
Algorithmica manuscript No.
(will be inserted by the editor)

Shorthand Universal Cycles for Permutations

Alexander Holroyd · Frank Ruskey ·
Aaron Williams

Received: date / Accepted: date

Abstract The set of permutations of〈n〉 = {1, . . . ,n} in one-line notation isΠ(n).
The shorthand encoding ofa1 · · ·an∈Π(n) is a1 · · ·an−1. A shorthand universal cycle
for permutations (SP-cycle) is a circular string of lengthn! whose substrings of length
n−1 are the shorthand encodings ofΠ(n). When an SP-cycle is decoded, the order
of Π(n) is a Gray code in which successive permutations differ by theprefix-rotation
σi = (1 2cdots i) for i ∈ {n−1,n}. Thus, SP-cycles can be represented byn! bits. We
investigate SP-cycles with maximum and minimum ‘weight’ (number ofσn−1s in the
Gray code). An SP-cyclenanb · · ·nz is ‘periodic’ if its ‘sub-permutations’a,b, . . . ,z
equalΠ(n−1). We prove that periodic min-weight SP-cycles correspond tospanning
trees of the(n−1)-permutohedron. We provide two constructions:B(n) andC(n).
In B(n) the spanning trees use ‘half-hunts’ from bell-ringing, andin C(n) the sub-
permutations use cool-lex order by Williams (SODA (2009) 987-996). Algorithmic
results are: 1) memoryless decoding ofB(n) andC(n), 2)O((n−1)!)-time generation
of B(n) andC(n) using sub-permutations, 3) loopless generation ofB(n)’s binary
representationn bits at a time, and 4)O(n+ ν(n))-time ranking ofB(n)’s permuta-
tions whereν(n) is the cost of computing a permutation’s inversion vector. Results
1)-4) improve on those for the previous SP-cycle construction D(n) by Ruskey and
Williams (ACM Transactions on Algorithms, Vol. 6 No. 3 Art. 45 (2010)), which we
characterize here using ‘recycling’.

Keywords Ucycles· Gray codes· Cayley graphs· permutohedron· algorithms

Research supported in part by NSERC

A. Holroyd
Microsoft Research, Redmond, WA, USA
E-mail: holroyd@math.ubc.ca

F. Ruskey
Dept. of Computer Science, University of Victoria, CANADA
E-mail: ruskey@cs.uvic.ca

A. Williams
Dept. of Mathematics, Carleton University, CANADA
E-mail: haron@uvic.ca

2

1 Introduction

A universal cycle(Ucycle) is a circular string containing every object of a particular
type exactly once as substring. Ucycles were introduced by Chung, Diaconis, and
Graham [1] as generalizations ofde Bruijn cycles, which are circular strings of length
2n that contain every binary string of lengthn. A basic set of strings without a Ucycle
is Π(n), the permutations of〈n〉 := {1, . . . ,n} in one-line notation. For example, if
there was a Ucycle forΠ(8), then it would contain 87654321 as illustrated below.

..

. 8
7

6 5 4 3 2 1

...

87654321

7654321

Ucycle for
Π(8)

permutations

Since 7654321 ∈ Π(8), the symbol in the must be 8. Similar reasoning fixes
each successive symbol, and Ucycles forΠ(n) only exist whenn ≤ 2. However,
Ucycles do exist if we omit the final (redundant) symbol from the one-line notation.
The shorthand encodingof a1 · · ·an ∈ Π(n) is a1 · · ·an−1. A shorthand Ucycle for
permutations(SP-cycle) is a Ucycle that contains the (unique) shorthand encoding
of each string inΠ(n). Thesubstringsof an SP-cycle are itsn! substrings of length
n−1. These substrings are the(n−1)-permutations of〈n〉, so SP-cycles forΠ(n)
are also Ucycles of the(n− 1)-permutations of〈n〉. Each substring of an SP-cycle
can bedecodedinto a string inΠ(n) by appending itsmissing symbolfrom 〈n〉.
These decoded strings are the SP-cycle’spermutations. For example, an SP-cycle
for Π(8) must contain the substring 8765432 that is shorthand for itspermutation
87654321∈Π(8) as illustrated below.

×

×
×
8

7
6 5 4 3 2

×
×

×

87654321

765432

8765432

765432

SP-cycle for
Π(8)

permutationssubstrings

Since 765432 is shorthand for a string inΠ(8), the contains 1 or 8 and the next
permutation is 76543218 or 76543281. These two permutations are obtained by ap-
plying σ8 or σ7 to the indices of 87654321, whereσi := (1 2 cdots i) is theprefix-
shift or prefix-rotationof length i. Decoding an SP-cycle gives a(σn-σn−1)-Gray
codesince successive permutations inΠ(n) differ by σn or σn−1. An SP-cycle’sbi-
nary representationhasn! bits equaling 0/1 when successive permutations differ by
σn/σn−1. Theweightof an SP-cycle is the number of 1s in its binary representation.
The two choices for successive substrings, permutations, prefix-shifts, and bits from
the previously illustrated SP-cycle forΠ(8) appear below.

×

×
×
8

7
6 5 4 3 2

8
×
×

×

×

×
×
8

7
6 5 4 3 2

1
×
×

×

87654321

76543218
0

8765432

7654321

87654321

765432 18
1

8765432

7654328

Gray codeGray code permutationspermutations substringssubstrings binarybinary

or

σ7σ8

By convention, SP-cycles will ‘start’ clockwise from 12 o’clock with the substring
n n−1 · · · 2 that hasrank0. An SP-cycle forΠ(n) is periodicif everynth symbol isn.
If nanb · · ·nz is a periodic SP-cycle forΠ(n), thena,b, . . . ,z are itssub-permutations
andna,nb, . . . ,nz are itsblocks. The(n−1)! sub-permutations in a periodic SP-cycle

3

equalΠ(n−1). The substrings, permutations, Gray code, binary representation, sub-
permutations, and blocks of a periodic SP-cycle forΠ(4) are summarized below.

4 3 2

1
4

2
1

3
4

2
31431

2
4

1
2

3
4

1
3 2 rank 0, 1, 2, 3, 4, . . . 19, 20, 21, 22, 23

substrings 432, 321, 214, 142, 421,. . . 341, 413, 132, 324, 243
permutations 4321, 3214, 2143, 1423, 4213,. . . 3412, 4132, 1324, 3241, 2431
Gray code σ4, σ4, σ3, σ3, σ4, . . . σ3, σ4, σ4, σ3, σ3
binary 0 0 1 1 0 . . . 1 0 0 1 1
blocks 4321, 4213, 4231, 4312, 4123, 4132
sub-permutations 321, 213, 231, 312, 123, 132

Figure 1 illustrates the three periodic SP-cycle constructions that are discussed in
this article: (b) thebell-ringer SP-cycleB(4), (c) thecool SP-cycleC(4), and (d) the
direct SP-cycleD(4) from [12]. It also illustrates (a) anaperiodicSP-cycle, and (e) a
circular string of length 4! over〈4〉 that is not an SP-cycle forΠ(4).

4 3 2

1
4

2
1

3
4

1
32431

2
4

1
2

3
4

2
3 14 3 2

1
4

2
1

3
4

2
31431

2
4

1
2

3
4

1
3 2 4 3 2

1
4

2
1

3
4

1
23423

1
4

3
1

2
4

1
3 2 4 3 2

1
4

1
3

2
4

3
12412

3
4

2
1

3
4

2
3 14 3 2

1
4

2
1

3
2

4
13423

4
1

2
3

1
2

4
3 1

(a)
“aperiodic”

(b)
“bell-ringer”

B(4)

(c)
“cool-lex”

C(4)

(d)
“direct”
D(4)

(e)
“erroneous”

Fig. 1 (a) an aperiodic SP-cycle, (b) the bell-ringer SP-cycle, (c) the cool SP-cycle, (d) the direct SP-cycle,
and (e) is not an SP-cycle due to erroneous substring 141 and an extra copy of 342.

1.1 History

Jackson [5] proved that Ucycles exist for thek-permutations of〈n〉 when k < n.
Knuth [8] (pg. 75, ex. 111) suggested usingk = n−1 for encoding permutations, and
asked for a construction. Ruskey and Williams [12] answeredthis request by defin-
ing the direct SP-cycleD(n) and generating its symbols in worst-case O(1)-time using
O(n)-space. Permutations have also been encoded using relative order [1]. For exam-
ple, 321341 is anorder-isomorphic Ucyclesince its substrings areorder-isomorphic
to 321,213,123,231,312,132. Johnson [6] verified a conjecture [1] by constructing
these Ucycles forΠ(n) using〈n+1〉. Johnson’s Ucycles can also be represented by
n! bits, but do not provide simple Gray codes ofΠ(n) when decoded.

Gray codes for permutations and their generation algorithms are well-studied
(see Sedgewick [14] or [8]). These algorithms store a single‘current’ permutation
in an array or linked list, and this data structure is modifiedto create successive
permutations. The run-time accounts only for these data structure changes, and not
the output of each permutation. In this context,constant amortized time (CAT)and
looplessalgorithms are said tovisit successive permutations in amortized and worst-
case O(1)-time, respectively. An important permutation Gray code is the Johnson-
Trotter-Steinhaus order [7] in which successive permutations differ by anadjacent-
transposition(or swap) from applyingτi := (i i+1) to the indices of the current per-
mutation. For example, theJTS-orderfor Π(3) appears below.

123,132,312,321,231,213. (1)

4

1.2 Applications

De Bruijn cycles have myriad applications including optical shape acquisition [11],
psychology experiments [15], and planar location [13]. This subsection highlights
potential applications for SP-cycles. In many cases the weight of an SP-cycle directly
influences the application, and this motivates our focus onminimum-weight (min-
weight)andmaximum-weight (max-weight)SP-cycles later in this article.

Efficient Encoding.SP-cycles encode then! permutations inΠ(n) usingn! sym-
bols over〈n〉, and the binary representation reduces this requirement ton! bits. Sim-
ilarly, Johnson’s Ucycles [6] requiren! symbols over〈n+1〉 or n! bits.

Efficient Decoding.In a circular array or linked list,σn increments the starting
position, whileσn−1 increments the starting position and swaps the last two symbols.
This is illustrated below with arrows depicting the order ofsymbols in the array.

111
222
333

444 555
666

777 888

then or

The operations can also be performed in O(1)-time in a singly-linked list, so long as
a pointer to the second-last node is maintained.

111 222 333 444 555 666 777 888 then or

Suppose an SP-cycle forΠ(n) contains the consecutive symbolsui · · ·ui+n−1, where
indices are taken modulon!. Then theith permutation can be transformed into the
(i + 1)st permutation by applyingσn−1 if ui = ui+n−1 and byσn if ui 6= ui+n−1.
Therefore, a given SP-cycle can be decoded by a loopless algorithm when the current
permutation is stored in a circular array or linked list. Thedecoding algorithm is not
loopless using a conventional array, sinceσn andσn−1 would both requireΩ(n)-time.

Efficient Operations. In cycling, breakaway groups organize themselves into a
tightly-packed single-file line. Riders in the front reducethe wind-resistance for the
riders behind, and at regular intervals the lead rider surrenders their position to con-
serve energy. If the front rider reinserts themselves into the last position (viaσn)
or second-last position (viaσn−1), then at most one other rider must slow down to
accommodate this change. This is illustrated below for riders traveling right-to-left

®
8
®
7
®
6
®
5
®
4
®
3
®
2
®
1

then ®
7
®
6
®
5
®
4
®
3
®
2
®
1
®
8

or ®
7
®
6
®
5
®
4
®
3
®
2
®
8
®
1
.

Proceeding in a (σn-σn−1)-Gray code ensures that riders spend an equal time in each
position (equalizing expended energy) and teams have theirriders in consecutive po-
sitions at the front equally often (equalizing their chancefor a further breakaway).

Efficient Evaluation. In some applications thevalueof a permutation depends
on its ordered pairs of adjacent symbols. For example, consider the complete directed
graph with distanced(i, j) from nodei to nodej for 1≤ i, j ≤ n. The order of nodes in
a Hamilton path can be represented bya= a1 · · ·an∈Π(n) and the length of this path
is d(a) = d(a1,a2)+d(a2,a3)+ · · ·+d(an−1an). If σn or σn−1 is applied toa, then at
most two ordered pairs of adjacent symbols are changed, so the path length changes
by at most two additions and two subtractions (± update), as illustrated below.

5

path 87654321 path 76543218 path 76543281

−d(8,7)+d(1,8) −d(8,7)−d(2,1)+d(2,8)+d(8,1)

1 1 1

2 2 2

3 3 3
4 4 4

5 5 5

6 6 6

7 7 7
8 8 8

then or

Therefore, an SP-cycle provides a loopless algorithm for generating and evaluating
all n! paths, so long asd(i, j) can be added and subtracted in O(1)-time. This al-
gorithm could be used to determine the distribution of Hamilton path lengths, as is
required when judging heuristic or human solutions to the Traveling Salesman Prob-
lem (TSP) [10]. The algorithm could also be used when it is feasible (or necessary)
to solve the NP-hard problem of determining the shortest possible length (TSP), or
the existence of a path with a given length. Similarly, the algorithm could be used to
solve generalizations of TSP such as thestacker crane problem(see Williams [17]).

Notice that (σn-σn−1)-Gray codes are ‘better’ in these applications than adjacent-
transposition Gray codes. Each swap requires two or three± updates;τ1 andτn−1

require two±s since they swap the first and last symbol ofa ∈ Π(n), respectively.
In JTS-order, the proportion of successive permutations requiring two± updates,
tn, satisfiestn ≤ 2(n− 1)! + tn−1. Thus,tn ≤ 2(1! + 2! + · · ·+ (n− 1)!) and so the
proportion requiring three± updates is asymptotically(n−2)/n. We will show that in
the Gray codes arising fromB(n) andC(n), the proportion requiring one± update is
asymptotically(n−2)/n; this is optimal in the sense that limn→∞(n−2)/n= 1. In any
Gray code, the proportion requiring one± update is at most(n−1)/n. This is because
σn andσ−1

n are the only operations requiring one± update, andσn
n = σn

n−1 = id. The
exact proportion(n− 1)/n was obtained by Compton and Williamson [2] from a
Hamilton cycle in the undirected Cayley graph Cay({σn,σ2},Sn), whereSn is the
symmetric group corresponding toΠ(n). Their Hamilton cycle has edge labels in
blocks of the formσ2σn−1

n or σ2(σ−1
n)n−1.

Efficient Ranking. The rank of a substring in a Ucycle is its starting position
in the Ucycle relative to some fixed starting point, andranking algorithmscompute
the rank of an arbitrary substring. A de Bruijn cycle with a ranking algorithm using
O(nlogn) operations exists [8] (pg. 25). An oft-cited application ofthis result is as
follows: Suppose a robot wishes to know its position along a closed route. If the route
is painted with the 2n black and white squares of a de Bruijn cycle, then the robot can
determine its position after readingn consecutive squares and applying the ranking
algorithm (see [13] for a related real-world application).In these applications, SP-
cycles offers two small advantage (at the expense of usingn symbols instead of 2):
(i) each substring of lengthn−1 contains unique symbols in〈n〉 so a single misread
color can be detected with probability(n−2)/(n−1), and (ii) fewer squares need to
be read when determining the position. In this article, we rank B(n) usingO(nlogn)
operations. As far as the authors are aware,B(n) is now the second example of a
Ucycle that can be ranked this quickly. Furthermore, its ranking algorithm appears
to be simpler than the algorithm for ranking the aforementioned de Bruijn cycle. A
ranking algorithm requiringΩ(n2) operations was provided forD(n) in [12].

6

1.3 Notation

Strings are given by lowercase bold letters and their symbols are indexed by increas-
ing subscripts. For example, ifa = 54123, thena1 = 5 anda2 = 4. Symbols can be
concatenated to strings as in 6a = 654123. Circular strings are given by uppercase
and are indexed circularly. For example, ifU = 321312, thenu7 = u1 = 3. Permuta-
tions in cycle notation are given by Greek letters, and are multiplied left-to-right. For
example, ifα = (1 2) andβ = (1 3), thenαβ = (1 2 3). Recallσi = (1 2 · · · i) and
τi = (i i+1). Exponentiation is repeated multiplication, soα2 = αα. Permutations
are applied to the indices of a string written to its left. That is, if a = a1 · · ·an and
π = (π1 · · · πn), thenaπ = aπ1 · · ·aπn. For example, ifa = 54123, thenaσ3 = 41523.
Brackets fix the order of operations. For example, ifa = 54123, then(6a)σ3 =
654123σ3 = 546123 and 6(aσ3) = 6(54123σ3) = 641523.

1.4 Article Outline

Section 2 investigates max-weight and min-weight SP-cycles. Section 3 constructs
min-weight periodic SP-cyclesB(n) andC(n). Memoryless rules for decodingB(n)
andC(n) are in Section 4. CAT algorithms that generate sub-permutations or blocks
of B(n) andC(n) are in Section 5. Section 6 gives a loopless algorithm that generates
blocks ofn bits in the binary representation ofB(n). Section 7 ranks the permutations
in B(n). Algorithms in Sections 4-7 improve upon those forD(n) [12]. TheCOCOON

2010 conference included a preliminary version of this article [4].

2 Characterizations

In this section we show that SP-cycles correspond to certainEulerian and Hamilton
cycles in Section 2.1. We bound the weight of an SP-cycle in Section 2.2 and discuss
those with min-weight and max-weight in Section 2.3. Finally, min-weight periodic
SP-cycles correspond to spanning trees of the permutohedron by Section 2.4.

2.1 The Jackson GraphJ(n) and the Cayley GraphΞ(n)

This subsection defines two directed graphs and discusses their relationship to SP-
cycles. Nodes in theJackson graph J(n) are the(n−2)-permutations of〈n〉, and arcs
labeledan−1 are directed froma1a2 · · ·an−2 to a2a3 · · ·an−1 if a1a2 · · ·an−1 is an(n−
1)-permutation of〈n〉. SinceJ(n) is strongly connected and the in- and out-degree of
each node is two,J(n) is Eulerian. Figure 2 shows (a)J(4) and (b)Ξ(4).

Theorem 1 [5] SP-cycles forΠ(n) are in one-to-one correspondence with the arc
labels on directed Eulerian cycles in J(n).

Let Ξ(n) :=
−−→
Cay({σn,σn−1},Sn) denote the directed Cayley graph onΠ(n) with

generatorsσn andσn−1. Each arc (a,b) hassymbol label a1. If b = aσn then (a,b) is a
σn arc and hasaction labelσn; otherwise (a,b) is aσn−1 arc with action labelσn−1.

7

3142

1432

1423

2143

2341

4231

1234

2314

1243

2413

4123

4312

3124 3421

4213

3412

4132

1342

2431

4321

3241

2134

3214

1324

41

23

14

32

12

31

43

24

34

42

21

13

12

3

4

12

3

4

1

2

3

4

1

2

3

4

1

2

3 4

1

2

3 4

1

2

3

4

1

2

3

4

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1
2

3

4

1

2

34

1

2

3

4

1 2

3

4

1

2
3

4

1

2
3

41

(a) (b)

Fig. 2 (a) Jackson graphJ(4), and (b) Cayley graphΞ(4). The straight arcs inΞ(4) are forσ4 arcs, and
the curved arcs are forσ3 arcs. The action labels inΞ(4) are omitted.

Theorem 2 SP-cycles forΠ(n) are in one-to-one correspondence with the symbol
labels on directed Hamilton cycles inΞ(n).

Proof Notice thatΞ(n) is the directed line graph ofJ(n); arcs froma1a2 · · ·an−2 to
a2a3 · · ·an−1 in J(n) become the unique nodea1a2 · · ·an in Ξ(n), and each arc inΞ(n)
represents a directed path of length two inJ(n). Since directed Eulerian cycles of a
directed graph translate into directed Hamiltonian cyclesof its directed line graph,
then SP-cycles forΠ(n) are precisely the directed Hamilton cycles inΞ(n). �

Corollary 1 SP-cycles forΠ(n) are in one-to-one correspondence with (σn-σn−1)-
Gray codes ofΠ(n).

Proof Action labels on Hamilton cycles ofΞ(n) are in one-to-one correspondence
with (σn-σn−1)-Gray codes ofΠ(n), so this corollary follows from Theorem 2. �

Hamilton paths inΞ(n) extend to Hamilton cycles inΞ(n) (Lemma 2.3 [12]), so
Corollary 1 implies that Gray codes ofΠ(n) usingσn andσn−1 are alwayscyclic.

2.2 Maximum and Minimum Weight SP-Cycles

In this subsection we provide upper and lower bounds on the weight of an SP-cycle.
We discuss an arbitrary finite directed Cayley graphΞ :=

−−→
Cay({α,β},G) of a group

G with generatorsα andβ , and the special case ofΞ(n) where{α,β}= {σn,σn−1}.
Notice thatα andβ−1 (equivalentlyα−1 andβ) form alternating cycles inΞ , as
illustrated by Figure 3 (a). We call these alternating cycles α-β cycles. Each node in
Ξ belongs to twoα-β cycles, and the length of anα-β cycle is twice the order of
αβ−1. In the special case ofΞ(n), theseσn-σn−1 cycleshave length four because

σnσ−1
n−1 = σn−1σ−1

n = (n−1 n) (2)

8

.
.
.

(a) (b)

a1a2· · ·an−1an

ana2· · ·an−1a1

a2· · ·an−1ana1

a2· · ·an−1a1an

α

α

α

β

β

β σn

σn

σn−1 σn−1

Fig. 3 (a) An alternatingα-β cycle inΞ , and (b) aσn-σn−1 cycle in the special case ofΞ(n).

and(n−1 n) has order two. Anσn-σn−1 cycle inΞ(n) is illustrated in Figure 3 (b).
A cycle partitionof Ξ is a set of directed cycles in which each node appears in

exactly one directed cycle. Hamilton cycles are cycle partitions with a single cycle.

Remark 1Given anα-β cycleC, a cycle partition ofΞ either contains all of theα
arcs ofC and none of itsβ arcs, or all of theβ arcs ofC and none of itsα arcs.

We use Remark 1 to prove Theorem 3, whose bounds are not necessarily tight.

Theorem 3 Consider the finite directed Cayley graphΞ :=
−−→
Cay({α,β},G) of a

group G with two generatorsα andβ . Supposeα, β andρ := αβ−1 have respec-
tive orders A, B, and P. In any directed Hamilton cycle, the number N ofβ arcs is a
multiple of P, and satisfies

P
P−1

(
|G|
A
−1

)

≤ N≤ |G|−
P

P−1

(
|G|
B
−1

)

.

Proof It suffices to prove the first inequality; the second then follows by exchanging
α andβ . Remark 1 proves the number ofβ arcs is a multiple ofP.

Given any cycle partition, changing allβ arcs toα arcs (or vice versa) in oneα-β
cycle results in a new cycle partition. Furthermore, at mostP cycles are altered during
each of these changes, so the number of cycles in the cycle partition will change
by at mostP−1 (in either direction). If we start from a cycle partition containing
a single (Hamilton) cycle withN total β arcs, then we may changeβ arcs toα
arcs inα-β cycles until we get to the cycle partition consisting of allα arcs, which
has|G|/A cycles. Obtaining the additional(|G|/A)−1 cycles in the cycle partition
requires changing((|G|/A)−1)/(P−1) individualα-β cycles. Each change reduces
theβ arcs in the cycle partition byP until all are removed. Therefore, the numberN
of β arcs in the initial Hamilton cycle was at mostP/(P−1) · ((|G|/A)−1). �

We now apply Theorem 3 to the special case ofΞ(n).

Corollary 2 The number of occurrences N ofσn in a Hamilton cycle ofΞ(n) satisfies

2n · (n−2)!−2≤ N≤ n!−2(n−1)! +2. (3)

Similarly, the number of occurrences N ofσn−1 in a Hamilton cycle ofΞ(n) satisfies

2(n−1)!−2≤ N≤ n · (n−3) · (n−2)! +2. (4)

The above inequality also bounds the weight of an SP-cycle for Π(n).

9

Proof The bounds onσn in (3) are obtained from Theorem 3 with|G|= n!, A= n−1,
B = n, andP = 2, whereα = σn−1, β = σn, andρ = (n−1 n). Similarly, the bounds
on σn−1 in (4) are obtained from Theorem 3 except thatA = n andB = n−1, where
α = σn andβ = σn−1. The final claim of the theorem is true since the weight of an
SP-cycle equals the number ofσn−1 arcs used in its Hamilton cycle ofΞ(n). �

2.3 Quotients GraphsΞn(n) andΞn−1(n)

In this subsection we prove that the upper and lower bounds onthe weight of an
SP-cycle from Section 2.2 can be obtained. The simple connected undirected graph
Ξn(n) is obtained fromΞ(n) by contracting each directed cycle usingn successiveσn

arcs into a single vertex. Two vertices are adjacent inΞn(n) if and only if their cycles
have adjacent nodes inΞ(n). The vertices ofΞn(n) represent each coset ofSn with
respect to its subgroup generated byσn. Thus,Ξn(n) is thequotient graphof Ξ(n)
where the underlying equivalence relation is string rotation. We label each vertices in
Ξn(n) with the appropriate string rotation that begins withn. Figure 4 illustrates (a)
Ξ(4) (arc labels omitted) and (b)Ξ4(4) (the octahedron).

42134312

4321

4231

4123

4132

3142

1432

1423

2143

2341

4231

1234

2314

1243

2413

4123

3124 3421

4213

3412

4132

1342

2431

4321

3241

2134

3214

1324

4312

(a) (b)

Fig. 4 (a) Cayley graphΞ(4) with directed cycles usingσ4 arcs highlighted, and (b) the quotient graph
Ξ4(4) obtained by contracting these cycles.

Each vertex inΞn(n) has degreen, and each edge inΞn(n) represents exactly
two oppositely directed arcs inΞ(n). In particular, if the label on a vertex inΞn(n) is
treated as a circular string, then its neighbors are obtained by each of then ‘adjacent’-
transpositions around the circular string. This is illustrated in Figure 5 by (a) a di-
rected cycle using eightσ8 arcs inΞ8(8), and (b) its corresponding vertex inΞ8(8)
with a circular label. To understand why this adjacency ruleis true in general, notice
that if a= a1 · · ·an is treated as a circular string, thenaσn−1 = a2 . . .an−1a1an gives an
‘adjacent’-transposition betweena1 andan whena2 . . .an−1a1an is viewed circularly.

The correspondence given in Theorem 4 is illustrated in Figure 6.

10

87654321 76543218

6543218718765432

5432187621876543

32187654 43218765

76543281 17654328

53218764 32187645

31876542

18765423

54321867

75432186

28765431

87654312

42187653

21876534

43218756

64321875

65432178

86543217

87
6

543
2

1

17
6

543
2

8

78
6

543
2

1

86
7

543
2

1

87
5

643
2

1

87
6

453
2

1

87
6

542

1

3

87
6

54
2

1

3

87
6

543
1

2

(a) (b)

Fig. 5 (a) The directed cycle usingσ8 arcs containing 87654321 in Cayley graphΞ(8), and (b) the neigh-
borhood of 87654321 in its quotient graphΞn(n). Straight and curved arcs representσ8 andσ7 arcs respec-
tively in (a); vertex labels are written circularly in (b) with arrows highlighting ‘adjacent’-transpositions.

Theorem 4 Min-weight SP-cycles ofΠ(n) are in one-to-one correspondence with
the spanning trees ofΞn(n).

Proof The number of nodes inΞn(n) is (n−1)!, and so a spanning tree ofΞn(n) con-
tains(n−1)!−1 edges. Given a spanning tree ofΞn(n), construct a cycle partition of
Ξ(n) in two steps: (1) For each edge in the spanning tree, add the two corresponding
σn−1 arcs to the cycle partition, then (2) addσn arcs to the cycle partition until each
node has out degree 1. This cycle partition is a Hamilton cycle ofΞ(n), and the num-
ber ofσn−1 arcs in the Hamilton cycle is 2(n−1)!−2. Therefore, the corresponding
SP-cycle is a min-weight SP-cycle by Corollary 2.

Given an SP-cycle of weight 2(n−1)!−2, its Hamilton cycle inΞ(n) contains
exactly oneσn−1 to and from eachσn coset. Furthermore, each pair of arcs correspond
to an edge inΞn(n). These(n− 1)!− 1 edges form a spanning subgraph ofΞn(n).
Therefore, the min-weight SP-cycle corresponds to a spanning tree ofΞn(n). �

42134312

4321

4231

4123

4132

3142

1432

1423

2143

2341

4231

1234

2314

1243

2413

4123

3124 3421

4213

3412

4132

1342

2431

4321

3241

2134

3214

1324

4312

(a) (b)

Fig. 6 The correspondence between (a) a Hamilton cycle inΞ(4), and (b) a spanning tree inΞ4(4). The
resulting SP-cycle is the aperiodic SP-cycle 432142132413423412312431 from Figure 1 (a).

11

Similarly, the following theorem was previously observed in [12] (Lemma 4.1).
The simple connected undirected graphΞn−1(n) is obtained fromΞ(n) by contracting
each directed cycle usingn−1 successiveσn−1 arcs into a single vertex.

Theorem 5 [12] Max-weight SP-cycles ofΠ(n) are in one-to-one correspondence
with the spanning trees ofΞn−1(n).

2.4 The PermutohedronP(n−1)

In this subsection we show that min-weight periodic SP-cycles correspond to the
spanning trees of the(n−1)-permutohedron. The(n)-permutohedronP(n) is a simple
connected graph withn! vertices labeled byΠ(n), and edges between two vertices if
they differ by one of then−1 adjacent-transpositions. Figure 7 (a) illustratesP(4).

2314

4321
4312

3421

2431

4231

2413

4213

4123

2143

3241

2341

2314

2134

1234

1243

1324

1432

4132

1423

1342

3124

3142

3412

3214

4321

1234

4231 43123421

413224313241 3412

2143

2134 12431324

142313423124

24132341 143231423214 4123

4213

(a) (b)

Fig. 7 (a) The permutohedronP(4), and (b) the weak Bruhat order onSn.

Recall that the neighborhood of a vertex inΞn(n) is visualized by itsn ‘adjacent’-
transpositions around its label inΠ(n) written circularly (see Figure 5 (b)). The
(n−1)-permutohedron is obtained fromΞn(n) by removing the edges for the two
‘adjacent’-transpositions involvingn, and then by removing the leadingn from each
vertex labels. Figure 8 illustrates this transformation for the vertex labeled 87654321
in Ξ8(8) and the corresponding vertex labeled 7654321 in the(7)-permutohedron.
Figure 8 (a) is identical to Figure 5 (b) except the labels arewritten linearly. The
following lemma relates periodic SP-cycles to theσn−1 arcs in its Hamilton cycle.

Lemma 1 An SP-cycle ofΠ(n) is periodic if and only if its Hamilton cycle inΞ(n)
does not follow aσn−1 arc from a node whose label begins or ends with n.

Proof LetU be an SP-cycle ofΠ(n) andH be its Hamiltonian cycle inΞ(n). If each
node labeleda ∈ Π(n) with a1 = n or an = n is followed by aσn arc in H, thenn
is the label of everynth arc inH, and soU is periodic. The other direction has two
cases. If a node labeleda∈Π(n) with a1 = n is followed by aσn−1 arc inH, thenn
will appear as the first and last label amongn consecutive arcs inH. If a node labeled
a∈Π(n) with an = n is followed by aσn−1 arc inH, thenn will not appear as an arc
label amongstn consecutive arcs inH. In both cases,U is not periodic. �

12

87654321

81765432

86754321

8654321787654312

87654231

87645321

87653421 87564321

87654321 86754321

87654312

87654231

87645321

87653421 87564321

7654321

6754321

7654312

7654231

7645321

7653421 7564321

(a) (b) (c)

Fig. 8 (a) The neighborhood of the vertex labeled 87654321 inΞn(n), (b) removing the two edges for the
‘adjacent’-transpositions involving 8, and (c) removing 8from each vertex label to obtain the neighborhood
of the vertex labeled 7654321 inP(7). The adjacent-transpositions in (b) and (c) are highlighted.

Now we prove that min-weight periodic SP-cycles correspondto spanning trees of
permutohedron. To illustrate this fact, notice that the spanning tree ofΞ4(4) in Figure
6 (b) is not a spanning tree ofP(3), and so its min-weight SP-cycle is aperiodic.

Theorem 6 Min-weight periodic SP-cycles ofΠ(n) are in one-to-one correspon-
dence with the spanning trees ofP(n−1).

Proof Theorem 4 proved that min-weight SP-cycles ofΠ(n) are in one-to-one corre-
spondence with the spanning trees ofΞn(n). Therefore, by Lemma 1 we must prove
that the two types of ‘missing’ edges inP(n−1) correspond to theσn−1 arcs inΞ(n)
that originate from nodes whose label begins or ends withn.

Let a∈Π(n−1) and defineb ∈Π(n−1) andc∈Π(n) as follows

b := an−1 a1 · · ·an−2

c := a1 · · ·an−2 n an−1

Notice(na,nb) is an edge inΞn(n). Sincec is a rotation ofnb, this edge corresponds
to theσn−1 arc(na,c) in Ξ(n). However, the edge(a,b) is not inP(n−1).

Let a∈Π(n−1) and defineb ∈Π(n−1) andc∈Π(n) as follows

b := n a2 · · · an−1 a1

c := a2 · · · an−1 a1 n.

Notice(na,nb) is an edge inΞn(n). Sincec is a rotation ofnb, this edge corresponds
to theσn−1 arc(an,c) in Ξ(n). However, the edge(a,b) is not inP(n−1).

Therefore, spanning trees ofP(n−1) correspond to Hamilton cycles inΞn(n) that
do not useσn−1 arcs from nodes whose label begins or ends withn. �

An inversionin a∈ Π(n) is a pair (i, j) with i < j andai > a j . Theweak Bruhat
order ofSn is the transitive closure of the cover relation≺, wherea≺ b if a andb
differ by an adjacent-transposition anda has one fewer inversion thanb. The order is
visualized by drawing an edge fromb down toa if a≺ b. The order forn= 4 is given
in Figure (b) and is respected by the embedding ofP(4) in Figure 7 (a). In Section 3,
the spanning trees of the permutohedron can also be viewed astree sub-posets of the
weak Bruhat order ofSn.

13

3 Explicit Constructions

In Section 3.2 we define the min-weight periodic SP-cyclesB(n) andC(n) by pro-
viding two spanning trees of the permutohedron in Section 3.1.

3.1 Spanning Trees: DecrementingH (n) and DecreasingS (n)

In this subsection we define two spanning trees of the permutohedron. The spanning
trees are ‘rooted’ at the vertex labeledn n−1 · · · 1, and the parent-child relations in
the trees depend on the following definitions for a givena∈Π(n):

– The decrementing prefixis the longest prefix of the formn n−1 · · · j and the
incrementing symbolis j−1.

– Thedecreasing prefixis the longest prefixa1a2 · · ·ak such thata1 > a2 > · · ·> ak

and theincreasing symbolis ak+1.

The following pair of examples illustrate: (i) values in the(decrementing / decreasing)
prefix differ by (one / at least one), (ii) the (decrementing /decreasing) prefix begins
with (n / any symbol), and (iii) the (incrementing / increasing) symbol has the next
(value / index) compared to the (decrementing / decreasing)prefix

876
declining prefix

241
inclining symbol

53 8762
decreasing prefix

increasing symbol

4153 654321
inclining symbol

87 654321
decreasing prefix

increasing symbol

87.

In the case ofa = n n−1 · · · 1, the decrementing and decreasing prefixes include the
entire string, and the incrementing symbol and increasing symbol are undefined.

In thedecrementing spanning treeH (n), the parent of a non-root vertex is ob-
tained by swapping the incrementing symbol in its label to the left. In thedecreasing
spanning treeS (n), the parent of a non-root vertex is obtained by swapping the in-
creasing symbol in its label to the left. Since each non-rootvertex has a unique parent
whose label has one fewer inversion,H (n) andS (n) are spanning trees ofP(n) that
respect the weak Bruhat order onSn. Figure 9 shows (a)H (4) and (b)S (4).

4321

4312

3421

2431

4231

2413

4213

4123

2143

3241

2341

2314

2134

1234

1243

1324

1432

4132

1423

1342

3124

3142

3412

3214

4321

4312

3421

2431

4231

2413

4213

4123

2143

3241

2341

2314

2134

1234

1243

1324

1432

4132

1423

1342

3124

3142

3412

3214

(a) (b)

Fig. 9 (a) The decrementing spanning treeH (4), and (b) the decreasing spanning treeS (4) of P(4).

14

Now we characterize the children of vertices in these spanning trees. In both trees
we distinguish two types of children. Figure 10 illustratesthe neighborhood of the
vertex in (a)H (8) and (b)S (8) with previously discussed label 87624153.

In H (n) the children of vertexa∈Π(n) are obtained as follows:

– If ai is in the decrementing prefix and is neither the first nor last symbol ina, then
adecrementing childis obtained by swappingai to the right,

– If ai is the incrementing symbol andi < n, then theincrementing childis obtained
by swappingai to the right.

In S (n) the children of vertexa∈Π(n) are obtained as follows:

– If ai is in the decreasing prefix and is neither the first nor last symbol in this prefix,
then adecreasing childis obtained by swappingai to the right,

– If ai is the increasing symbol andi < n andai−1 > ai+1, then theincreasing child
is obtained by swappingai to the right.

(a) (b)

87624153 87624153

←→
78624153

←→
78624153

8
←→
6724153 8

←→
6724153876241

←→
35

87
←→
264153

8762
←→
1453

87624
←→
51 3 876

←→
42153

parent parent

decrementing children decreasing children
incrementing increasing

child child

Fig. 10 The neighborhood of the vertex 87624153 in (a) the decrementing spanning treeH (8), and (b)
the decreasing spanning treeS (8). The decrementing prefix and incrementing symbol of 87624153 are
shown in (a), and the decreasing prefix and increasing symbolof 87624153 are shown in (b).

The symbol forH (n) was chosen for its relationship to ‘half-hunts’. This bell-
ringing term refers to a sweeping motion made by a symbol through a permutation.
Figure 9 (b) illustrates the left-to-right motion of the symbol 4 in the paths rooted
from vertices whose labels begin with 4 inH (4). The symbol forS (n) was chosen
for its relationship to ‘scuts’. Thescutof a∈Π(n) is the shortest suffix ofa that is not
also a suffix ofn n−1 · · · 1 (see Williams [16]). Figure 9 (c) illustrates that subtrees
of S (4) contain each of the scuts: 421, 41, 4, 31, 3, and 2.

3.2 SP-Cycles: Bell-RingerB(n) and Cool-lexC(n)

From Theorem 6, the spanning trees defined in this section correspond to min-weight
periodic SP-cycles. The SP-cycle corresponding the decrementing spanning treeH (n−
1) is thebell-ringer SP-cycleB(n) of Π(n). The SP-cycle corresponding the decreas-
ing spanning treeS (n− 1) is thecool SP-cycleC(n) of Π(n). The SP-cycles are
named for their relationship to ‘half-hunts’ and their sub-permutations, respectively.
The rest of this article focuses on decoding the SP-cycles, generating the SP-cycles
and their sub-permutations, the binary representation ofB(n), and rankingB(n).

15

B(4) Π(4) next m d Theorem 7 C(4) Π(4) next m d Theorem 8
4 4321 σ4 4 1 m= n 4 4321 σ4 4 4 m= n
3 3214 σ4 4 4 m= n 3 3214 σ4 4 4 m= n
2 2143 σ3 3 3 2 2143 σ3 3 4
1 1423 σ3 3 4 1 1423 σ3 3 3
4 4213 σ4 4 4 m= n 4 4213 σ4 4 3 m= n
2 2134 σ4 4 4 m= n 2 2134 σ4 4 4 m= n
1 1342 σ4 2 4 d−1> m 1 1342 σ3 2 4
3 3421 σ3 3 4 3 3412 σ4 3 3 d = n−1 anda1 > an−1
4 4231 σ4 4 4 m= n 4 4123 σ4 4 2 m= n
2 2314 σ4 4 4 m= n 1 1234 σ4 4 4 m= n
3 3142 σ3 3 4 2 2341 σ3 2 4
1 1432 σ3 2 2 3 3421 σ3 3 4
4 4312 σ4 4 3 m= n 4 4231 σ4 4 2 m= n
3 3124 σ4 4 4 m= n 2 2314 σ4 4 4 m= n
1 1243 σ3 3 3 3 3142 σ3 3 4
2 2413 σ3 3 4 1 1432 σ3 2 4
4 4123 σ4 4 4 m= n 4 4312 σ4 4 3 m= n
1 1234 σ4 4 4 m= n 3 3124 σ4 4 4 m= n
2 2341 σ4 2 4 d−1> m 1 1243 σ3 3 4
3 3412 σ3 3 4 2 2413 σ4 3 3 d = n−1 anda1 > an−1
4 4132 σ4 4 4 m= n 4 4132 σ4 4 2 m= n
1 1324 σ4 4 4 m= n 1 1324 σ4 4 4 m= n
3 3241 σ3 3 4 3 3241 σ3 3 4
2 2431 σ3 2 3 2 2431 σ3 2 4

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Table 1 Memoryless decoding rules for the bell-ringer SP-cycle in (a)-(f), and the cool SP-cycle in (g)-(l)
with n−4. The SP-cycles are given in (a) and (g), their permutationsin (b) and (h), the difference between
successive permutations in (c) and (i), the values used in the decoding rules in (d)-(e) and (j)-(k), and the
reason for applyingσn according to the two theorems in (f) and (l).

4 Decoding the SP-Cycles

This section describes how to efficiently decode the SP-cycles defined in Section 3.
We provide decoding rules that take an arbitrary permutation in Π(n) and determines
the change,σn or σn−1, that creates the SP-cycle’s next permutation. The rules are
memorylesssince they can be applied in O(n)-time without requiring any additional
storage. The rules are presented in Theorems 7 and 8, and are illustrated by Table 1.

If a ∈ Π(n) andah = n, the decrementing substringis the decrementing prefix
of ahah+1 · · ·an and thedecreasing substringis the decreasing prefix ofahah+1 · · ·an.
For example, the decrementing and decreasing substrings in32518764∈ Π(8) are
876 and 8764, respectively.

Theorem 7 Supposea∈ Π(n) where m= max(a1,an) and d is the minimum value
in its decrementing substring. The permutation ofB(n) that followsa is

– aσn−1 if d−1≤m< n,
– aσn otherwise.

Proof Let nb be a rotation ofa, and letnc be a rotation ofaσn−1. Notice that(nb,nc)
is an edge inΞn(n). We must prove that(b,c) is an edge inH (n−1) if and only if
d−1≤m< n. This is proven by the following three observations:

1. c is a decrementing child ofb if and only if d≤m< n.
2. c is the incrementing child ofb if and only if d−1 = m< n andan = d−1.

16

3. c is the parent ofb if and only if d−1 = m< n anda1 = d−1. �

Theorem 8 Supposea∈ Π(n) where m= max(a1,an) and d is the last index in its
decreasing substring. The permutation ofC(n) that followsa is

– aσn−1 if m < n and either (i) d= n or (ii) d = n−1 and a1 < an−1,
– aσn otherwise.

Proof Let nb be a rotation ofa, and letnc be a rotation ofaσn−1. Notice that(nb,nc)
is an edge inΞn(n). We must prove that(b,c) is an edge inS (n− 1) if and only
if m < n and either (i)d = n or (ii) d = n−1 anda1 < an−1. This is proven by the
following three observations:

1. c is a decreasing child ofb if and only if m< n andd = n anda1 < an.
2. c is the increasing child ofb if and only if m< n andd = n−1 anda1 < an−1.
3. c is the parent ofb if and only if m< n andd = n anda1 > an. �

Theorems 7 and 8 providememoryless algorithmsthat require O(n)-time and
O(1)-memory to generate successive (i) symbols inB(n) or C(n), (ii) substrings or
permutations inB(n) orC(n), or (iii) bits in the binary representation ofB(n) orC(n).

5 Generating the SP-Cycles

In Sections 5.2 and 5.3 we determine the sub-permutations ofB(n) andC(n), respec-
tively. This leads to efficient algorithms in Section 5.4 that generate successive blocks
of the SP-cycles in constant amortized time. In Section 5.5 we reverse our investiga-
tion by discussing when an order ofΠ(n−1) can be ‘recycled’ into an SP-cycle for
Π(n). Several useful identities are first presented in Section 5.1.

5.1 Identities usingσ andτ

This subsection gives identities that facilitate our investigation of sub-permutations.
Each identity applies a series ofn permutations in{σn,σn−1} to a string of lengthn,
and equates this to applyingσ and/orτ to a string of lengthn−1. The first identity
is a special case of the second identity, but is stated separately due to its frequent use.

Lemma 2 The following identities hold for anya = a1 · · ·an−1:

1. (na)σ2
nσn−2

n−1 = n(aσn−1),
2. (na)σ2

nσ i
n−1σn−i−2

n = n(aσi+1) where1≤ i ≤ n−2,

3. (na)σ j+2
n σn−1σn− j−3

n = n(aτ j+1) where0≤ j ≤ n−3, and

4. (na)σ2
nσ i

n−1σ j−i
n σn−1σn− j−3

n = n(aσi+1τ j+1) where i≤ i < j ≤ n−2.

17

Proof Identities 2 and 3 are proven below on the left and right respectively

(na)σ2
n σ i

n−1σn−i−2
n (na)σ j+2

n σn−1σn− j−3
n

= (a2san−1na1)σ i
n−1σn−i−2

n = (a j+2san−1na1saj+1)σn−1σn− j−3
n

= (ai+2san−1na2sai+1a1)σn−i−2
n = (a j+3san−1na1saja j+2a j+1)σn− j−3

n

= na2sai+1a1ai+2san−1 = na1saja j+2a j+1a j+3san−1

= n(aσi+1) = n(aτ j+1).

Identity 1 is a special case of identity 2. Identity 4 is proven below.

(na)σ2
nσ i

n−1σ j−i
n σn−1σn− j−3

n

= (a2san−1na1)σ i
n−1σ j−i

n σn−1σn− j−3
n

= (ai+2san−1na2sai+1a1)σ j−i
n σn−1σn− j−3

n

= (a j+2san−1na2sai+1a1ai+2saj+1)σn−1σn− j−3
n

= (a j+3san−1na2sai+1a1ai+2saja j+2a j+1)σn− j−3
n

= na2sai+1a1ai+2saja j+2a j+1a j+3san−1

= n(aσi+1τ j+1). �

5.2 7-Order

In this subsection we prove that the sub-permutations of thebell-ringer SP-cycleB(n)
follow a new order that we call “seven order” and denote7-order. It is a recursive
method in which everya ∈ Π(n− 1) is expanded inton permutations inΠ(n) by
insertingn into every possible position ina. These insertions are done in a peculiar
order that is reminiscent the way the number seven is normally written.

Definition 1 By 7n we denote the7-order of Π(n). The list71 is the single string
1. The list7n is obtained from7n−1 by replacing eacha ∈ Π(n− 1) in the list as
follows: The first permutation isna, the second isan, and the remaining permutations
are obtained by moving then one position to the left until it is in the second position.

By Definition 1,72 = 21,12 and73 = 321,213,231,312,123,132 and the first
four permutations of74 are 4321,3214,3241,3421. Lemma 3 describes a generation
rule for transforming anyx ∈ Π(n− 1) into the next permutation in7n−1. We use
x ∈ Π(n−1) (instead ofa∈ Π(n)) since we refer to both Lemma 3 and Theorem 7
when proving Theorem 9. The rule is illustrated in Table 2 (b)-(h) for 74.

Lemma 3 Supposex = x1 · · ·xn−1∈Π(n−1) and h is the index such that xh = n−1.
If h = 2, then let xi := p be the minimum value in the decrementing prefix of x2 · · ·xn−1

and r be the index such that xr := p−1. The permutation that followsx in 7n−1 is

y =







xτh−1 if h > 2 (5a)

xσn−1 if h = 1 or (h = 2 and r= 1) (5b)

xσiτr−1 otherwise (h= 2 and r> 1). (5c)

18

B(5) 74 next h p i r Lemma 3 C(5) C4 next p Definition 2
54321 4321 σ4 1 h = 1 54321 4321 σ4 4 p = n−1
53214 3214 τ3 4 h > 2 53214 3214 σ3 3 x1 > xp
53241 3241 τ2 3 h > 2 52134 2134 σ2 2 x1 > xp
53421 3421 σ4 2 4 2 1 r = 1 51234 1234 σ3 2 x1 < xp
54213 4213 σ4 1 h = 1 52314 2314 σ3 3 x1 > xp
52134 2134 τ3 4 h > 2 53124 3124 σ2 2 x1 > xp
52143 2143 τ2 3 h > 2 51324 1324 σ4 3 x1 < xp
52413 2413σ2 τ3 2 4 2 4 r > 1 53241 3241 σ2 2 x1 > xp
54231 4231 σ4 1 h = 1 52341 2341 σ3 2 x1 < xp
52314 2314 τ3 4 h > 2 53421 3421 σ4 4 p = n−1
52341 2341 τ2 3 h > 2 54213 4213 σ3 3 x1 > xp
52431 2431 σ4 2 3 3 1 r = 1 52143 2143 σ2 2 x1 > xp
54312 4312 σ4 1 h = 1 51243 1243 σ3 2 x1 < xp
53124 3124 τ3 4 h > 2 52413 2413 σ3 3 x1 > xp
53142 3142 τ2 3 h > 2 54123 4123 σ2 2 x1 > xp
53412 3412 σ3 2 4 2 1 r = 1 51423 1423 σ4 3 x1 < xp
54123 4123 σ4 1 h = 1 54231 4231 σ2 2 x1 > xp
51234 1234 τ3 4 h > 2 52431 2431 σ4 4 p = n−1
51243 1243 τ2 3 h > 2 54312 4312 σ3 3 x1 > xp
51423 1423σ2 τ3 2 4 2 4 r > 1 53142 3142 σ2 2 x1 > xp
54132 4132 σ4 1 h = 1 51342 1342 σ3 2 x1 < xp
51324 1324 τ3 4 h > 2 53412 3412 σ3 3 x1 > xp
51342 1342 τ2 3 h > 2 54132 4132 σ2 2 x1 > xp
51432 1432 σ4 2 2 4 1 r = 1 51432 1432 σ4 4 p = n−1

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Table 2 Generating the bell-ringer SP-cycle in (a)-(h) and the coolSP-cycle in (i)-(m) withn = 5. The
SP-cycles are given in (a) and (i), their sub-permutations in (b) and (j), the difference between successive
sub-permutations in (c) and (k), the values used in the generation rules in (d)-(g) and (l), and the reason
for applying each generation rule in (h) and (m).

Proof We verify that (5) correctly follows Definition 1. Whenn−1 is not in the first
two positions ofx, it is moved one position to the left by (5a). Whenn−1 is in the
first position ofx, it is moved to the last position (5b). Whenn−1 is in the second
position ofx, there are two cases. In both cases the decrementing prefix ofx2 · · ·xn−1

is moved one position to the left by (5b) or (5c). Then the nextlargest symbolp−1
is either moved one position to the left by (5c) (ifp−1 was not in the first position
of x) or into the last position by (5b) (ifp−1 was in the first position ofx). �

Theorem 9 Sub-permutations of the bell-ringer SP-cycleB(n) are in7-order7n−1.

Proof Supposex is followed byy in 7n−1 andh, i, p, andr are defined according
to Lemma 3. We must show thatnxny appears inB(n). To do this we prove thatn
applications ofB(n)’s decoding rule in Theorem 7 will transformnx into ny. When
considering these applications we leta be the ‘current’ permutation (starting from
a = nx) and definemandd according to Theorem 7.

Case one:h > 2. The first two applications areσn sincem = n. The nexth− 2
applications areσn sinced = n andm< n−1. The next application isσn−1 sinced = n
andm= n−1. The remainingn−h applications areσn−1 sinced = n andm< n−1.
Thus,nx has been transformed into(nx)σh

nσn−1σn−h
n = n(xτh−1) by identity 3 in

Lemma 2. This is correct sincey = xτh−1 by (5a).
Case two:h = 1. The first two applications areσn sincem = n. The next ap-

plication is σn−1 since m = n− 1 and d = n− 1. The remainingn− 3 applica-
tions areσn−1 since m = n− 1 and d = n. Thus, nx has been transformed into

19

(nx)σ2
nσn−2

n−1 = n(xσn−1) by identity 1 in Lemma 2. This is correct sincey = xσn−1

by theh = 1 condition in (5b).
Case three:h = 2. The first two applications areσn sincem = n. The nexti −

1 applications areσn−1 since m = n− 1,n− 2,n− 3, . . . , p and d = n,n− 1,n−
2, . . . , p+ 1 during these applications, respectively. The current string now has the
suffix x2x3 . . .xix1. We also know thatx2x3 . . .xi = n−1n−2· · · p andxr = p−1. The
proof of this case now splits into two subcases.

Subcase one:r = 1. In this subcase, the decrementing substring of the current
string is x2x3 . . .xix1 and its minimum value isp− 1. If i = n− 1, then alln ap-
plications have already been considered. Otherwise, the next application isσn−1

sincem= p−1 andd = p−1. The remainingn− i−2 applications areσn−1 since
m= p−1 andd = p. Thus,nx has been transformed into(nx)σ2

nσn−2
n−1 = n(xσn−1)

by identity 1 in Lemma 2. This is correct sincey = xσn−1 by theh = 2 andr = 1
condition in (5b).

Subcase two:r > 1. In this subcase, the decrementing substring of the current
string isx2x3 . . .xi and its minimum value isp. Therefore, the nextr− i−1 applica-
tions areσn sincem< p−1 andd = p. The next application isσn−1 sincem= p−1
andd = p. The remainingn− r−1 applications areσn sincem< p−1 andd = p.
Thus,nx has been transformed into(nx)σ2

n σ i−1
n−1σ r−i−1

n σn−1σn−r−1
n = n(xσiτr−1) by

Identity 4 in Lemma 2. This is correct sincey = xσiτr−1 by (5c). �

5.3 Cool-lex Order

In this subsection we prove that the sub-permutations of thecool SP-cycleC(n) fol-
low a “cool-lex order”. The orderCn is acyclic prefix-shift Gray codeof Π(n), mean-
ing that successive permutations differ byσi for somei ∈ 〈n〉. By convention,Cn be-
gins withn · · · 1. Definition 2 gives the correctσi for transforming anyx ∈Π(n−1)
into the next permutation inCn−1. We usex ∈Π(n−1) (instead ofa∈ Π(n)) since
we refer to both Definition 2 and Theorem 8 when proving Theorem 10. The rule is
illustrated in Table 2 (j)-(m) forC4.

Definition 2 (Cool-lex order) Supposex ∈ Π(n−1) and p is the last index of the
decreasing prefix ofx2 · · ·xn. The permutation that followsx in Cn−1 is

y :=







xσn−1 if p = n−1 (6a)

xσp if p < n−1 andx1 > xp (6b)

xσp+1 otherwise (p < n−1 andx1 < xp). (6c)

We refer tocn as thecool-lex orderof Π(n). (Definition 2 is actually the inverse
of Definition 2.7 in [16], soCn would be described asreverse cool-lex orderin [16].)

Theorem 10 Sub-permutations of the cool SP-cycleC(n) are in cool-lex orderCn−1.

Proof Supposex is followed byy in Cn−1 and p is defined according to Definition
2. We must show thatnxny appears inC(n). To do this we prove thatn applications
of C(n)’s decoding rule in Theorem 8 will transformnx into ny. When considering

20

these applications we leta be the ‘current’ permutation (starting froma = nx) and
definemandd according to Theorem 8.

The first two applications areσn sincem= n. During the nextp−1 applications,
notice that the current string has suffixx1,x2x1,x2x3x1, . . . ,x2x3 · · ·xpx1, respectively.
Also, x2 > x3 > · · ·> xp. Therefore, either (i)d = n or (ii) d = n−1 anda1 < an−1.
Therefore, thesep−1 applications areσn. The proof is now divided into cases that
correspond to the cases in Definition 2.

Case one:p = n−1. In this case alln applications have already been considered.
Thus,nx has been transformed into(nx)σ2

n σn−2
n−1 = n(xσn−1) by identity 1 in Lemma

2. This is correct sincey = xσn−1 by (6a).
Case two:p< n−1 andx1 < xp. In this cased = n since the current string has suf-

fix x2x3 · · ·xpx1 andx2 > x3 > · · ·> xp > x1. Therefore, the next application isσn−1.
The remainingn−p−2 applications areσn sinced = n−2,n−3, . . . , p+1 during these
applications, respectively. Thus,nx has been transformed into(nx)σ2

nσ p
n−1σn−p−2

n =
n(xσp+1) by identity 2 in Lemma 2. This is correct sincey = xσp by (6b).

Case three:p< n−1 andx1 > xp. In this cased = n−1 since the current string has
suffixx2x3 · · ·xpx1 andx2 > x3 > · · ·> xp andxp < x1. Also notice that the first symbol
in the current string isxp+1. Therefore,a1 = xp+1 > xp = an−1 by the definition of
p. Therefore, the next application isσn. The remainingn− p−2 applications areσn

sinced = n−2,n−3, . . ., p+1 during these applications, respectively. Thus,nx has
been transformed into(nx)σ2

nσ p−1
n−1 σn−p−1

n = n(xσp) by identity 2 in Lemma 2. This
is correct sincey = xσp by (6c). �

5.4 Algorithms for Generating the SP-cycles

This subsection provides CAT algorithms for generating theSP-cycles and their sub-
permutations.Bell7 andCool are CAT algorithms that generate permutations in7-
order and cool-lex order, respectively. Since these ordersare the sub-permutations
of the SP-cycles,Bell7 andCool are also CAT algorithms that generate blocks of
the bell-ringer and cool SP-cycle, respectively. This is done by storing the current
permutation in an arraya whose first entry is never changed. Pseudo-code forBell7

andCool appear in Algorithms 1.
Both algorithms generate the sub-permutations recursively. To understandBell7,

recall Definition 1 and notice that line 6 moves symbolm to the end of the array, and
line 9 moves it back to its initial location one position at a time. To understandCool,
we must consider the recursive structure of cool-lex order (see Definition 2.4 in [16]).
The order starts with the permutationn−1 n−2 · · · 1, and then the scuts are ordered
by decreasing value of the first symbol, followed by increasing length. For example,
considerC4 in Table 2 (j). The first permutation is 4321, and the scut of every other
a∈ Π(4) is its shortest suffix that is not also a suffix of 4321. Observethat the scuts
— 4, 41, 421, 3, 31, 2 — are ordered by decreasing value of theirfirst symbol, and
then by increasing length. This recursive structure provides the prefix-shift Gray code
in Definition 2 by Theorem 2.1 in [16]. The outer loop inCool creates scuts of length
one with first symbol equal ton−1,n−2. . . ,2, and the inner loop increases the length
of these scuts until the permutation is returned to its original state ofn−1 n−2 · · · 1.

21

Procedure Bell7(m)
1: if m= n then
2: visit()
3: return
4: end
5: Bell7(m+1)
6: shift(n−m,n−1)
7: for i← n−2 down to n−m
8: Bell7(m+1)
9: ai ↔ ai+1

10: end

Procedure Cool(m)
1: visit()
2: for j ← 1 to m−2
3: shift(j,m−1)
4: for i←m−2 down to j
5: Cool(i)
6: ai ↔ ai+1
7: end
8: end

Algorithms 1: Bell7(2) visits permutations in7n−1 or blocks ofB(n). Cool(n) visits
permutations inCn−1 or blocks ofC(n). The global arraya0a2 · · ·an−1 := n n−1 · · · 1
must be initialized in both cases, andn is a global constant inBell7.

To complete the procedures in Algorithms 1, arraya = a0a1 · · ·an−1 must be ini-
tialized to contain the valuesn n−1 · · · 1, shift(i, j) must replace the array con-
tentsaiai+1 · · ·a j by ai+1 · · ·a jai , and the instructionai ↔ ai+1 must replaceaiai+1

by ai+1ai . Eachvisit can output a block of the SP-cycle or a sub-permutation by
callingoutput(a0a1 · · ·an−1) or output(a1a2 · · ·an−1), respectively.

Now we prove thatBell7 andCool improve upon the O((n)!)-time generation of
the direct SP-cycleD(n) in [12].

Theorem 11 Bell7(2) visits all (n−1)! permutations in7n−1 and all (n−1)! blocks
of B(n) in O((n−1)!)-time. Similarly,Cool(n) visits all (n−1)! permutations inCn−1

and all (n−1)! blocks ofC(n) in O((n−1)!)-time.

Proof The correctness of these algorithms was previously discussed.
If n = 2, thenBell7(2) makes onevisit at an expense of O(1) basic operations. If

n > 2, thenBell7(n−1) makesn−1 calls tovisit (from Bell7(n) on lines 5 and 8)
at an expense of O(n−1) basic operations (from lines 6 and 9). Thus, by induction
Bell7(2) runs in O(2!+3!+ · · ·+(n−1)!)-time, or simply O((n−1)!)-time.

Cool(m) callsvisit, and each outer loop iteration makesm−1− j recursive calls at
cost of O(m−1− j) basic operations. Thus,Cool(n) runs in O((n−1)!)-time. �

5.5 Recycling

Periodic SP-cycles are created by insertingn between successive permutations in an
ordering ofΠ(n−1). In this subsection we prove that most previously studied orders
of Π(n−1) cannot be ‘recycled’ in this way. On the other hand, we prove that the
permutations of any SP-cycle can be recycled.

Definition 3 If P = a,b, . . . ,z is an ordering ofΠ(n−1), thenP is recyclableif the
circular string (P) := nanb · · ·nz is an SP-cycle.

Theorems 9 and 10 proved that7-order and cool-lex order are recyclable, respec-
tively. On the other hand, Figure 1 (e) illustrates that 321,132, 312, 123, 213, 231 is
not recyclable due to the invalid substring 141 and repeatedcopies of 342. Theorem
12 proves that these two types of ‘errors’ are the only obstacles to being recyclable.

22

Theorem 12 Suppose P is an ordering ofΠ(n−1). P is recyclable if and only if the
following two conditions are satisfied:

– If a is followed byb in P and ai = b j , then i− j ≤ 1.
– If a is followed byb, andc is followed byd in P, and there is a j such that

a j+1 · · ·anb1 · · ·b j−1 = c j+1 · · ·cnd1 · · ·d j−1,

thena = c (and henceb = d).

Proof The first condition holds if and only if each substring of(P) is an(n−1)-
permutation of〈n〉. The second condition holds if and only if each substring of(P)
is distinct. Therefore, (P) is an SP-cycle if and only if both conditions hold. �

To illustrate Theorem 12, consider the lexicographic orderof Π(3) given below

123,132,213,231,312,321.

The first condition in Theorem 12 is not satisfied fora = 132 andb = 213. This is
because the symbola3 = b1 = 2 moves more than one position to the left froma to
b. Thus, recycling produces the invalid substring 242. Invalid substrings are avoided
by the Johnson-Trotter order in (1). However, the second condition of Theorem 12 is
not satisfied fora = 132,b = 312,c = 312,d = 321, andj = 2. This is because the
substring 23 appears in the same position inab andcd, and so recycling produces re-
peated substrings 243. The following lemma proves that recycling produces repeated
substrings in every adjacent-transposition Gray code.

Lemma 4 If P is a cyclic adjacent-transposition Gray code forΠ(n) with n > 2,
then P is not recyclable.

Proof There exist two successive permutationsa andb in P such thatb = aτ1. Let
c be the permutation that followsb in P. Notice thatc 6= bτ1 (otherwisec = a).
Therefore,a3a4 · · ·anb1 = b3b4 · · ·bnc1 and so (P) contains repeated substrings.�

Despite the large number of permutation orders that have been studied [14] [8],
the authors are aware of only two previously studied orders that could be recyclable.
One of these is the (reverse) cool-lex order from Section 5.3. The other is a prefix-
shift Gray code ofΠ(n−1) due to Corbett [3] that we denote byRn−1. The symbol
R refers to Corbett’s consideration of the “rotator graph”

−−→
Cay({σ2,σ3, . . . ,σn},Sn).

Conjecture 1Corbett’s prefix-shift Gray code of permutations [3] is recyclable. That
is, R(n) := (Rn−1) is an SP-cycle.

Although recyclable orders of permutations appear to be rare in the literature, the
following theorem proves that the permutations of any SP-cycle are recyclable. For
example, the permutations from SP-cycle Figure 1 (a) are 4321,3214, . . .,1432 and
so 5432153214· · ·51432 is an SP-cycle.

Theorem 13 (Re-recycling)If U is an SP-cycle ofΠ(n− 1) and P is its order of
permutations, then (P) is an SP-cycle ofΠ(n)

23

Proof P is a (σn-σn−1)-Gray code ofΠ(n− 1) by Corollary 1. Therefore,P satis-
fies the first condition of Theorem 12. To verify the second condition, supposea is
followed byb, andc is followed byd, and j is chosen such that

a j+1 · · ·anb1 · · ·b j−1 = c j+1 · · ·cnd1 · · ·d j−1. (7)

Sinceb ∈ {aσn,aσn−1} andd ∈ {cσn,cσn−1} we also have

b1 · · ·b j−1 = a2 · · ·a j andd1 · · ·d j−1 = c2 · · ·c j . (8)

Observe that (7), (8), anda,c∈Π(n) imply a = c (and henceb = d). �

Section 6.4 proves that the direct SP-cycle is ‘canonical’ in terms of Theorem 13.

6 Binary Representation of SP-cycles

This section focuses on binary representations. Section 6.1 examines periodic SP-
cycles, and Section 6.2 determines a recursive expression for binary(B(n)). Section
6.3 gives a loopless algorithm to generate (and output) the ’blocks’ of binary(B(n)).
Section 6.4 uses binary representations for a new characterization ofD(n).

4
32142

1
3

4
2

3
1

4
31241

2
3

4
1

3
2

0 0
1

1
0

0
0

1
0

0
1

100
1

1
0

0
0

1
0

0
1

1

4 3
2

1
4

2
1

3
4

2
3143

1

2
4

1
2

3
4

1
3 2

0 0
1

1
0

0
0

1
0

0
1100

1

1
0

0
0

1
0

0
1 1 0011100001000100011100

111
0
0
0
0
1
0
0
0
1
0
0
0
10

1001110000100010001110011100
001

00
01

00
01

11
00

11
1
0
0
0
0
1
0
0
0
1
0
0
0
1
01

00
11

10
00

01
000

1000
111

00B
1

00B300B
4

0
0
B

2

00B 6

0
0
B

5

0
0

B
1

1

00B3 1

0
0

B
4

1

0
0

B
2

1

001B6

0
0

B
5

1

R
5

R
5

R5

R
5

R
5

R 5

(a) (b) (c)

Fig. 11 (a)binary(B(4)) (outer) is visualized by rotatingB(4) (middle) three positions counter-clockwise
(inner), (b) blocks inbinary(B(4)) have the form 00Bi , and (c)binary(B(5)) is created by replacing each
00Bi in binary(B(4)) by R5001Bi .

Binary representations are visualized by aligning an SP-cycle with a copy of itself
rotated counter-clockwisen−1 symbols. In these visualizations, 1 or 0 is recorded for
aligned symbols that are equal or not equal, respectively. Figure 11 (a) illustrates this
visualization forbinary(B(4)). In general, thebinary representationof an SP-cycle
U for Π(n) is the circular stringB = binary(U) of lengthn! such that

bi := [[ui = ui+n−1]]

where theIversonianis defined by[[true]] := 1 and[[false]] := 0. As mentioned in
Section 1,binary(U) records 0 or 1 whenU ’s successive permutations differ byσn

or σn−1, respectively. To see why this is true, supposeU ’s substringui · · ·ui+n−2

is ‘missing’ the symbolm from 〈n〉. ThenU ’s permutationui · · · ui+n−2m is fol-
lowed by (i) ui+1 · · · ui+n−2 m ui = (ui · · · ui+n−2 m)σn if ui 6= ui+n−1, or (ii)
ui+1 · · ·ui+n−2 ui m= (ui · · · ui+n−2 m)σn−1 if ui = ui+n−1.

24

6.1 Binary Representation of Periodic SP-Cycles

If U is an SP-cycle forΠ(n), then theblocksof B= binary(U) are eachbi·n+1 · · ·bi·(n+1).
For example, the blocks ofbinary(B(4)) in Figure 11 (a) are 0011, 0001, 0011, 0011,
0001, and 0011, respectively. IfU is a periodic SP-cycle, thenσn is applied inU ’s
(σn,σn−1)-Gray code whenevern is the first or last symbol in the current permutation.
This leads to the following remark that is illustrated in Figure 11 (b) forbinary(B(4)).

Remark 2If U is a periodic SP-cycle forΠ(n), then its binary representation can be
expressed as

binary(U) = 00B100B2 · · ·00B(n−1)!,

where eachBi has lengthn−2. In other words, blocks inbinary(U) begin with 00.

The binary representations of the periodic SP-cycles discussed in this article can
be further restricted by translating the identities of Lemma 2 into blocks.

Remark 3If the ith and(i+1)st blocks in a periodic SP-cycleU for Π(n) arena and
nb, respectively, then theith block inbinary(U) is

1. 001n−2 if b = aσn−1.
2. 001i0n−i−2 if b = aσi+1 for 1≤ i ≤ n−2.
3. 000j10n− j−3 if b = aτ j+1 for 0≤ j ≤ n−3.
4. 001i0 j−i10n− j−3 if b = aσi+1τ j+1 for 1≤ i < j ≤ n−2.

The Θ(n) different blocks in identity 2 imply there areΘ(n) different blocks
in binary(C(n)). Likewise, theΘ(n2) different blocks in identities 1, 3, and 4 imply
there areΘ(n2) different blocks inbinary(B(n)). Thus, algorithms could pre-compute
these blocks when generatingbinary(B(n)) or binary(C(n)). In a broad-word sense
each of these blocks can be output in O(1)-time by the following identities

(001n−2)2 = 2n−2−1 (001i0n−i−2)2 = 2n−2−2n−2−i

(000j10n− j−3)2 = 2n− j−3 (001i0 j−i10n− j−3)2 = 2n−2−2n−2−i +2n− j−3.

6.2 Binary Representation of the Bell-Ringer SP-cycle

In this subsection we determine a recursive expression for the binary representation
of the bell-ringer SP-cycleB(n). Theorem 14 is illustrated forn = 5 in Figure 11 (b)
and (c). The theorem uses the following string of lengthn(n−2)

Rn := 001n−2
︸ ︷︷ ︸

σn−1

0n−11
︸ ︷︷ ︸

τn−2

0n−210
︸ ︷︷ ︸

τn−3

0n−3100
︸ ︷︷ ︸

τn−4

· · · 00010n−4
︸ ︷︷ ︸

τ2

. (9)

Theorem 14 The binary representation of the bell-ringer SP-cycle forΠ(n) is

binary(B(n)) = Rn 001B1 Rn 001B2 · · · Rn 001B(n−2)!, (10)

where00Bi is the ith block inbinary(B(n−1)) and Rn is defined in(9).

25

Proof We prove the following: If 00B is the block inbinary(B(n−1)) corresponding
to consecutive blocksn−1 a andn−1 b in B(n−1), thenRn 001B are the blocks in
binary(B(n)) corresponding to the blocks fromn n−1 a to n n−1 b in B(n).

Observe that if 0 and 1 are treated asσn−1 andσn−2, respectively, then 00 changes
n−1a into a2 · · · an−2 n−1 a1, andB changesa2 · · · an−2 n−1 a1 into n−1 b.

Consider the blockn n−1 a in B(n). By Definition 1,n−1 a is followed in7n−1

by applyingσn−1,τn−2,τn−3, . . . ,τ2. This changesn−1 a into a1 n−1 a2 · · · an−2 and
corresponds toRn in binary(B(n)) by Remark 3 and (9). Now consider the consecu-
tive blocksn a1 n−1 a2 · · · an−2 andn n−1 b in B(n). If 0 and 1 are treated asσn and
σn−1, respectively, then 001 changesn a1 n−1 a2 · · · an−2 into a2 · · · an−2 n n−1 a1

and by our earlier observationB changesa2 · · · an−2 n n−1 a1 into n n−1 b. �

6.3 Generating the Binary Representation of the Bell-Ringer SP-cycle

This subsection focuses on generating the blocks ofbinary(B(n)). BinaryBellCAT(n)
is the standard CAT algorithm for generating the(n−1)! multi-radix numbers in the
product space(n− 1)× ·· · × 2× 1 in co-lexicographic order (see Algorithm M in
Knuth [8] (pg. 2)) with additionaloutputs on lines 8-12, Similarly,BinaryBell(n)
is the standard loopless algorithm for generating the same multi-radix numbers in
the reflected Gray code (see Algorithm H in Knuth [8] (pg. 20))except for lines 6-
12. Pseudo-code forBinaryBellCAT andBinaryBell appear in Algorithms 2. Table 3
illustrates the progression of values inBinaryBellCAT(5) andBinaryBell(5). Notice
that theoutputs in Table 3 (d) and (j) matchbinary(B(5)) in Figure 3 (c).

Procedure BinaryBellCAT(n)
1: a1 · · · an−1← 0 · · · 0
2: loop
3: j ← 1
4: while aj = n− j−1 and j < n−1
5: aj ← 0
6: j ← j+1
7: end
8: if aj = 0 then
9: output(001n−2)

10: else
11: output(001j−10n−a j− j−110a j−1)
12: end
13: if j = n−1 then
14: return
15: end
16: aj ← aj+1
17: end

Procedure BinaryBell(n)
1: a1 · · · an−1← 0 · · · 0
2: d1 · · · dn−1← 1 · · · 1
3: f1 · · · fn−1← 1 · · · n−1
4: loop
5: j ← f1
6: if aj = 0 or aj = n− j−1 then
7: output(001n−2)
8: else ifdj = 1 then
9: output(001j−10n−a j− j−110a j−1)

10: else
11: output(001j−10a j 10n− j−a j−2)
12: end
13: if j = n−1 then
14: return
15: end
16: f1← 1
17: aj ← aj +dj

18: if aj = 0 or aj = n− j−1 then
19: dj ←−dj

20: f j ← f j+1
21: f j+1← j +1
22: end
23: end

Algorithms 2: BinaryBellCAT(n) andBinaryBell(n) generatebinary(B(n))’s blocks.

26

a1a2a3a4 j a j output a1a2a3a4 d1d2d3d4 f1 f2 f3 f4 j a j output
0000 1 0 00111 0000 +1+1+1+1 1234 1 0 00111
1000 1 1 00001 1000 +1+1+1+1 1234 1 1 00001
2000 1 2 00010 2000 +1+1+1+1 1234 1 2 00010
3000 2 0 00111 3000 −1+1+1+1 2234 2 0 00111
0100 1 0 00111 3100 −1+1+1+1 1234 1 3 00111
1100 1 1 00001 2100 −1+1+1+1 1234 1 2 00001
2100 1 2 00010 1100 −1+1+1+1 1234 1 1 00010
3100 2 1 00101 0100 +1+1+1+1 2234 2 1 00101
0200 1 0 00111 0200 +1−1+1+1 1334 1 0 00111
1200 1 1 00001 1200 +1−1+1+1 1334 1 1 00001
2200 1 2 00010 2200 +1−1+1+1 1334 1 2 00010
3200 3 0 00111 3200 −1−1+1+1 3234 3 0 00111
0010 1 0 00111 3210 −1−1−1+1 1244 1 3 00111
1010 1 1 00001 2210 −1−1−1+1 1244 1 2 00001
2010 1 2 00010 1210 −1−1−1+1 1244 1 1 00010
3010 2 0 00111 0210 +1−1−1+1 2244 2 2 00111
0110 1 0 00111 0110 +1−1−1+1 1244 1 0 00111
1110 1 1 00001 1110 +1−1−1+1 1244 1 1 00001
2110 1 2 00010 2110 +1−1−1+1 1244 1 2 00010
3110 2 1 00101 3110 −1−1−1+1 2244 2 1 00101
0210 1 0 00111 3010 −1+1−1+1 1434 1 3 00111
1210 1 1 00001 2010 −1+1−1+1 1434 1 2 00001
2210 1 2 00010 1010 −1+1−1+1 1434 1 1 00010
3210 4 0 00111 0010 +1+1−1+1 4234 4 0 00111
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Table 3 Successive values in (a)-(d)BinaryBellCAT(5) and (e)-(j)BinaryBell(5). Mixed-radix numbers
are in (a) and (e), blocks ofbinary(B(5)) in (d) and (j), directions in (f), and focus pointers in (g).

Theorem 15 BinaryBellCAT(n) and BinaryBell(n) output the successive blocks in
binary(B(n)) in amortized O(1)-time and worst-case O(1)-time, respectively.

Proof The strings in eachoutput can be computed and output in O(1)-time by Sec-
tion 6.1, so the run-times follow from Algorithm M and Algorithm H in [8].

The firstn−1 iterations of everyn iterations inBinaryBellCAT(n) have j = 1 and
a1 = 0,1, . . . ,n−3 on line 8, and so these iterations output 001n−2 on line 9 followed
by 0n−11,0n−210, . . . ,00010n−4 on line 11. During everynth iteration, j keeps track
of the level of recursion, and the 1j−1 on line 11 corresponds to the number of times
00B has been replaced by 001B in (10). Therefore, everyn iterations outputRn001B
as required by Theorem 14.BinaryBell(n) is similar to BinaryBellCAT(n) except
lines 6-7 account for the two extreme values ofa j , and lines 8-11 account for both
increasing and decreasing values ina j . �

6.4 Binary Representations and Recycling

This subsection investigates the effect of recycling on binary representations and the
direct SP-cycle in particular. The following lemma strengthens Theorem 13 by explic-
itly stating the binary representation of an SP-cycle that is obtained from recycling.

Lemma 5 If U is an SP-cycle ofΠ(n−1) with permutations P andbinary(U) =
b1 · · ·b(n−1)! , thenbinary((P)) is obtained by the morphism b→ 001n−3b. That is,

binary((P)) = 001n−3b1001n−3b2 · · ·001n−3b(n−1)!. (11)

27

Proof Supposea is the ith permutation inP and is followed byc. If bi = 0 then
c = aσn−1, and the corresponding block inbinary((P)) is 001n−2 = 001n−3bi by
identity 1 in Remark 3. Ifbi = 1 thenc = aσn−2, and the corresponding block in
binary((P)) is 001n−30 = 001n−3bi by identity 2 in Remark 3. �

Recycling leads to binary representations that have only two distinct blocks:
001n−2 and 001n−30 by (11). Further ‘re-recycling’ would lead to two distinct‘mega-
blocks’: 001n−1 001n−1 001n−20 · · · 001n−20 001n−2b for b∈ {0,1}. To utilize this
observation, Theorem 16 proves thatD(n) is the SP-cycle obtained by continual
recycling. To illustrate this fact, considerD(3) = 321312 (see [12]) andD(4) =
432142134132431241234231 from Figure 1 (d). Notice that the permutations of
D(3) are 321,213,132,312,123,231 and recycling these permutations givesD(4).

Theorem 16 If the permutations ofD(n−1) are P, thenD(n) = (P).

Proof If binary(D(n−1)) = b1 · · ·b(n−1)!, then equation (1) in [12] implies

binary(D(n)) = 001n−3b1001n−3b2 · · ·001n−3b(n−1)!. (12)

Notice that (12) is identical to (11). The base case isbinary(D(2)) = 00, which is the
only binary representation of an SP-cycle forΠ(2). �

In [12] a loopless algorithm similar toBinaryBell was given for generating suc-
cessive bits ofbinary(D(n)). By Theorem 16 and Lemma 5, we can modify this
algorithm to generate successive blocks ofbinary(D(n)). This is done by replacing
lines 6-12 ofBinaryBell with the following

b← [[(j even)⊕ (a j−d j ≤ 0 or a j −d j ≥ n−1− j)⊕ (j = n−1)]]
output(001n−3b)

The expression[[(j even)⊕ (a j − d j ≤ 0 or a j − d j ≥ n− 1− j)]] gives the bit that
was output in [12] (withn−1 replacingn) where⊕ is exclusive-or. This bit equals
the value ofb except onBinaryBell’s final iteration1 when j = n−1. Similar modifi-
cations allow for theoutput of ‘mega-blocks’ or ‘mega-mega-blocks’.

7 Ranking

In this section we show how to efficiently rank permutations in 7-order, as well as the
permutations obtained by decoding the bell-ringer SP-cycle.

7.1 Ranking7-order

Let R7(a) denote the rank of the permutationa∈Π(n) in 7n. If ak = n, then directly
from Definition 1 we have

R7(a1a2 · · ·ak−1nak+1 · · ·an)=







0 if n = 1,

n ·R7(a2 · · ·an) if k = 1,

n−k+1+n ·R7(a1a2 · · ·ak−1ak+1 · · ·an) if k > 1.

1 The algorithm in [12] complemented the final bit ofbinary(D(n)) by initializing fn fn−1 · · · f1 ←
n+1 n−1· · ·1; the initializationdndn−1 · · ·d1← 11· · ·1 should also have beendn+1dn · · ·d1← 11· · ·1.

28

Let inva(i) = |{ j > i|a j < ai}| denote the number of inversions inai · · ·an. For
i = 1,2, . . . ,n define

r i =

{

0 if inva(i) = i−1,

1+ inva(i) if inva(i) < i−1.

Then we can iterate our ranking recursion to obtain

R7(a) =
n−1

∑
j=0

rn− j · (n) j ,

where (n) j = n(n− 1) · · ·(n− j + 1) = n!/(n− j)! is the “falling factorial.” It is
well-known that the sequence of valuesinva(i) for i = 1,2, . . . ,n can be computed
in O(nlogn) comparisons (see ex. 6 in Knuth [9]), and thus we can compute the rank
usingO(nlogn) arithmetic operations (on numbers that can be as large asn!).

7.2 RankingB(n)

We can useR7 from Section 7.2 to efficiently rank the bell-ringer SP-cycle. This rank-
ing can be done with a single call toR7, a constant number of additional arithmetic
operations, andO(n) comparisons and assignments.

Givena∈Π(n), let R(a) denote the rank of the permutationa in B(n), or equiva-
lently the rank of its shorthand substringa1 · · ·an−1. We assumeR(n n−1 · · · 2 1) =
R(n n−1 · · · 2) = 0 since SP-cycles ‘start’ with the substringn n−1 · · · 2. Our com-
putation requires the consideration of several cases.

Suppose that we have been given one ofB(n)’s substringss. If n /∈ s (so that
s∈Π(n−1)), thenR(s) = 1+n ·R7(s). Otherwise, the substring has the form

s= a j+1 · · · an−1 n b1 · · · b j−1, (13)

wherea andb are two successive permutations in7n−1. The key to computingR is to
determinea. This is becauseR(a) = n ·R7(a), and soR(s) = 1+ j +R(a) where j is
defined by (13). We consider three cases. In these cases we letmbe the symbol from
〈n〉 that is ‘missing’ froms.

Case A: n− 1 6∈ {a j+1, . . . ,an−1}∪ {b1, . . . ,b j−1}. Here it follows thatn− 1 =
a1 = bn−1 and thus

a = n−1 b1 · · · b j−1 a j+1 · · · an−1.

Case B:n−1∈ {a j+1, . . . ,an−1}. Here we can conclude that

a = b1 · · · b j−1 m aj+1 · · · an−1.

Case C:n−1∈ {b1, . . . ,b j−1}. We consider two subcases.
Subcase C1:b1 6= n−1. Supposebh = n−1. Then

a = b1 · · · bh−1 bh+1 n−1 bh+2 · · · b j−1 m aj+1 · · · an−1.

29

Subcase C2:b1 = n−1. This is the most complicated (and interesting) case. The
permutationb will have the form

b = n−1 n−2 · · · d x1 x2 · · · xt d−1 y z, or

b = n−1 n−2 · · · d x1 x2 · · · xt d−1,

wheret > 0, and in the first formy is a symbol andz is a string. Then

a = x1 n−1 n−2 · · · d x2 · · · xt y d−1 z, or

a = d−1 n−1 n−2 · · · d x1 x2 · · · xt , respectively.

It should be evident that we can determineb from s (in O(n) time), but we omit here
the somewhat messy details of the various subcases that needto be considered. These
subcases depend on howd and j (from (13)) are related.

References

1. F. Chung, P. Diaconis, and R. Graham,Universal cycles for combinatorial structures, Discrete Mathe-
matics, 110 (1992) 43–59.

2. R.C. Compton and S.G. Williamson,Doubly adjacent Gray codes for the symmetric group, Linear and
Multilinear Algebra, 35 3 (1993) 237 - 293.

3. P. F. Corbett,Rotator Graphs: An Efficient Topology for Point-to-Point Multiprocessor Networks, IEEE
Transactions on Parallel and Distributed Systems, 3 (1992)622–626

4. A. Holroyd, F. Ruskey, and A. Williams,Faster Generation of Shorthand Universal Cycles for Per-
mutations, Proceedings of the 16th Annual International Computing and Combinatorics Conference,
COCOON 2010), Nha Trang, Vietnam, July 19-21, LNCS, 6196 (2010) 298–307.

5. B. Jackson,Universal cycles of k-subsets and k-permutations, Discrete Mathematics, 149 (1996) 123–
129.

6. R. Johnson,Universal cycles for permutations, Discrete Mathematics, 309 (2009) 5264-5270.
7. S. M. Johnson,Generation of Permutations by Adjacent Transpositions, Mathematics of Computation,

17 (1963) 282–285.
8. D.E. Knuth,The Art of Computer Programming, Volume 4, Generating All Tuples and Permutations,

Fascicle 2, Addison-Wesley, 2005.
9. D.E. Knuth,The Art of Computer Programming, Volume 4, Generating All Combinations and Parti-

tions, Fascicle 3, Addison-Wesley, 2005.
10. J. N. MacGregor and T. Ormerod,Human performance on the traveling salesman problem, Perception

& Psychophysics, 58 4 (1996) 527-539.
11. J. Page, J. Salvia, C. Collewetb, J.Foresta,Optimised De Bruijn patterns for one-shot shape acquisi-

tion, Image and Vision Computing, 23 (2005) 707720.
12. F. Ruskey and A. Williams,An explicit universal cycle for the(n−1)-permutations of an n-set, ACM

Transactions on Algorithms, 6 3 (2010) article 45.
13. E.R. Scheinerman,Determining planar location via complement-free de Brujinsequences using dis-

crete optical sensors, IEEE Transactions on Robotics and Automation, 17 6 (2001) 883–889.
14. R. Sedgewick,Permutation Generation Methods, Computing Surveys, 9 (1977) 137-164.
15. H.S. Sohn, D.L. Bricker, J.R. Simon and Y.C. Hsieh,Optimal sequences of trials for balancing prac-

tice and repetition effects, Behavior Research Methods, Instruments, & Computers, 29 (1997) 574–581.
16. A. Williams, Loopless Generation of Multiset Permutations Using a Constant Number of Variables

by Prefix Shifts, Proceedings of the Twentieth Annual ACM-SIAM Symposium onDiscrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6 (2009) 987–996.

17. A. Williams,Shift Gray Codes, PhD Thesis, University of Victoria, 2009.

