.

Lemma 2 The following identities hold for ang=a; - --an_1:

1. (na)oZoy % =n(adh-1),

2. (na)o?a; 07 1-2=n(aci1) wherel <i<n-2,

3. (na)a} 20, 100 13 =n(at;,1) where0 < j < n—3, and

4. (na)o2a}_,04 "oy 10n 73 =n(agi 17j,1) where i<i < j <n—2.

17

Proof Identities 2 and 3 are proven below on the left and right retbpaly

(na)ozop 1002

—~

na) o} 2o, 105173
= (apSan_1nat)0y_10p 2 (@j25%-1NaS8j 1) On_100 ")
= (8425%_1N8Sa 181)0) ' 2 (8j+3Sah-1Na1Saja) 28j+1)0f)
= NapSq11a18i12Sch-1 NSgjaj428j+18)+3Sch-1
=n(agdi;1) =n(arja).

-3

-3

Identity 1 is a special case of identity 2. Identity 4 is pnovelow.

2 i j—i n—j—-3
(na)anan—lar{ On-10n ’

= (apsa_1na)o), ;01 o 1007173

= (&1 258-1NaSa181)04 010512
a2 1N%Sa 11218 4258 11) 0100)
a1 353 1N%SA 11818 2583) 28] 11)0p | °
N&pSg11a18j1258jaj428j4+18)+3Sch-1

=n(aci1Tj41). i

-3

=
=

5.2 7-Order

In this subsection we prove that the sub-permutations di¢fieringer SP-cycl&(n)
follow a new order that we call “seven order” and dengterder. It is a recursive
method in which evera € 1(n—1) is expanded into permutations in7(n) by
insertingn into every possible position ia. These insertions are done in a peculiar
order that is reminiscent the way the number seven is noymaitten.

Definition 1 By 7, we denote ther-order of [1(n). The list7; is the single string
1. The listy, is obtained fromy,_1 by replacing eacla € 1(n—1) in the list as
follows: The first permutation isa, the second ian, and the remaining permutations
are obtained by moving theone position to the left until it is in the second position.

By Definition 1,7, = 21,12 andy3 = 321,213 231,312 123 132 and the first
four permutations of4 are 43213214 3241, 3421. Lemma 3 describes a generation
rule for transforming any € 1 (n— 1) into the next permutation in,_1. We use
x € [M(n—1) (instead ofa € 1(n)) since we refer to both Lemma 3 and Theorem 7
when proving Theorem 9. The rule is illustrated in Table 2(f)for 7.

Lemma 3 Suppos& =X;---X,—1 € [1(n—1) and h is the index such thag x n— 1.

If h =2, then let x:= p be the minimum value in the decrementing prefixofx,_1
and r be the index such that x= p— 1. The permutation that followsin 7, 1 is

XTh_1 ifh>2 (5a)

y=1{ XOn_1 ifh=21or(h=2andr=1) (5b)

XoiT;_1 otherwise (h=2and r> 1). (5¢)

18

B(5 74 next h p i r Lemma3| C(5 €4 next p Definition 2
54321 4321 o4 1 h=1 (54321 432104 4 p=n-1
53214 3214 13 4 h>2 |/53214 3214 03 3 X1 >Xp
53241 3241 1, 3 h>2 52134 2134 0, 2 x1>Xp
53421 3421 o4 2 4 2 1 r=1 ||51234 1234 03 2 x<Xp
54213 4213 o4 1 h=1 ||52314 2314 03 3 X1 >Xp
52134 2134 13 4 h>2 ||53124 3124 0, 2 x1>Xp
52143 2143 1, 3 h>2 ||51324 1324 04 3 x1<Xp
52413 24130213 2 4 2 4 r>1 ||53241 3241 02 2 X1 >Xp
54231 4231 o4 1 h=1 |[52341 2341 03 2 X1 <Xp
52314 2314 13 4 h>2 ||53421 342104 4 p=n-1
52341 2341 1, 3 h>2 |/54213 4213 03 3 X1 >Xp
52431 2431 04 2 3 3 1 r=1 ||52143 214302 2 X1 >Xp
54312 4312 o4 1 h=1 ||51243 1243 03 2 x<Xp
53124 3124 13 4 h>2 1152413 2413 03 3 X1 >Xp
53142 3142 1, 3 h>2 ||54123 4123 02 2 X1 >Xp
53412 3412 03 2 4 2 1 r=1 ||51423 1423 04 3 X1 <Xp
54123 4123 o4 1 h=1 ||54231 4231 02 2 X1 >Xp
51234 1234 13 4 h>2 ||52431 243104 4 p=n-1
51243 1243 1, 3 h>2 ||54312 4312 03 3 X1 >Xp
51423 14230213 2 4 2 4 r>1 53142 3142 02 2 X1>Xp
54132 4132 o4 1 h=1 ||51342 1342 03 2 x1<Xp
51324 1324 13 4 h>2 |[53412 3412 03 3 X1 >Xp
51342 1342 1, 3 h>2 ||54132 4132 02 2 X1 >Xp
51432 1432 o, 2 2 4 1 r=1 51432 1432 g4 4 p=n-1
@ () () (@ @@ (n N @ & O

Table 2 Generating the bell-ringer SP-cycle in (a)-(h) and the @®icycle in (i)-(m) withn = 5. The
SP-cycles are given in (a) and (i), their sub-permutation®) and (j), the difference between successive
sub-permutations in (c) and (k), the values used in the géinarrules in (d)-(g) and (), and the reason
for applying each generation rule in (h) and (m).

Proof We verify that (5) correctly follows Definition 1. Whan— 1 is not in the first
two positions ofx, it is moved one position to the left by (5a). Whenr- 1 is in the
first position ofx, it is moved to the last position (5b). When- 1 is in the second
position ofx, there are two cases. In both cases the decrementing prefix-ok,_1
is moved one position to the left by (5b) or (5¢). Then the margest symbop — 1
is either moved one position to the left by (5¢) fif- 1 was not in the first position
of x) or into the last position by (5b) (ff — 1 was in the first position of). O

Theorem 9 Sub-permutations of the bell-ringer SP-cyBlgn) are in 7-order 7,_1.

Proof Supposex is followed byy in 7,1 andh, i, p, andr are defined according
to Lemma 3. We must show thakny appears irB(n). To do this we prove that
applications ofB(n)’s decoding rule in Theorem 7 will transfornx into ny. When
considering these applications we &be the ‘current’ permutation (starting from
a = nx) and definenandd according to Theorem 7.

Case oneh > 2. The first two applications are, sincem = n. The nexth — 2
applications arey, sinced =nandm< n— 1. The next application ig,_1 sinced=n
andm=n—1. The remainingn — h applications are,_1 sinced =nandm< n—1.
Thus,nx has been transformed intox)oo,, 107" = n(x1,_1) by identity 3 in
Lemma 2. This is correct singe= x1,,_1 by (5a).

Case two:h = 1. The first two applications are, sincem = n. The next ap-
plication is g,_1 sincem=n—1 andd = n— 1. The remainingh — 3 applica-
tions areog,_1 sincem=n-—1 andd = n. Thus, nx has been transformed into

19

(nx)aﬁor?jf = n(xon_1) by identity 1 in Lemma 2. This is correct singe= X0,_1
by theh = 1 condition in (5b).

Case threeh = 2. The first two applications arg, sincem = n. The nexti —

1 applications areg, ; sincem=n—-1n-2n-3,...,pandd =nn—1n—
2,...,p+ 1 during these applications, respectively. The curreimgtnow has the
SUffix xox3...Xix1. We also know thakpxz...Xi = n—1n—2---pandx, = p— 1. The
proof of this case now splits into two subcases.

Subcase one: = 1. In this subcase, the decrementing substring of the curren
string iSXpX3...XjX1 and its minimum value ip— 1. If i = n—1, then alln ap-
plications have already been considered. Otherwise, th application isop_1
sincem= p— 1 andd = p— 1. The remainingh— i — 2 applications ar@,_1 since
m= p— 1 andd = p. Thus,nx has been transformed infox)g20"2 = n(xon_1)
by identity 1 in Lemma 2. This is correct singe= xo,,_1 by theh=2 andr =1
condition in (5b).

Subcase twor > 1. In this subcase, the decrementing substring of the curren
string isxox3. .. X and its minimum value ip. Therefore, the next—i — 1 applica-
tions areo, sincem < p— 1 andd = p. The next application is,,_1 sincem=p—1
andd = p. The remainingi—r — 1 applications are, sincem < p— 1 andd = p.
Thus,nx has been transformed intox) 020, 30t~ ~1on 100"~ = n(xait,_1) by
Identity 4 in Lemma 2. This is correct singe= Xa; Ty _1 by (5c¢). O

5.3 Cool-lex Order

In this subsection we prove that the sub-permutations oftiwé SP-cycleC(n) fol-
low a “cool-lex order”. The orde€, is acyclic prefix-shift Gray codef I1(n), mean-
ing that successive permutations differdyfor somei € (n). By convention¢,, be-
gins withn --- 1. Definition 2 gives the corred; for transforming anyx € I1(n—1)
into the next permutation igi,_1. We usex € I1(n—1) (instead ofa € I1(n)) since
we refer to both Definition 2 and Theorem 8 when proving Theoi®. The rule is
illustrated in Table 2 (j)-(m) fo&,.

Definition 2 (Cool-lex order) Supposex € 1(n—1) and p is the last index of the
decreasing prefix ofz - - - xn. The permutation that followsin ¢,_1 is

XOph-1 ifp=n-1 (6a)
y:={ X0Op if p<n—21andx; > Xp (6b)
XOpr1 otherwise p < n—1andx; < Xp). (6¢)

We refer toc, as thecool-lex orderof I7(n). (Definition 2 is actually the inverse
of Definition 2.7 in [16], soZ,, would be described asverse cool-lex ordein [16].)

Theorem 10 Sub-permutations of the cool SP-cy€lg) are in cool-lex ordey_.

Proof Suppose is followed byy in €,_1 andp is defined according to Definition
2. We must show thaixny appears irC(n). To do this we prove that applications
of C(n)’s decoding rule in Theorem 8 will transfornx into ny. When considering

20

these applications we letbe the ‘current’ permutation (starting froen= nx) and
definemandd according to Theorem 8.

The first two applications arg, sincem = n. During the nexp — 1 applications,
notice that the current string has sufix XoX1, XoX3X1, . .., XoX3- - - XpX1, respectively.
Also, Xo > X3 > --- > Xp. Therefore, either (i = nor (i) d=n—1anda; < an_1.
Therefore, thes@ — 1 applications ar@y,. The proof is now divided into cases that
correspond to the cases in Definition 2.

Case onep = n—1. In this case alh applications have already been considered.
Thus,nx has been transformed in@nx)oﬁa,?:f =n(Xon_1) by identity 1 in Lemma
2. This is correct sincg = Xoy,_1 by (6a).

Case twop < n—1 andx; < Xp. In this casel = nsince the current string has suf-
fiX XoX3---XpX1 andxp > X3 > --- > Xp > X1. Therefore, the next applicationds_1.
The remainingh—p—2 applications are;, sinced = n—2,n—3,..., p+1 during these
applications, respectively. Thusx has been transformed intox) 020 ,an * % =
Nn(xop+1) by identity 2 in Lemma 2. This is correct singe= xa,, by (6b).

Case threep < n—1 andx; > Xp. In this casel = n— 1 since the current string has
SUffiXXoX3 - - - XpX1 @andxa > X3 > - - - > Xp andxp < X1. Also notice that the first symbol
in the current string ixp;1. Thereforea; = Xp+1 > Xp = an—1 by the definition of
p. Therefore, the next applicationds. The remainingh — p — 2 applications are,
sinced =n—2,n—3,..., p+ 1 during these applications, respectively. Thushas
been transformed inttx) 020 o P! = n(xap) by identity 2 in Lemma 2. This
is correct sincg = xap by (6¢). O

5.4 Algorithms for Generating the SP-cycles

This subsection provides CAT algorithms for generating3Recycles and their sub-
permutationsBell7 and Cool are CAT algorithms that generate permutationg-n
order and cool-lex order, respectively. Since these orderghe sub-permutations
of the SP-cyclesBell7 and Cool are also CAT algorithms that generate blocks of
the bell-ringer and cool SP-cycle, respectively. This is@dby storing the current
permutation in an arrag whose first entry is never changed. Pseudo-cod8&i7
andCool appear in Algorithms 1.

Both algorithms generate the sub-permutations recuysiVelunderstandell7,
recall Definition 1 and notice that line 6 moves symbtbo the end of the array, and
line 9 moves it back to its initial location one position atraé. To understan@ool,
we must consider the recursive structure of cool-lex orsiee Oefinition 2.4 in [16]).
The order starts with the permutatior1 n—2 --- 1, and then the scuts are ordered
by decreasing value of the first symbol, followed by incregsength. For example,
considerg, in Table 2 (j). The first permutation is 4321, and the scut @frgwther
ac 1(4) is its shortest suffix that is not also a suffix of 4321. Obsé¢et the scuts
— 4,41, 421, 3, 31, 2 — are ordered by decreasing value of tingirsymbol, and
then by increasing length. This recursive structure presitie prefix-shift Gray code
in Definition 2 by Theorem 2.1 in [16]. The outer loop@ol creates scuts of length
one with first symbol equal to—1,n—2...,2, and the inner loop increases the length
of these scuts until the permutation is returned to its nebstate oh—1n—-2 --- 1.

21

Procedure Bell7(m) Procedure Cool(m)
1: if m=nthen 1: visit()

2: visit() 2: for j—1tom-2
3 return 3: shift(j,m-1)
4: end 4: fori<—m-2downto]
5: Bell7(m+1) 5: Cool(i)

6: shift(h—mn—1) 6: a < 81

7: fori—n—2downton—m 7. end

8 Bell7(m+1) 8: end

9 g<an

10: end

Algorithms 1: Bell7(2) visits permutations ifr,_1 or blocks ofB(n). Cool(n) visits
permutations ir€,_; or blocks ofC(n). The global arragpay---ap_1:=nn-1--- 1
must be initialized in both cases, ands a global constant iBell7.

To complete the procedures in Algorithms 1, areay aga; - - - a,_1 must be ini-
tialized to contain the values n—1 --- 1, shift(i, j) must replace the array con-
tentsaai1---a; by a1---a;a;, and the instructio — a1 must replace;a; 1
by a;18;. Eachvisit can output a block of the SP-cycle or a sub-permutation by
callingoutput(apas - - - a,—1) Or output(ajay - --an—1), respectively.

Now we prove thaBell7 andCool improve upon the Qf)!)-time generation of
the direct SP-cycl®(n) in [12].

Theorem 11 Bell7(2) visits all (n—1)! permutations iny,_1 and all (n—1)! blocks
of B(n) in O((n—1)!)-time. Similarly,Cool(n) visits all (n—1)! permutations ir¢,_1
and all (n—1)! blocks ofC(n) in O((n—1)!)-time.

Proof The correctness of these algorithms was previously digcuss

If n=2, thenBell7(2) makes oneisit at an expense of O(1) basic operations. If
n > 2, thenBell7(n— 1) makesn — 1 calls tovisit (from Bell7(n) on lines 5 and 8)
at an expense of @(- 1) basic operations (from lines 6 and 9). Thus, by induction
Bell7(2) runs in O(2H4 3!+ - - -4 (n— 1)!)-time, or simply O(n — 1)!)-time.

Cool(m) callsvisit, and each outer loop iteration makes 1—j recursive calls at
cost of O(n—1—j) basic operations. Thu€pol(n) runs in O(n— 1)!)-time. O

5.5 Recycling

Periodic SP-cycles are created by insertingetween successive permutations in an
ordering ofl1(n—1). In this subsection we prove that most previously studiele s

of M(n—1) cannot be ‘recycled’ in this way. On the other hand, we prdw the
permutations of any SP-cycle can be recycled.

Definition 3 If P=a,b,...,zis an ordering of 1(n— 1), thenP is recyclableif the
circular string&z(P) := nanb - --nz is an SP-cycle.

Theorems 9 and 10 proved thabrder and cool-lex order are recyclable, respec-
tively. On the other hand, Figure 1 (e) illustrates that 3AP, 312, 123, 213, 231 is
not recyclable due to the invalid substring 141 and repeatpies of 342. Theorem
12 proves that these two types of ‘errors’ are the only olss$ao being recyclable.

22

Theorem 12 Suppose P is an ordering 6f(n—1). P is recyclable if and only if the
following two conditions are satisfied:

— If ais followed byb in P and a = bj, theni— j < 1.
— If ais followed byb, andc is followed byd in P, and there is a j such that

aj+1"'anb1"'bj—l:Cj+l"'Cnd1"'dj71,
thena = c (and hencé = d).

Proof The first condition holds if and only if each substringsz{P) is an(n—1)-
permutation ofn). The second condition holds if and only if each substringz3P)
is distinct. Therefore£z(P) is an SP-cycle if and only if both conditions hold. O

To illustrate Theorem 12, consider the lexicographic oafdt (3) given below
123132213 231,312321

The first condition in Theorem 12 is not satisfied &&= 132 andb = 213. This is
because the symbag = b; = 2 moves more than one position to the left fraro

b. Thus, recycling produces the invalid substring 242. livalibstrings are avoided
by the Johnson-Trotter order in (1). However, the secondlitiom of Theorem 12 is
not satisfied fom = 132,b = 312,c = 312,d = 321, andj = 2. This is because the
substring 23 appears in the same positioabrandcd, and so recycling produces re-
peated substrings 243. The following lemma proves thatlegyproduces repeated
substrings in every adjacent-transposition Gray code.

Lemma 4 If P is a cyclic adjacent-transposition Gray code fA(n) with n > 2,
then P is not recyclable.

Proof There exist two successive permutati@andb in P such thath = ar;. Let
¢ be the permutation that followls in P. Notice thatc # bty (otherwisec = a).
Thereforeagay - - -anby = bsba - - - bhcy and scsz(P) contains repeated substrings.

Despite the large number of permutation orders that have seglied [14] [8],
the authors are aware of only two previously studied ordesdould be recyclable.
One of these is the (reverse) cool-lex order from SectionBh@ other is a prefix-
shift Gray code of 1(n— 1) due to Corbett [3] that we de_n)ote B3_1. The symbol

R refers to Corbett's consideration of the “rotator gragldy({ 0, 03, ..., 0n},Sh).

Conjecture 1Corbett’s prefix-shift Gray code of permutations [3] is relaple. That
is, R(n) := &3(Mn_1) is an SP-cycle.

Although recyclable orders of permutations appear to beirathe literature, the
following theorem proves that the permutations of any S&lecgre recyclable. For
example, the permutations from SP-cycle Figure 1 (a) ard 8244 ...,1432 and
s0 5432153214 -51432 is an SP-cycle.

Theorem 13 (Re-recycling)lif U is an SP-cycle of71(n—1) and P is its order of
permutations, the$z(P) is an SP-cycle of1(n)

23

Proof Pis a (on-0n-1)-Gray code off1(n— 1) by Corollary 1. ThereforeR satis-
fies the first condition of Theorem 12. To verify the seconddition, suppose is
followed byb, andc is followed byd, andj is chosen such that

@ji1---@nby---bj 1 =Cji1---Cndy---dj_1. 7)

Sinceb € {aon,a0,_1} andd € {con,con_1} we also have
bi---bj_1=ay---ajandd;---dj_1 =Cy---Cj. (8)

Observe that (7), (8), aralc € I1(n) imply a= ¢ (and hencé = d). O

Section 6.4 proves that the direct SP-cycle is ‘canonicakrms of Theorem 13.

6 Binary Representation of SP-cycles

This section focuses on binary representations. Sectibrexamines periodic SP-
cycles, and Section 6.2 determines a recursive expressidiinbry(B(n)). Section
6.3 gives a loopless algorithm to generate (and output)itveks’ of binary(B(n)).
Section 6.4 uses binary representations for a new chaizatien ofD(n).

10 10 111001
A 0 \ 0 GO0
Q 7 Q % 0018, 2
N %@ Y5\ Wy O A e,
™ 21 7 ’ S 4 T
~ NEERE S o ~ o S/%‘ 2.2
~n Y N §§ A
Sal 4 BvC Sy @ g £ © =t
N bz\%‘lx« S~ e ~ 2@@% SE
/ Q 2 R
VAN /\/% B g, GI0 A
0 ¢ 1\ 0 1V “orportion ™

Fig. 11 (a) binary(B(4)) (outer) is visualized by rotatinB(4) (middle) three positions counter-clockwise
(inner), (b) blocks irbinary(B(4)) have the form 0B;, and (c)binary(B(5)) is created by replacing each
00B; in binary(B(4)) by Rs001B;.

Binary representations are visualized by aligning an Stteayith a copy of itself
rotated counter-clockwise— 1 symbols. In these visualizations, 1 or O is recorded for
aligned symbols that are equal or not equal, respectivaduré 11 (a) illustrates this
visualization forbinary(B(4)). In general, théinary representatiomf an SP-cycle
U for I1(n) is the circular strind® = binary(U) of lengthn! such that

bi := [ui = Uiyn-1]

where thelversonianis defined by[trud] := 1 and|fals€] := 0. As mentioned in
Section 1 binary(U) records 0 or 1 wheb)’s successive permutations differ loy
or ogn_1, respectively. To see why this is true, supptbke substringui - - - Uiyn—2
is ‘missing’ the symboim from (n). ThenU’s permutationy; --- Uj;n_om is fol-
lowed by () Uis1 -+ Un2 MU = (U -~ Un2 MOy if Ui # Uiyn1, or (ii)
Uisa - -Uitn—2 U M= (Ui -+ Uitn-2 M)On-1 if Ui = Uj1n_1.

24

6.1 Binary Representation of Periodic SP-Cycles

If U is an SP-cycle fofl(n), then theblocksof B = binary(U) are eactd.n, 1 - - by.(n11).
For example, the blocks dinary(B(4)) in Figure 11 (a) are 0011, 0001, 0011, 0011,
0001, and 0011, respectively.Uf is a periodic SP-cycle, themy, is applied inU’s
(on,0n_1)-Gray code wheneveris the first or last symbol in the current permutation.
This leads to the following remark that is illustrated in tig 11 (b) forbinary(B(4)).

Remark 2If U is a periodic SP-cycle faf(n), then its binary representation can be
expressed as
binary(U) = OOBlooBz- .. OOB(n,lﬁ,

where eaclB; has lengtim — 2. In other words, blocks ihinary(U) begin with 00.

The binary representations of the periodic SP-cycles dissliin this article can
be further restricted by translating the identities of Lean®rinto blocks.

Remark 3If the ith and(i+1)st blocks in a periodic SP-cyclg for 1(n) arena and
nb, respectively, then thigh block inbinary(U) is

1. 001 2if b =aogy_1.

2. 0010 -2if b=acgi, 1 for 1 <i <n-2.

3. 0001013 if b=arj;41 for0< j <n-3.

4. 0010710 13if b=acgi 1751 for 1 <i < j <n-2.

The ©(n) different blocks in identity 2 imply there ar®(n) different blocks
in binary(C(n)). Likewise, the®(n?) different blocks in identities 1, 3, and 4 imply
there are®(n?) different blocks irbinary(B(n)). Thus, algorithms could pre-compute
these blocks when generatibghary(B(n)) or binary(C(n)). In a broad-word sense
each of these blocks can be output in O(1)-time by the folhgvidentities

(001n—2)2 — 2[172_1 (OOliOn—i—Z)z — 2n—2_2n—2—i
(00010™ 1-3), =213 (001 0i-110"1-3), = 2n2_pn-2-i 4 i3,

6.2 Binary Representation of the Bell-Ringer SP-cycle

In this subsection we determine a recursive expressiorhébinary representation
of the bell-ringer SP-cycl8(n). Theorem 14 is illustrated far= 5 in Figure 11 (b)
and (c). The theorem uses the following string of lengfth— 2)

Ry :=001""2 011 0"210 0" 3100 --- 00010" 4. (9)
N N - N—— N—_——
On-1 Th-2 Th-3 Th—4 1]

Theorem 14 The binary representation of the bell-ringer SP-cycleft(n) is
binary(B(n)) = Ry 001B; R, 001B; - -- R, 001Bp,_y), (10)
whereQ0B; is the ith block inbinary(B(n— 1)) and R, is defined in(9).

25

Proof We prove the following: If 08 is the block inbinary(B(n— 1)) corresponding
to consecutive blocks—1 aandn—1b in B(n— 1), thenR, 001B are the blocks in
binary(B(n)) corresponding to the blocks fromn—1atonn—1b in B(n).
Observe thatif 0 and 1 are treatedms 1 anda,_», respectively, then 00 changes
n—laintoay --- ap_» n—1a;, andB changes, --- a, » n—1a;inton—1bh.
Consider the block n—1 aiin B(n). By Definition 1,n—1 a is followed in7,_1
by applyingon_1,Th-2,Th_3,..., T2. Thischangea—laintoa;n—1ap --- a,_» and
corresponds t&; in binary(B(n)) by Remark 3 and (9). Now consider the consecu-
tive blocksna; n—1a, --- a,_2 andnn—1bin B(n). If 0 and 1 are treated a® and
On_1, respectively, then 001 changesy n—1a, --- a, zintoay --- a,_2nn—1a;
and by our earlier observatidchanges, --- a, o hn—1a intonn-1bh. O

6.3 Generating the Binary Representation of the Bell-Rii&f&-cycle

This subsection focuses on generating the blocksmafy(B(n)). BinaryBellCAT (n)

is the standard CAT algorithm for generating fine- 1)! multi-radix numbers in the
product spacén—1) x --- x 2 x 1 in co-lexicographic order (see Algorithm M in
Knuth [8] (pg. 2)) with additionabutputs on lines 8-12, SimilarlyBinaryBell(n)

is the standard loopless algorithm for generating the samié-radix numbers in
the reflected Gray code (see Algorithm H in Knuth [8] (pg. 2¢ept for lines 6-
12. Pseudo-code fdinaryBellCAT andBinaryBell appear in Algorithms 2. Table 3
illustrates the progression of valuesBimaryBellCAT (5) andBinaryBell(5). Notice
that theoutputs in Table 3 (d) and (j) matchinary(B(5)) in Figure 3 (c).

Procedure BinaryBellCAT (n) Procedure BinaryBell(n)
l:a---ap1<0---0 1l:a; ---ap1<0---0
2: loop 2:dy - dppe—=1---1
3 je1 3 fy o frge—1--n—-1
4 while aj =n—j—land j<n-1 4: loop
5 aj—0 5 je—f1
6 j—j+1 6 if aj=0o0ra; =n—j—1then
7. end 7: output(001"?)
8 if aj = 0then 8. elseifdj =1then
9 output(001"?) o output(0021~10"-2~i-11Ri-1)
10: else 10: else
11: output(00U 10" H MO Y 11: output(001-10% 107 1% 2)
12: end 12: end
13: if j=n-1then 13: if j=n—1then
14 return 14: return
15: end 15: end
16: aj—aj+l 160 fp—1
17: end 17: aj < aj+d
18: ifaj=0o0raj=n—j—1then
19: dj — —d;
20: fj— fj1
21: fira—j+1
22: end
23: end

Algorithms 2: BinaryBellCAT (n) andBinaryBell(n) generatéinary(B(n))’s blocks.

26

ajapazay i aj output ajapagay d1d>d3dy fifofafs i a;j output
0000 1 0 00111 0000 +1+1+1+1 1234 1 0 00111
1000 1 1 00001 1000 +1+1+1+1 1234 1 1 00001
2000 1 2 00010 2000 +1+1+1+1 1234 1 2 00010
3000 2 0 00111 3000 —1+1+1+1 2234 2 0 00111
0100 1 0 00111 3100 —1+1+1+1 1234 1 3 00111
1100 1 1 00001 2100 —14+1+1+1 1234 1 2 00001
2100 1 2 00010 1100 —14+1+1+1 1234 1 1 00010
3100 2 1 00101 0100 +1+1+1+1 2234 2 1 00101
0200 1 0 00111 0200 +1-1+1+1 1334 1 0 00111
1200 1 1 00001 1200 +1-1+1+1 1334 1 1 00001
2200 1 2 00010 2200 +1-1+1+1 1334 1 2 00010
3200 3 0 00111 3200 —1-1+1+1 3234 3 0 00111
0010 1 0 00111 3210 -1-1-1+1 1244 1 3 00111
1010 1 1 00001 2210 -1-1-1+1 1244 1 2 00001
2010 1 2 00010 1210 -1-1-1+1 1244 1 1 00010
3010 2 0 00111 0210 +1-1-1+1 2244 2 2 00111
0110 1 0 00111 0110 +1-1-1+1 1244 1 0 00111
1110 1 1 00001 1110 +1-1-1+1 1244 1 1 00001
2110 1 2 00010 2110 +1-1-1+1 1244 1 2 00010
3110 2 1 00101 3110 -1-1-1+1 2244 2 1 00101
0210 1 0 00111 3010 -1+1-1+1 1434 1 3 00111
1210 1 1 00001 2010 -1+1-1+1 1434 1 2 00001
2210 1 2 00010 1010 -1+1-1+1 1434 1 1 00010
3210 4 0 00111 0010 +1+1-1+1 4234 4 0 00111
E)] b (© (d) (e) ® @ M @ @

Table 3 Successive values in (a)-(BjnaryBellCAT (5) and (e)-(j)BinaryBell(5). Mixed-radix numbers
are in (a) and (e), blocks d&iinary(B(5)) in (d) and (j), directions in (f), and focus pointers in (g).

Theorem 15 BinaryBellCAT(n) and BinaryBell(n) output the successive blocks in
binary(B(n)) in amortized Of)-time and worst-case QJ-time, respectively.

Proof The strings in eachutput can be computed and output in O(1)-time by Sec-
tion 6.1, so the run-times follow from Algorithm M and Algthrim H in [8].

The firstn— 1 iterations of every iterations inBinaryBellCAT (n) havej = 1 and
a;=0,1,....,n—3online 8, and so these iterations output®&on line 9 followed
by 0"~11,0"210,...,00010* on line 11. During everyth iteration,j keeps track
of the level of recursion, and thé 1! on line 11 corresponds to the number of times
00B has been replaced by 0Bin (10). Therefore, every iterations outpuR,001B
as required by Theorem 1&inaryBell(n) is similar to BinaryBellCAT(n) except
lines 6-7 account for the two extreme valuesagpfand lines 8-11 account for both
increasing and decreasing valuesjn O

6.4 Binary Representations and Recycling

This subsection investigates the effect of recycling ombjinmepresentations and the
direct SP-cycle in particular. The following lemma strerggis Theorem 13 by explic-
itly stating the binary representation of an SP-cycle thathtained from recycling.

Lemma5 If U is an SP-cycle of7(n—1) with permutations P andinary(U) =
by ---bn_1)1, thenbinary(&2(P)) is obtained by the morphism-b 001"3b. That s,

binary(¢2(P)) = 001" %b;001" bz - 001" %0, 1. (11)

27

Proof Supposea is theith permutation inP and is followed byc. If b; = 0 then
c = ag,_1, and the corresponding block binary(§z(P)) is 001"2 = 001"3b; by
identity 1 in Remark 3. It; = 1 thenc = ao,_», and the corresponding block in
binary(£2(P)) is 001"30 = 001"3by; by identity 2 in Remark 3. O

Recycling leads to binary representations that have onty digtinct blocks:
0012 and 00130 by (11). Further ‘re-recycling’ would lead to two distinotega-
blocks’: 0011 001"~1 001"-20 --- 001"20 001"?b for b € {0,1}. To utilize this
observation, Theorem 16 proves thatn) is the SP-cycle obtained by continual
recycling. To illustrate this fact, consid€r(3) = 321312 (see [12]) an®(4) =
432142134132431241234231 from Figure 1 (d). Notice thatpglrmutations of
D(3) are 321213 132 312 123 231 and recycling these permutations giiéd).

Theorem 16 If the permutations ob(n— 1) are P, therD(n) = §2(P).
Proof If binary(D(n— 1)) = by ---bn_1);, then equation (1) in [12] implies

binary(D(n)) = 001" %b;001" bz - 001" 30, 1):. (12)
Notice that (12) is identical to (11). The base cadgnary(D(2)) = 00, which is the
only binary representation of an SP-cycle f(2). O

In [12] a loopless algorithm similar tBinaryBell was given for generating suc-
cessive bits obinary(D(n)). By Theorem 16 and Lemma 5, we can modify this
algorithm to generate successive block$fry(D(n)). This is done by replacing
lines 6-12 ofBinaryBell with the following

b—[(jeven® (aj—dj<0oraj—dj>n—1—-j)@®(j=n-1)]
output(001"3b)
The expressiofi(j even & (a; —dj < 0 or a; —dj > n—1— j)] gives the bit that
was output in [12] (withh — 1 replacingn) whered is exclusive-or. This bit equals
the value ob except orBinaryBell’s final iteratiot when j = n— 1. Similar modifi-
cations allow for theutput of ‘mega-blocks’ or ‘mega-mega-blocks’.

7 Ranking

In this section we show how to efficiently rank permutatiang-order, as well as the
permutations obtained by decoding the bell-ringer SPecycl

7.1 Rankingy-order

LetR,(a) denote the rank of the permutatiare 1(n) in 7. If ax = n, then directly
from Definition 1 we have

0 ifn=1,
R, (aqaz - a-1Na1---an) = q N-R (az---an) ifk=1,
n—k+1+n-R,(ay82---ag_18kr1---an) Iif k>1

1 The algorithm in [12] complemented the final bit binary(D(n)) by initializing fnfy_1--- f1 —
n+1n-1---1; the initializationdndy_1 - - - dg < 11--- 1 should also have beef.1dy---dy «— 11--- 1.

28

Letinva(i) = |{] > ila; < & }| denote the number of inversions @ - - a,. For
i=1,2,...,ndefine

._Jo if inva(i) =i—1,
Pl 1tinva(i) i inva(i) <i—1.

Then we can iterate our ranking recursion to obtain

n—1

R(a): rn*"(n)'a
7 jZO J J

where(n); =n(n—1)---(n— j+1) =nl/(n—j)! is the “falling factorial.” It is
well-known that the sequence of valuies,(i) fori = 1,2,...,n can be computed
in O(nlogn) comparisons (see ex. 6 in Knuth [9]), and thus we can compaeteaink
usingO(nlogn) arithmetic operations (on numbers that can be as larg as

7.2 RankingB(n)

We can us&,; from Section 7.2 to efficiently rank the bell-ringer SP-@dhis rank-
ing can be done with a single call By, a constant number of additional arithmetic
operations, an®(n) comparisons and assignments.

Givena e I1(n), letR(a) denote the rank of the permutatiain B(n), or equiva-
lently the rank of its shorthand substriag---a,_;. We assum®&nn-1--- 21) =
R(nn—1 --- 2) = 0 since SP-cycles ‘start’ with the substringi—1 --- 2. Our com-
putation requires the consideration of several cases.

Suppose that we have been given oneBéf)’'s substringss. If n ¢ s (so that
se (n—1)), thenR(s) = 1+ n-R,(s). Otherwise, the substring has the form

S=aj1 - an—1Nby -~ bj_q, (13)

wherea andb are two successive permutationgin 1. The key to computin®is to
determinea. This is becausB(a) = n-R,(a), and soR(s) = 1+ j + R(a) wherej is
defined by (13). We consider three cases. In these cases mdé&the symbol from
(n) that is ‘missing’ froms.
Case A:n—1¢ {ajy1,...,an_1} U{b1,...,bj_1}. Here it follows thain — 1=
a; = b,_1 and thus
a=n-1 bl bj,j_ Aj4+1 -+ An-1.

Case B:n—1€ {aj1,...,an_1}. Here we can conclude that
a=Dby - bjflmaﬂl ces Ap_1.

Case C:n—1¢€ {by,...,bj_1}. We consider two subcases.
Subcase C1b; # n— 1. Supposd, =n—1. Then

a=by - bygbpa N=1bpo---bjamayg - @

29

Subcase C2b; = n—1. This is the most complicated (and interesting) case. The
permutatiorb will have the form

b=n-1n-2---dxX ---%d-1yz or
b=n-1n-2.---dxgx - % d-1,

wheret > 0, and in the first forny is a symbol ana is a string. Then

a=xy n—-1n-2---dx---xyd-1z or
a=d-1n-1n-2..-dxgx - X, respectively.

It should be evident that we can determmfom s (in O(n) time), but we omit here
the somewhat messy details of the various subcases thatakedonsidered. These
subcases depend on havandj (from (13)) are related.

References

1. F. Chung, P. Diaconis, and R. Grahaddmjversal cycles for combinatorial structureBiscrete Mathe-
matics, 110 (1992) 43-59.

2. R.C. Compton and S.G. WilliamsoBpubly adjacent Gray codes for the symmetric grduipear and
Multilinear Algebra, 35 3 (1993) 237 - 293.

3. P.F. CorbettRotator Graphs: An Efficient Topology for Point-to-Point iforocessor NetworkdEEE
Transactions on Parallel and Distributed Systems, 3 (1692}626

4. A. Holroyd, F. Ruskey, and A. Williamdsaster Generation of Shorthand Universal Cycles for Per-
mutations Proceedings of the 16th Annual International Computing @ombinatorics Conference,
COCOON 2010), Nha Trang, Vietnam, July 19-21, LNCS, 6196.(@@98-307.

5. B. JacksonUniversal cycles of k-subsets and k-permutatidiscrete Mathematics, 149 (1996) 123—
129.

6. R. Johnsonniversal cycles for permutationBiscrete Mathematics, 309 (2009) 5264-5270.

7. S. M. JohnsorGeneration of Permutations by Adjacent Transpositidnathematics of Computation,
17 (1963) 282-285.

8. D.E. Knuth,The Art of Computer Programming, Volume 4, Generating Afildsi and Permutations
Fascicle 2, Addison-Wesley, 2005.

9. D.E. Knuth,The Art of Computer Programming, Volume 4, Generating AlinBmations and Parti-
tions Fascicle 3, Addison-Wesley, 2005.

10. J.N. MacGregor and T. Ormerddiyman performance on the traveling salesman problernception
& Psychophysics, 58 4 (1996) 527-539.

11. J. Page, J. Salvia, C. Collewetb, J.ForeSgtjmised De Bruijn patterns for one-shot shape acquisi-
tion, Image and Vision Computing, 23 (2005) 707720.

12. F. Ruskey and A. WilliamsAn explicit universal cycle for then—1)-permutations of an n-seACM
Transactions on Algorithms, 6 3 (2010) article 45.

13. E.R. Scheinermametermining planar location via complement-free de Brg@guences using dis-
crete optical sensordEEE Transactions on Robotics and Automation, 17 6 (2083)-889.

14. R. SedgewickPermutation Generation MethodS8omputing Surveys, 9 (1977) 137-164.

15. H.S. Sohn, D.L. Bricker, J.R. Simon and Y.C. Hsi@®ptimal sequences of trials for balancing prac-
tice and repetition effect®ehavior Research Methods, Instruments, & Computers1297) 574-581.

16. A. Williams, Loopless Generation of Multiset Permutations Using a CamtsNumber of Variables
by Prefix ShiftsProceedings of the Twentieth Annual ACM-SIAM Symposiuniscrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6 (2009) 987-996.

17. A. Williams, Shift Gray CodesPhD Thesis, University of Victoria, 2009.

