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Abstract

We present a deterministic algorithm for drawing Euler diagrams using n simple polygons so that
the regions have a prescribed area. Our solution works for all Euler diagrams that have a region
of common intersection (i.e., region {1, 2, . . . , n}), and for any weight function. When there is
no region for {1, 2, . . . , n}, the algorithm can still be applied, but will sometimes create an Euler
diagram where the curves are self-intersecting.
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1 Introduction

An Euler diagram is said to be area-proportional if the diagram’s regions have
areas that are directly proportional to a specified weight function. Figure 1
shows an area-proportional Euler diagram for three pos/neg tests for glaucoma
where, for example, the region representing the 7 patients who tested positive
exclusively with Retinal Test #1 has exactly twice the area of the region
representing the 14 patients who tested positive on all three tests.

When used for data visualization, area-proportional Euler diagrams lever-
age viewers’ perceptual capabilities (i.e., comparing areas) in addition to their
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Fig. 1. Conformance data for three glaucoma diagnostic tests; the region within a curve represents
patients who tested positive (adapted from an example by Artes and Chauhan [2]).

Fig. 2. An example of a 5-Venn diagram where all regions have equal area.

cognitive capabilities (i.e., reading labels). Although studies need to be per-
formed, it is believed that a “good” area-proportional Euler diagram should
be more effective at conveying information than a comparable standard Euler
diagram. Area-proportionality may also have applications to the general Euler
diagram generation problem. For example, Flower et al. [6] have developed a
hill-climbing algorithm that begins with an arbitrary Euler diagram and re-
peatedly applies small changes to increase the diagram’s suitability according
to various metrics. An area-proportional Euler diagram in which every region
has equal area (see Figure 2) may converge faster to a solution than one in
which the areas have a large variance.

At GD 2003, we presented algorithms for drawing area-proportional Euler
diagrams for two and three sets [4]. In this paper, we introduce a new algo-
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rithm for drawing area-proportional Euler diagrams for any number of sets.
We begin by introducing some definitions.

Definition 1.1 Let C = {c1, c2, . . . , cn} be a set of n simple closed curves in
the plane. Given any subset R ⊆ {1, 2, . . . , n}, let the region R be

region(R) =

⎧⎨
⎩

⋂
i∈R int(ci), if R �= ∅;

⋂n
i=1

ext(ci), if R = ∅,

where int(ci) and ext(ci) are the open interior and exterior of ci, respectively.

Let the regions of C be

regions(C) = {R | R ⊆ {1, 2, . . . , n} and region(R) is non-empty}

When the context is clear, we may refer to R by listing its enclosing curves
(e.g., region {1, 3, 4} ≡ region 134).

Definition 1.2 An Euler diagram for S ⊆ P({1, 2, . . . , n}) is a set C of at
most n simple closed curves in the plane such that

regions(C) = S ∪ {∅}

and
region(R) is connected for all R ∈ regions(C)

Since region(∅) is non-empty, we may omit ∅ from S.

Figure 3 shows an example of an Euler diagram for S = {1, 2, 3, 4, 15, 24, 124}.
Note that region ∅ is the unbounded portion of the plane.

Definition 1.3 A Venn diagram with n curves, referred to as an n-Venn
diagram, is an Euler diagram for S = P({1, 2, . . . , n}).

Figure 2 is an example of a 5-Venn diagram since it has regions for all 32
possible subsets of {1, 2, . . . , 5}.

Definition 1.4 An area-proportional Euler diagram for S ⊆ P({1, 2, . . . , n})
and weight function ω : S → R

+ is an Euler diagram for S such that

area(R1)

area(R2)
=

ω(R1)

ω(R2)
for any R1, R2 ∈ S\{∅},

where area(R) is a measure of region R’s area in some unit system.

Since region ∅ is unbounded, it is ignored when considering area-proportionality;
however, a specific area can be assigned to region ∅ by bounding the diagram
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Fig. 3. An example of an Euler diagram.

in a rectangle (or expanding the diagram’s perimeter if the smallest enclosing
rectangle yields too large an area).

In the above definitions, an Euler diagram’s curves can be any shape as
long as they are simple (i.e., do not self-intersect). Our algorithm produces
Euler diagrams where the curves are simple polygons.

We can now proceed to define the problem that this paper addresses.

Definition 1.5 The Area-Proportional Euler Diagram Problem consists of
the following input/output pair:

INPUT: S ⊆ P({1, 2, . . . , n}) and ω : S → R
+

OUTPUT: An area-proportional Euler diagram for S and ω.

2 Structure Generation

An Euler diagram defines certain relationships between the curves and the
regions. This section describes how to generate a representation of the struc-
ture of an Euler diagram so that, for example, the following questions can be
answered:

• Which curves intersect each other?

• Which regions does a curve pass through?

• Which regions are adjacent to each other?

Generating an Euler diagram’s structure becomes the first step in drawing
the diagram so we begin by defining what we mean by “the structure of an
Euler diagram.”
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Definition 2.1 Let C be an Euler diagram and define the projection of C to
be the set of points in the plane

proj(C) = {(x, y) | (x, y) ∈ ci for some ci ∈ C}

In other words, proj(C) is the union of C’s curves.

For example, to produce a projection of the Euler diagram in Figure 3, we
simply ignore the curves’ colors.

Definition 2.2 Let C be an Euler diagram and define the Euler Graph of C

to be the edge-labelled directed plane multigraph G(C) whose vertices are the
points of intersection 4 in proj(C) and whose edges are the curve segments in
proj(C). If a curve segment is a simple closed curve, then arbitrarily choose
a point on the curve to be a vertex.

Each edge is labelled by the curves that map to its respective segment.

The edges are oriented clockwise about their respective curves. In case of
a conflict, the edge is considered to be bidirectional.

Definition 2.3 Let C be an Euler diagram and define the Euler Dual of C to
be the vertex and edge-labelled directed plane multigraph G∗(C) where G∗(C)
is the planar dual of G(C).

Each edge is labelled the same as its corresponding edge in G(C), and each
vertex is labelled by the region represented by its respective face in G(C).

An edge e = (u, v) is directed u → v if label(v) ⊂ label(u), v → u if
label(u) ⊂ label(v), and u ↔ v if neither case holds.

Figure 4 shows the Euler Graph and Dual of the Euler diagram in Figure
3. Note how a clockwise traversal of a vertex in G∗(C) visits the dual edges
in the same order as a clockwise traversal of the associated face in G(C) visits
the non-dual edges.

Definition 2.4 Let G be a plane graph and define the planar map of G to
be the graph that results from omitting positional information from G while
preserving the cyclic order of edges about each vertex.

The planar maps of G(C) and G∗(C) encode important structural informa-
tion about C while omitting the curve coordinates, and they provide a useful
decomposition for solving the Area-Proportional Euler Diagram Problem:

Given regions S and weight function function ω,

4 p = (x, y) is a point of intersection if ∀ ε > 0, the disk centered at p of radius ε contains
three non-colinear points.
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Fig. 4. The Euler Graph and Dual of the Euler diagram in Figure 3.

(i) Construct a planar map of the Euler Graph whose dual vertices are
S;

(ii) Embed the planar map in the plane so that the face representing
region ∅ is the unbounded outer face and the bounded faces have
areas proportional to ω.

The first step generates the structure of the Euler diagram, and the second
step draws the Euler diagram. The following discussion describes a number
of methods for creating the planar map of an Euler Graph for which S =
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Fig. 5. Edwards’ construction of n-Venn diagrams for n = 3, 4, 5.

P({1, 2, . . . , n}) (i.e., the planar map of a Venn diagram). After describing
the process of drawing such diagrams, we will address the issue of how to
remove the unwanted regions.

In 1989, Anthony Edwards [5] published an iterative method for drawing
Venn diagrams for any number of curves. Edwards’ construction begins with
a base diagram for three curves. Additional curves are added one-at-a-time so
that they bisect every region and weave around the center circle (see Figure
5). The resulting diagram of n curves has 2n regions representing all possible
combinations of the curves.

Because of its iterative nature and simple rule for adding a curve, Edwards’
construction can be easily implemented in a program to generate the respective
planar map. All that is needed is a planar map data structure (e.g., an
adjacency list graph representation where the ordering of edges in the linked-
list is significant), and a routine for updating the adjacency list as each curve
is added. Since Edwards’ diagrams are planar graphs with 2n faces and degree
4 vertices, the resulting graph has 2n − 2 vertices and 2n+1 − 4 edges by an
application of Euler’s formula [7] (see Figure 6).

Another technique for generating the planar map of an Euler Graph with
all possible regions is to use symmetric chain decompositions of the Boolean
lattice [1]. Let SCD = {c1, c2, . . .} be the

(
n

�n/2�

)
chains of the degree n

Boolean lattice. Let cmin and cmax be the chains that contain ∅ and 12 · · ·n,
respectively. Construct a planar map of the Euler Dual by orienting each chain
from its maximal to minimal element, placing the chains side-by-side, and then

S. Chow, F. Ruskey / Electronic Notes in Theoretical Computer Science 134 (2005) 3–18 9



3

14

124
234

34

1234

134 4

2

1

2

3

4

5

6

78910

11

13 12

1

∅

12

23

24

13

123

14

Fig. 6. The Euler Graph and Dual for Edwards’ 4-Venn construction.

connecting the minimal element of each chain to ∅ and the maximal element
of each chain to 12 · · ·n. The dual of the planar map will be the planar map
of G(C) and will have 2n faces representing all the possible regions,

(
2

�n/2�

)
vertices, and 2n +

(
n

�n/2�

)
− 2 edges as shown in Figure 7.

3 Diagram Drawing

An Euler diagram is said to be ray monotone if there exists a point in region
{1, 2, . . . , n} from which all rays intersect each curve exactly once. The fol-
lowing generalization of results by Bultena et al. [3] establishes a connection
between the Euler Dual and ray monotonicity; they form the basis for our
drawing algorithm.

Lemma 3.1 An Euler diagram C is monotone if, and only if, G∗(C) is

acyclic and has a single source and a single sink.

Lemma 3.2 Let C be an Euler diagram with n curves and a region R =
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Fig. 7. A SCD construction of an Euler Graph for 4-Venn.

12 · · ·n. If C is monotone, there exists a ray monotone drawing of C such

that all rays emanating from a point in R intersect each curve exactly once.

Both Edwards’ and the symmetric chain decomposition construction pro-
duce monotone Euler diagrams. The following example, based on Edwards’
construction of 4-Venn (see Figure 6), illustrates how our drawing algorithm
works.

We begin by choosing any path in G∗ from the source to the sink and cut
the associated edges in G to form G′ (see Figure 8). Because G is monotone,
G′ will be an acyclic digraph.

Let TS = L1, L2, . . . , Lk be the layers of a topological sort of G′ = (V, E)
where Li ⊂ V is the set of minimal vertices (i.e., those for whom all in-edges
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Fig. 8. An arbitrary path in the dual and the associated cut in the graph of Figure 6.

have been visited), from the ith step of the sort. In our example,

TS = {1, 14}, {2}, {3}, {11}, {7}, {8},

{4, 12}, {5}, {6}, {13}, {9}, {10}.

Uniformly distribute 2k rays about a common point x and assign Li to ray
2i − 1. Draw a regular 2k-gon with area ω(12 · · ·n) (see Figure 9).

Because G is monotone, every region except ∅ and 12 · · ·n has a face
comprised of two directed paths; we will refer to a face’s source and sink as
the vertices where the paths diverge and converge, respectively (see Figure
10). We will also refer to one of the paths as the “free path” and the other as
the “fixed path”.

By drawing region 12 · · ·n first and visiting the remaining regions in the
topological order of G∗, we establish the invariant that when we draw region
R, all regions that have in-edges to R have been drawn and all regions that
have out-edges from R have not been drawn. In other words, one of the two
directed paths in R’s face will be fixed (the one that is part of the current
drawing), while the other path will be free to expand along the rays.
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Fig. 9. The drawing of region 1234 of Figure 6.
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Fig. 10. An example showing face 12’s two directed paths and source/sink.

Figure 11 shows the state of the diagram when region 12 is visited. Region
12’s source and sink define the rays along which its free path can expand. In
this example, we show a uniform expansion algorithm where the free path is
moved a distance δ along each ray. A formula for δ that yields the neces-
sary area is easily derived using trigonometry, and the resulting computation
requires the solution of a quadratic equation.

A drawback of uniform expansion is that the diagram becomes unnecessar-
ily jagged. A better solution is to smooth the free path by allowing δ to vary
from ray-to-ray. Although more complicated to derive, computing δ again
reduces to solving a quadratic equation. Figure 12 shows a 4-Venn diagram
where each region has equal area and a non-uniform δ is used.
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Fig. 11. The iterative drawing algorithm when R = 12.

Fig. 12. 4-Venn diagram with equal areas and non-uniform δ.

4 Structure Generation Revisited

In the previous sections, we described an algorithm that generates and draws
area-proportional Venn diagrams. What happens with the algorithm when it
tries to draw a region R for which ω(R) = 0?

In this case, the computation of the distance of the free path from the
fixed path yields δ = 0. In other words, the two paths overlap as shown in
Figure 13, and the face representing region R is empty (i.e., it doesn’t exist);
this is exactly what we want to represent ω(R) = 0. We’ll refer to this as
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compressing face R.

Because of the diagram’s monotonicity, segments of the same curve cannot
be present on both the free and fixed paths of a non-12 · · ·n face; therefore,
compressing the face cannot destroy the simplicity of the curve polygons,
and the result will be a valid Euler diagram. If face 12 · · ·n is compressed,
depending on which other faces have been compressed, a self-intersection may
result as shown in Figure 14.

Based on the above, we can think of an area-proportional Euler diagram
as being an area-proportional Venn diagram where some of the regions have
zero weight. To generate the structure of an Euler diagram, we first gener-
ate the structure of its associated Venn diagram. Then for each unwanted
region, we compress the associated face and update the dual. As long as
the region of common intersection remains, the resulting dual will represent
a valid monotone Euler diagram. The structure of the Euler diagram can be
post-processed (e.g., to remove some of the overlapping edges and seperate
high-degree vertices), and then fed back through the drawing procedure to
render an area-proportional Euler diagram as shown in Figure 15.

5 Conclusion

We have presented an algorithm that solves a large subset of the Area-Proportional
Euler Diagram Problem. The first step generates the structure of a monotone
Euler diagram for a given set of regions and is fundamental for solving many
other Euler diagram problems. The second step takes the structure and draws
it so that the regions have a specified area. Our solution works for all Euler
diagrams that have a region representing the intersection of all curves and for
all weight functions. Our method also yields heuristic solutions for many cases
where there is no region of common intersection.

Our focus has been on achieving area-proportionality largely without re-
gard for aesthetics. Since the drawings are designed to convey information,
aesthetics and usability are extremely important. There are a number of al-
gorithm parameters that can be altered in order to produce different drawings
(e.g., the structure generation algorithm, the ray placement, and the free path
drawing method). Some of our future work will involve exploring how these
parameters affect the final drawing with the goal to determine a strategy for
selecting the parameters that produce the “best” result. Further study is
needed to ascertain which features of a diagram might make it the “best”
representation of of a given data set; in all likelihood, this will depend on the
context/application in which the diagram is used.

Readers are encouraged to try our implementation of the algorithm which is
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Fig. 13. Compressing the face highlighted with yellow.
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Fig. 14. An example of two compressions of region 1234: The first is valid, the second introduces
a self-intersection because region {blue,red,green} is also compressed.

Fig. 15. An Euler Diagram for S = {1, 12, 123, 1234}.
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available at the authors’ website: http://theory.cs.uvic.ca/venn/DrawEuler/.
The screen shots that appear in this paper were captured from this application.
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