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While working at the Berlin Academy, the renowned Swiss mathematician

Leonard Euler was asked to tutor Frederick the Great’s niece, the Princess

of Anhalt-Dessau, in all matters of natural science and philosophy [15]. Eu-

ler’s tutelage of the princess continued from 1760 to 1762 and culminated in

the publishing of the popular and widely-translated “Letters to a German

Princess” [8]. In the letters, Euler eloquently wrote about diverse topics

ranging from why the sky was blue to free will and determinism.

In his lesson on categorical propositions and syllogisms, Euler used dia-

grams comprised of overlapping circles; these diagrams became known as Eu-

lerian circles, or simply Euler diagrams. In an Euler diagram, a proposition’s

classes are represented as circles whose overlap depends on the relationship

established by the proposition. For example, the propositions

All arachnids are bugs

Some bugs are cannibals

can be represented by Fig. 1.

In 1880, a Cambridge priest and mathematician named John Venn pub-

lished a paper studying special instances of Euler diagrams in which the

classes overlap in all possible ways [25]; although originally applied to logic

reasoning, these Venn diagrams are now commonly used to teach students

about set theory. For example, the Venn diagram in Fig. 2 shows all the

ways in which three sets can intersect. The primary difference between Venn

1



(C)annibals

(B)ugs

(A)rachnids

Figure 1: An example of an Euler diagram.

and Euler diagrams is how they represent empty sets (e.g., the set of arach-

nids which are not bugs in the example of Fig. 1). In an Euler diagram,

regions representing empty sets are omitted, while in Venn diagrams they

are included but denoted by shading.

Informally, an n-Venn diagram is a set of n simple, closed curves that

subdivide the plane into 2n connected regions with each region uniquely

mapping to a subset of the n curves depending on which curves enclose

it. The regions are usually referred to by their enclosing curves. For ex-

ample, the 3-Venn diagram in Fig. 2 with curves {A,B, C} has regions

{∅, A,B, C, AB, AC, BC,ABC}. If an n-Venn diagram’s curves are equiva-

lent to each other modulo translations, rotations, and reflections, then the

diagram is referred to as a congruent n-Venn diagram.

In recent years, there has been renewed interest in studying the combi-

natorial and geometric properties of Venn diagrams [6, 22]. Of paramount

importance is how to draw a Venn diagram for a given number of sets. John

Venn proposed an iterative algorithm in his original Venn paper [25]; unfortu-

nately, the resulting drawings lacked an aesthetic appeal. In 1989, Anthony

Edwards developed an elegant method for drawing n-Venn diagrams that

produced highly symmetric drawings [5]. Figure 3 shows a comparison of

5-Venn diagrams drawn using Venn’s and Edwards’ algorithms.
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Figure 2: A Venn diagram that represents the Euler diagram in Fig. 1 by

shading the missing regions.
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Figure 3: A 5-Venn diagram drawn iteratively using Venn’s and Edwards’

algorithms; the last curve drawn is highlighted.
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(b)(a)

Figure 4: (a) A symmetric 5-Venn diagram using ellipses and (b) a 6-Venn

diagram using triangles.

An interesting problem popularized by Grünbaum [11, 12, 13, 14] is to

consider which Venn diagrams can be drawn using specific shapes. Figure 2

shows a 3-Venn diagram comprised of circles; a natural question to ask is if

such a diagram exists for four sets. It turns out the answer is no, and this can

be proved easily using Euler’s formula (V = E−F +2) and noting that such

a diagram must have 24 = 16 faces and that two circles can intersect at at

most two points [22]. Figure 4 shows examples of Venn diagrams drawn using

ellipses [11] and triangles [3]. The diagram in Fig. 4(a) is special because it

is an example of a symmetric Venn diagram; that is, a diagram with n-fold

rotational symmetry and (necessarily) congruent curves. Symmetric Venn

diagrams exist if and only if n is prime [10].

On his “Math Recreations” web site [24], Mark Thompson proposed the

novel problem of finding Venn polyominoes (from now on referred to as n-

polyVenns); these are Venn diagrams whose curves are the outlines of poly-

ominoes. Polyominoes, or n-ominoes, are a generalization of dominoes (2-

ominoes) whereby shapes are formed by gluing together n unit squares. One
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can also think of a polyomino as being the result of cutting a shape from

a piece of graph paper where the cuts are made along the lines. Thomp-

son found examples of congruent n-polyVenns for n = 2, 3, 4, and using a

computer search, we found a congruent 5-polyVenn; these are shown in Fig.

5.

In the remainder of this paper, our focus is on minimizing the total area

of the drawing (relative to a scaling factor). We present some examples that

minimize area according to various additional constraints. At present, these

examples do not generalize and so we develop an algorithm that comes close

to minimizing the area. The algorithm is simple and utilizes symmetric chain

decompositions of the Boolean lattice. We also provide asymptotic results

that relate the area required by the algorithm’s diagrams to the theoretical

minimum area. We conclude by presenting some open problems related to

Venn polyominoes and other shape-constrained Venn diagrams.

Polyominoes

A polyomino is an edge-connected set of unit squares, called cells, embedded

in the plane. Polyominoes are often classified by area and referred to as n-

ominoes when they contain n cells. For example, the games of dominoes and

Tetris are played with 2-ominoes and 4-ominoes (tetrominoes), respectively

(see Fig. 6).

Polyominoes have been extensively studied and have a wide-range of ap-

plications in mathematics and the physical sciences [9, 17]. The problem of

counting n-ominoes has garnered considerable interest [16, 19, 21], and al-

though counts up to 47-ominoes are known (see sequence A001168 [23]), the

problem of finding a formula for the number remains open.

Several other subclasses of polyominoes have been defined. Free poly-

ominoes treat polyominoes that are translations, rotations, or reflections of

each other to be equivalent whereas fixed polyominoes only consider trans-

lations as being equivalent. For example, Fig. 6 shows the 19 equivalence

classes of fixed tetrominoes and 5 equivalence classes (a,b,c,d, and e), of free
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Figure 5: (a)–(c) Mark Thompson’s congruent n-polyVenns for n = 2, 3, 4

and (d) the authors’ congruent 5-polyVenn; in each case, curve A is high-

lighted.
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Figure 6: All possible 4-ominoes (tetrominoes)
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(c) convex(a) column−convex

not row−convex

(b) row−convex

not column−convex

Figure 7: 10-ominoes that exhibit different convexivity properties.

tetrominoes.

If every column (row) of a polyomino is a contiguous strip of cells then

the polyomino is called column-convex (row-convex ). A convex polyomino is

one that is both column and row convex (see Fig. 7). No closed-form formula

is known for the number, a(n), of fixed column-convex n-ominoes; however,

Pólya [20] derived the recurrence relation a(n) = 5a(n − 1) − 7a(n − 2) +

4a(n− 3) with a(1) = 1, a(2) = 2, a(3) = 6, and a(4) = 19.

Minimum Area n-polyVenns

An n-polyVenn is a Venn diagram comprised of n curves, each of which is

the perimeter of some polyomino. In particular, each polyomino must be

free of holes in order for the perimeter to be a simple, closed curve, and

when placed on top of another polyomino, may not partially cover any of

the bottom polyomino’s cells (i.e., the corners of the curves must have unit

coordinates).

Referring to the examples in Fig. 5, we see that an n-polyVenn can be

drawn by tracing the curves on the lines of a piece of graph paper; in the

(combinatorial) graph drawing community, this is referred to as an orthogonal

grid drawing [2]. In fact, any orthogonal grid drawing of a Venn diagram will

produce curves that are the perimeters of polyominoes. A bit of thought

should convince you that each of an n-polyVenn’s 2n regions must contain at

least one cell; therefore, the minimum area for such a diagram is 2n− 1 cells
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(−1 since the empty set region is the exterior). In addition, since each curve

encloses 2n−1 regions, it must be the perimeter of at least a 2n−1-omino. This

leads us to the following definition of a minimum area n-polyVenn:

Definition

A minimum area n-polyVenn is an orthogonal unit-grid drawing of a

Venn diagram with area 2n − 1 and whose curves have area 2n−1.

All the Venn diagrams in Fig. 5 are minimum area congruent n-polyVenns.

By trial-and-error, we have also found minimum area non-congruent

n-polyVenns for n = 6, 7 (see Figs. 8,9). It is unknown if minimum area

n-polyVenns exist for n ≥ 8, although we suspect there is an upper limit due

to the rigid constraints of orthogonal grid drawings.

Orthogonal grid drawings of Venn diagrams were first studied by Eloff

and van Zijl [7]; they developed a heuristic algorithm based on a greedy in-

cremental approach. An optimization step in the algorithm attempted to

reduce the overall area of the diagram, but there was no upper bound. In

addition, their algorithm produced polyominoes with holes, so the result-

ing diagrams would not be considered Venn diagrams in the formal sense

(because the sets were not represented by simple, closed curves).

In the following sections, we present algorithms for approximating min-

imum area n-polyVenns. The first algorithm is trivial and produces n-

polyVenns with less than 3/2 times the minimum area. The second algo-

rithm improves upon the first by using symmetric chain decompositions of

the Boolean lattice and produces n-polyVenns whose areas are asymptotically

minimum.

There is another definition of area based on the w × h bounding box

that contains an n-polyVenn; such a box must also have at least one cell

to represent the empty set. For example, the n-polyVenns in Fig. 5 are

contained by 4 × 1, 2 × 5, 5 × 5, and 7 × 7 bounding boxes, respectively.

Since an n-polyVenn must be comprised of at least 2n − 1 cells, a bounding

box must have area at least 2n. This leads us to the following definition of a
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Figure 8: A minimum area 6-polyVenn.
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Figure 9: A minimum area 7-polyVenn.
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minimum bounding box n-polyVenn:

Definition

A minimum bounding box n-polyVenn is an orthogonal unit-grid drawing

of a Venn diagram that is enclosed by a 2s × 2t rectangle

where s + t = n.

Of the congruent n-polyVenns in Fig. 5, only (a) is a minimum bounding

box n-polyVenn. Figure 10 shows some examples of minimum bounding box

non-congruent n-polyVenns.

At present, we leave minimum bounding box n-polyVenns and focus the

rest of this paper on minimum area n-polyVenns.

A 3/2-APPROX Algorithm

This algorithm is best explained by way of an example. Suppose we wish to

draw a 5-polyVenn with the curves {A,B, C, D, E}. We begin by drawing

a 1 × 14 rectangle and labelling it as region ABCDE; in other words, the

curves are 1 × 14 rectangles stacked on top of each other. We now place 30

cells around the perimeter of ABCDE and uniquely label them with the 30

remaining non-empty regions; the result is shown in Fig. 11. After adding

the perimeter cells, each curve becomes a polyomino formed by the original

1× 14 rectangle with “bumps” wherever the curve encloses a perimeter cell.

In the general case, this algorithm will produce an n-Venn polyomino

beginning with a 1× (2n−1− 2) rectangle that has a perimeter of 2n− 2 (for

the 2n regions less the empty and full sets). The resulting diagrams have an

area of 2n +2n−1−4 which is less than 3/2 times the minimum area of 2n−1.

An Asymptotically Optimal Algorithm

The previous algorithm can be significantly improved by noting that not all

regions need to be placed adjacent to the initial rectangle; instead, if region

X is a subset of region Y then X can be placed directly above or below Y
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ABDABEACDACEADEBCDBCEBDECDEABCDABCEABDEACDEBCDE

Figure 11: A näıve approximation for a minimum area 5-polyVenn; curve A

is highlighted

(depending on if Y is above or below the initial rectangle), and the curves

will remain as polyomino perimeters. This chaining of regions can continue

as long as the subset property is maintained. Figure 12 shows an example

of 5-polyVenn that chains regions as much as possible. Note also that the

resulting polyominoes are column-convex.

When regions are chained, a smaller perimeter is needed for the initial

rectangle and so the total area of the diagram is reduced. A smaller area

diagram is created by minimizing the number of chains, so the question arises

as to the best way to decompose the regions into chains; for this question,

we need to use a result from the theory of partially ordered sets.

Given a set S with powerset P(S), we define the partially ordered set

(poset) B(S) with elements P(S) ordered by inclusion. Since B(S) is closed

under union, intersection, and complement, it is a Boolean lattice. Figure

13(a) shows an example of B({A,B,C, D}).
Let |S| = n. A symmetric chain decomposition (SCD) of B(S) is a

partition of S into
(

n
bn/2c)

)
symmetric chains. Each symmetric chain is a

sequence of subsets x1, x2, . . . , xt with the following properties:

xi ⊂ xi+1 for all 1 ≤ i < t, (1)

|xi| = n− |xt−i+1| for all 1 ≤ i ≤ dt/2e. (2)

Symmetric chain decompositions form an essential ingredient of the recent

proof of Griggs, Killian and Savage [10] that symmetric Venn diagrams exist

if and only if the number of curves is prime.
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Several algorithms exist for decomposing B(S) into symmetric chains;

we describe two of these algorithms below. The first, due to de Bruijn,

van Ebbenhorst Tengbergen, and Kruyswijk [4] is called the Christmas tree

pattern by Knuth [18]. It is an inductive construction that creates a set Tn

of
(

n
bn/2c

)
chains. Initially T1 = {∅ ⊂ {1}}. To obtain Tn from Tn−1, take

each chain x1 ⊂ x2 ⊂ · · · ⊂ xt in Tn and replace it with the two chains

x2 ⊂ · · · ⊂ xt and x1 ⊂ x1∪{n} ⊂ x2∪{n} ⊂ · · · ⊂ xt∪{n} in Tn+1 if t > 1.

If t = 1 the first chain is empty and is ignored.

A second method, due to Aigner [1], can be described as a greedy lexico-

graphic algorithm. It is efficient and easy-to-implement, and is the method

that we used in creating the example diagrams. Let m(x, y) be the smallest

element in a set x that is not in the set y, where m(x, y) = −∞ if x ⊂ y.

We say that x is lexicographically smaller than y if m(x, y) < m(y, x). In

Aigner’s algorithm, the following process is repeated until every element of

B({1, 2, . . . , n}) is contained in some chain. For k = 0, 1, 2, . . . , n, denote by

R(k) the set of subsets of {1, 2, . . . , n} size k that are not yet in any chain.

Let j be the smallest value for which R(j) is non-empty and let x be the

lexicographically smallest set in R(j). The set x becomes the smallest set in

a new chain x = x1 ⊂ x2 ⊂ · · · ⊂ xt. The successive elements of this chain

are obtained by taking xi+1 ∈ R(i + 1) to be the lexicographically smallest

set that contains xi. It is by no means obvious that this algorithm is correct,

but indeed it is!

Because of their subset property (1), the symmetric chains can be di-

rectly used to layout the regions of an n-polyVenn. Figure 13(b) shows the

SCD of B({A,B, C,D}) that is produced by Aigner’s algorithm, and Fig.

13(c) shows the resulting 4-polyVenn. The 5-polyVenn in Fig. 12 was also

produced from Aigner’s SCD of B({A,B,C,D,E}).
In the general case, this algorithm will produce an n-polyVenn beginning

with a 1 × (
(

n
bn/2c

) − 2)/2 rectangle that has a perimeter of
(

n
bn/2c

)
. The

resulting diagrams have an area of (
(

n
bn/2c)−2

)
/2 + 2n − 2. By using Stir-

ling’s approximation of
(

n
n/2

) ∼ 2n/
√

πn/2, one can show that the algorithm
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produces diagrams whose area is 1 + O(1/
√

n) times the minimum area of

2n−1; therefore, as n increases, the approximation gets asymptotically close

to optimal.

Open Problems and Final Remarks

To close the paper, we list some open problems that are inspired by the

examples in this paper. With the exception of the congruent n-polyVenns,

the examples in this paper were constructed by hand, and it is very likely

that relatively näıve programs will be able to extend them. Such extension

would be interesting, but even more interesting would be general results that

apply for arbitrary numbers of curves.

1. Are there congruent n-polyVenns for n ≥ 6? Figure 5 shows that they

exist for n = 2, 3, 4, 5.

2. Is there a 5-polyVenn whose curves are convex polyominoes? (The

curves in Figure 5(d) are not both row-convex and column-convex poly-

ominoes.)

3. Are there minimum bounding box n-polyVenns for n ≥ 6? Figure 10

shows that they exist for n = 2, 3, 4, 5.

4. Are there minimum area n-polyVenns for n ≥ 8? Figure 9 shows one

for n = 7.

5. One problem for which we have not attempted solutions is the con-

struction of n-polyVenns that fill an w×h box, where wh = 2n− 1. Of

course, a necessary condition is that 2n − 1 not be a Mersenne prime.

For example, is there are 4-polyVenn that fits in a 3× 5 rectangle or a

6-polyVenn that fits in a 7× 9 or 3× 27 rectangle?
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