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Abstract. For each n ≥ 4 we show how to construct simple Venn di-
agrams of n curves embedded on the sphere with the following sets of
isometries: (a) a 4-fold rotational symmetry about the polar axis, to-
gether with an additional involutional symmetry about an axis through
the equator, and (b) an involutional symmetry about the polar axis to-
gether with two reflectional symmetries about orthogonal planes that
intersect at the polar axis. In both cases (a) and (b) the order of the
group of isometries is 8.
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1 Introduction

In set theory Venn diagrams are usually used to illustrate the relationship be-
tween different sets. Formally, an n-Venn diagram is defined as a collection of
n finitely intersecting simple closed curves, C = {C1, C2, . . . , Cn}, such that for
each S ⊆ {1, 2, . . . , n} the region⋂

i∈S
interior(Ci) ∩

⋂
i/∈S

exterior(Ci)

is nonempty and connected [4]. A Venn diagram is simple if no more than two
curves intersect at any given point of the diagram.

Because of their aesthetic aspects and ease of understanding, symmetric Venn
diagrams are appealing. The most well known Venn diagram is three circle di-
agram which has a 3-fold rotational symmetry (as well as some other reflective
symmetries. Venn himself discovered a 4-Venn diagram with reflective symmetry
[8]. It is well known that to have a n-fold rotationally symmetric Venn diagram
of n curves, n needs to be a prime number [5, 9]. Griggs, Killian and Savage [3]
recently proved that rotationally symmetric Venn diagrams exist for any prime
number of curves. The resulting diagrams, however, are highly non-simple.

As a planar graph, any Venn diagram can be embedded on a sphere. Because
of the richer set of isometry groups of the sphere, it is natural to search for
spherical Venn diagrams with different types of isometry. Anthony Edwards was
perhaps the first one to notice that some Venn diagrams could be drawn on the
sphere with non-trivial symmetries [1]. A detailed study of the symmetries of
Venn diagrams on the sphere was initiated by Mark Weston [10], and Ruskey and
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Weston [7] showed that, for any n and any order 2 isometry of the sphere, there
is a Venn diagram achieving that isometry. An exhaustive search has revealed
that there are exactly 22 and 6 simple monotone spherical 6-Venn diagrams with
isometry groups of order four and eight, respectively [6].

We utilize Edwards’ construction of symmetric Venn diagrams on the sphere
after first introducing a new variant of Venn diagrams. Let D be a collection of
n simple open curves B = {B1, B2, . . . , Bn} in the strip of the plane bounded by
two vertical lines, L on the left and R on the right, such that each curve has one
endpoint on L and the other endpoint on R. The two regions of the strip below
and above a curve are called the interior and exterior of the curve, respectively.
The collection D is called a bounded n-Venn diagram if for each S ⊆ {1, 2, . . . , n}
there is exactly one non-empty region of form⋂

i∈S
interior(Bi) ∩

⋂
i/∈S

exterior(Bi). (1)

Observe that in a bounded Venn diagram each curve must intersect every
other curve at least once. The two vertical bounding lines L and R are called the
left bound and right bound of the diagram. A bounded Venn diagram is simple
if no three curves intersect at any point of the diagram and the intersection
points with L and R are distinct. Here we are dealing only with simple diagrams
unless otherwise specified. Figure 1 shows a bounded Venn diagram of three
curves. A boundary vertex is a point of the diagram at which the left or right
bound intersect one of the curves. The rest of the intersection points in the
diagram are called (internal) vertices. Each bound intersects a curve in exactly
one point, so there are 2n boundary vertices in a bounded Venn diagram of n
curves. Furthermore, we will assume, without loss of generality, that the set of
y coordinates of the boundary vertices on L is exactly the same as the set of y
coordinates of the boundary vertices on R. Each simple bounded Venn diagram
V induces a permutation ρ(V ) which indicates the order that the curves hit the
right bound. The permutation is determined by labeling the vertices 1, 2, . . . , n
from top to bottom along L and then reading off the permutation from top to
bottom along R. If ρ(V ) is an involution, then it is called an involutional bounded
Venn diagram. The bounded 3-Venn diagram of Figure 1 is not involutional since
it induces the circular permutation (1 2 3).

In the remainder of this paper, we first review Edwards’ construction of
symmetric Venn diagrams on the sphere and discuss bounded Venn diagrams in
more detail in Section 2. Then in Section 3 we provide general constructions of
involutional simple bounded Venn diagrams which are symmetric under rotation
by 180 degrees, and use these to construct Venn diagrams with isometries of order
eight on the sphere.

2 Simple bounded Venn diagrams

Giving a general construction of simple Venn diagrams on the plane, Anthony
Edwards observed that it is possible to draw these diagrams on the sphere with
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Fig. 1: A simple bounded Venn diagram of three curves.

some additional symmetries. Edwards’ construction starts with a circle of longi-
tude as the first curve. The 2-Venn diagram is obtained by adding another lon-
gitudinal circle orthogonal to the previous one. Adding the equator as the third
curve creates a simple symmetric 3-Venn diagram. Subsequent curves are added
inductively starting from some point located on the first curve immediately be-
low the equator and then dividing each region by alternatively intersecting the
equator, above and below. Figure 2 (redrawn from [10]) shows a cylindrical rep-
resentation of the construction of a simple 8-Venn diagrams. More details and
illustrations of Edwards’ construction can be found in [2].

Fig. 2: Cylindrical projection of Edwards’ construction of a 7-Venn diagram.
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Considering the two orthogonal longitudes as the bounds, Edwards’ construc-
tion of a simple n-Venn diagram is composed of four bounded Venn diagrams,
each of n− 2 curves. These four bounded Venn diagrams are illustrated in Fig-
ure 2. It is not difficult to prove that the permutation induced by the leftmost
bounded Venn diagram is (1 2 · · · n−2). The three subsequent slices are simply
obtained by the successive flips of the first slice about the right bound. Let ε
denote the symmetry group of Edwards diagrams. The group ε has order four
based on the following non-trivial symmetries:

– Reflection of the sphere across the two planes that contain the two longitu-
dinal circles.

– A rotation by π radians about the polar axis.

Edwards’ construction shows that simple bounded Venn diagrams exist for
any number of curves. Conversely, we show below that any bounded Venn dia-
gram can be expanded to an ordinary spherical Venn diagram and preserve the
symmetries of Edwards diagrams.

Lemma 1. Given a simple bounded Venn diagram V , there is a simple spherical
Venn diagram V ′ whose group of isometries is ε.

Proof. Given any simple bounded Venn diagram V of n curves with induced
permutation σ, the permutation of the horizontal flip of V is σ−1. We take 4
copies of the bounded Venn diagram, flipping every other copy, as in Edwards’
construction. Thus the final permutation at the rightmost bound is σσ−1σσ−1 =
id , which implies that the correct curves meet at the right boundary; this give
us n − 2 simple closed curves. The remaining 2 curves are obtained from the
boundaries and form two circles that intersect at the poles. Since the regions
within each strip satisfy (1) and the regions within each strip are distinct from
any other strip, the overall construction is a simple n-Venn diagram and it has
at least the symmetries of Edwards diagrams. ut

There are classes of permutations not induced by any bounded Venn diagram.

Lemma 2. Let V be a simple bounded n-Venn diagram. If ρ(V ) contains the
cycle (a1 a2 · · · ak) where {a1, a2, . . . , ak} = {1, 2, . . . , k}, then k = n.

Proof. Suppose k < n. Let C = {C1, . . . , Cn} be the set of all curves and let S
be the set of the first k curves. Every pair (c, c′) of curves of the two disjoint sets
S and C\S intersect in at least two points since exterior(c)∩ interior(c′) is not
empty and σ(c′) /∈ S. Therefore, there would be two distinct boundary regions
corresponding to

⋂
i∈S interior(Ci) ∩

⋂
i∈C\S exterior(Ci) which contradicts

the definition of bounded Venn diagrams. ut

Lemma 3. A simple bounded Venn diagram of n curves has exactly 2n − n− 1
internal vertices.

Proof. (Summary) Apply Euler’s formula. ut
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Theorem 1. There is no involutional simple bounded 3-Venn diagram.

Proof. Suppose there is an involutional simple bounded Venn diagram ∆ of three
curves. Then by Lemma 2 the only possible involution of ∆ is (1 3)(2) which
implies that each pair of curves intersect in an odd number of points. So ∆ must
have an odd number of internal vertices which is a contradiction as by Lemma
3 any simple bounded 3-Venn diagram has 4 internal vertices. ut

3 Symmetric Venn diagrams with isometry group of
order 8

In this section we provide a general construction of involutional bounded Venn
diagrams. Given an involutional simple bounded Venn diagram, the following
lemma shows how to construct a simple Venn diagram with 4-fold rotational
symmetry on the sphere.

Lemma 4. Given a bounded Venn diagram of n curves with permutation σ such
that σ4 = id, there exists a simple spherical n + 2 Venn diagram with 4-fold
rotational symmetry about the polar axis.

Proof. A 2-Venn diagram can be projected onto the sphere so that the two curves
are two great circles that intersect each other perpendicularly at the two poles.
The diagram then has 4-fold rotational symmetry about an axis through the
poles. Given a bounded Venn diagram B with permutation σ, if we add a copy
of B to each region of the 2-Venn diagram replacing the left and right bounds
of B with the segments of the two initial curves that bound the region, then we
will get an (n+ 2)-Venn diagram with 4-fold rotational symmetry. ut

By Lemma 4, an involutional bounded Venn diagram can be used to con-
struct a symmetric Venn diagram on the sphere with isometry group order four.
Symmetry of the bounded Venn diagram itself can give constructions of Venn
diagrams with higher order of symmetry. Let H denote the isometry of rotation
by π radians, i.e., for any point (x, y), H(x, y) = (−x,−y), where the bounded
Venn diagram is centred at (0, 0). A bounded Venn diagram has the half turn
symmetry if it maps to itself under H up to a relabelling of the curves. We
call a bounded Venn diagram with half turn symmetry a symmetric bounded
Venn diagram for convenience. In this section we give general constructions of
symmetric involutional bounded n-Venn diagrams for n even and n odd cases
separately.

3.1 n even

Figure 3(a) shows a simple symmetric involutional bounded 2-Venn diagram.
Based on this diagram we provide a general construction of involutional simple
symmetric n-Venn diagrams when n is even.
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Lemma 5. For any even number n = 2k, with k ≥ 1, there is an involutional
simple symmetric bounded n-Venn diagram.

Proof. Figure 3(b) shows an extension of the diagram of Figure 3(a) to a sim-
ple involutional bounded 4-Venn diagram. The two specified parts in the figure
below/above C2 map to each other by a rotation of 180 degrees. So the diagram
is symmetric as well.

Algorithm AddCurve(i) : Adding curve i to the diagram.

1: Si ← [ ]; `i ← 0;
2: for j ← 1 to `i−1 do
3: Cj ← Si−1[j];
4: Weave Ci parallel to Ci−1 through the current region,

cross Cj and move in Ci to the next region;
5: Pass Ci through the region, cross Ci−1 and move in to the next region;
6: Si[`i + 1]← Cj ; Si[`i + 2]← Ci−1; `i ← `i + 2;
7: if j = 1 then
8: Weave Ci parallel to Ci−1 through the region,

cross C1 and move in to the next region;
9: Si[`i + 1]← C1; `i ← `i + 1;

10: end if
11: end for
12: return (Si, `i);

Let (C1, C2, . . . , Cn) be the sequence of the curves listed in the order that they
are added to the diagram where C1 and C2 are as shown in Figure 3(a). Let Si be
the sequence of intersected curves as we weave Ci through the shaded half of the
diagram and let `i be the length of Si, that is, Si = (Si[1], Si[2], . . . , Si[`i]. For
example, in Figure 3(b), S4 = (C1, C3, C1) and `4 = 3. Given Si−1, Algorithm
AddCurve(i) weaves curve Ci through the shaded part of the diagram and divides
each region in two. This algorithm also obtains Si from Si−1. It simply inserts
the current element of Si−1 followed by Ci−1 into Si at each iteration of the
for loop except for the first iteration where we need to insert C1 as well. This
happens because the starting points of Ci−1 and Ci are located in the opposite
sides of C1. So after intersecting Ci−1 for the first time, Ci needs to intersect C1

at an extra point before it gets to a position where after that it intersects Ci−1
at every next point. Note that the Si’s are constructed sequentially and once
constructed, they don’t change. The following recurrence determines the length
of Si :

`i =

{
1 if i = 3,

2`i−1 + 1 if 3 < i ≤ n.

Therefore, `i = 2i−2 − 1.
Algorithm BVennEven uses Algorithm AddCurve to inductively extends the

base case diagram of Figure 3(b) to the final involutional symmetric bounded
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Fig. 3: Inductive construction of an involutional simple symmetric bounded Venn
diagram. (a) Bounded 2-Venn diagram. (b) Bounded 4-Venn diagram, the base
case of our construction. (c) Adding half of C2i−1. (d) Adding half of C2i. (a)
Adding H(C2i−1) and H(C2i).
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n−Venn diagram. Figures 3(c) through 3(e) illustrate the first iteration of the
algorithm to get an involutional simple symmetric bounded 6-Venn diagram.

Algorithm BVennEven(k) : Inductive construction of involutional simple sym-
metric bounded n-Venn diagram for n even. (n = 2k)

1: S4 ← [C1, C3, C1]; `4 ← 3;
2: for i = 3 to k do
3: Start C2i−1 at some point u on C2 below C1 and above C2i−3;
4: (S2i−1, `2i−1)← AddCurve(2i− 1);
5: Pass C2i−1 through the last region and connect it to right bound;
6: Start C2i at point v = H(u) on C2 above C1 and below C2i−2;
7: (S2i, `2i)← AddCurve(2i);
8: Pass C2i through the last region and connect it to right bound;
9: Add H(C2i−1) to the diagram as the continuation of C2i and add H(C2i) as

the continuation of C2i−1.
10: end for

It is clear from the figures that C2 intersects every curve in a single point and
it is easy to show by induction that after each iteration of Algorithm BVennEven
:

– C2i−1 and C2i intersect C1 in 4i− 5 points.
– C2i−1 and C2i intersect in 22i−2 − 2 points
– For 2 ≤ j < i, C2i−1 and C2i intersect C2j−1 and C2j in 3 · 22j−3− 2 points.

Therefore, at each iteration of the Algorithm C2i−1 and C2i intersect C1 in an
odd number of points and intersect every other curve an even number of times.
This means that the order of C2i−1 and C2i on both bounds of the diagram is the
same. The permutation of the final diagram therefore is (1, n)(2)(3) · · · (n−1) and
it is involutional. It is also symmetric because at each iteration of the algorithm
C2i−1 and C2i map to each other by a rotation of 180 degrees.

Figure 3(e) shows the extended involutional simple symmetric bounded 6-
Venn diagram obtained after the first iteration of the algorithm. Since the orig-
inal diagram before the first iteration of the for loop is an involutional simple
symmetric bounded Venn diagram and each iteration extend the given diagram
to an involutional simple symmetric bounded diagram with two more curves,
the final diagram will be an involutional simple symmetric bounded n-Venn di-
agram. ut

3.2 n odd

We proved by Theorem 1 that there are no involutional simple bounded 3-Venn
diagrams. However, using an exhaustive search program we found an involutional
simple symmetric bounded 5-Venn diagram (Figure 4). The following lemma
shows how to inductively extend this diagram to an involutional simple bounded
(2k + 1)-Venn diagram while preserving the half turn symmetry, for any k > 2.
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Fig. 5: An involutional simple symmetric bounded 7-Venn diagram, the base case
diagram of our construction for an odd number of curves.
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Lemma 6. For any odd number n = 2k + 1, k ≥ 2, there is an involutional
simple bounded n-Venn diagram.

Proof. Figure 5 shows the extension of the involutional bounded 5-Venn diagram
of Figure 4 to a diagram with seven curves. The two new curves divide each
region of the bounded 5-Venn diagram into four distinct regions. So the new
diagram is a simple bounded 7-Venn diagram. The associated permutation of
the new diagram is (1 6)(2 7)(3)(4)(5). So it is involutional and it has the half
turn symmetry as well, because the two specified parts of the diagram map
to each other under the rotation by 180 degrees. Using AddCurve algorithm,
similar to the even case but with left bound instead of C2, Algorithm BVennOdd
extends this diagram to the final involutional simple symmetric bounded n-Venn
diagram.

Algorithm BVennOdd(k)

S7 ← [C1, C6, C1, C5, C6, C1, C6, C4, C6, C3, C6, C5, C6, C3, C6,
C2, C6, C3, C6, C4, C6, C2, C6, C5, C6, C2, C6, C1, C6, C3, C6];

`7 ← 31;
for i = 4 to k do

Start C2i at some point u on left bound above C1 and below C2i−2;
(S2i, `2i)← AddCurve(2i);
Pass C2i through the last region and connect it to some point s on C1;
Start C2i+1 at point v = H(u) on left bound below C1 and above C2i−1;
(S2i+1, `2i+1)← AddCurve(2i + 1);
Pass C2i+1 through the last region and connect it to point t = H(s) on C1;
Add H(C2i as continuation of C2i+1 and add H(C2i+1) as continuation of C2i;

end for

At each iteration of the for loop in Algorithm BVennOdd the pair of curves
C2i and C2i+1 divide each region into four distinct regions. These two new curves
also map to each other under the rotation by π about the centre. Furthermore,
after each iteration C2i and C2i+1 intersect in 22i−3 − 2 points and the number
of the intersections between C2i and C2i+1 and the other curves is shown in the
table below,

C1 C2, C4 C3, C5 C2j , C2j+1, 3 ≤ j < i
4i− 4 5 7 3 · 22j−3 − 2

which indicates that the order of C2i and C2i+1 on both bounds of the diagram
is the same. So given an involutional symmetric bounded Venn diagram before
an iteration, it is extended to an involutional symmetric bounded Venn diagram
with two more curves. Since the algorithm starts with 7 curves, after k − 3
iterations we will get an involutional symmetric bounded (2k+1)-Venn diagram.
The associated involution of the final diagram is (1, n−1)(2, n)(3)(4) · · · (n−2).

ut
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(a)

(b)

Fig. 6: Cylindrical projections of simple symmetric 6-Venn diagrams with isom-
etry group of order 8 using diagram of Figure 3 (b): (a) A 6-Venn diagram
with 4-fold rotational symmetry. (b) A 6-Venn diagram with two reflectional
symmetries.

As we saw earlier, given an involutional bounded n-Venn diagram one can
get an (n + 2)-Venn diagram with symmetry group of order 4 on the sphere
either using Edwards’ method or by Lemma 4. Except for n = 1 and n = 2,
the results in two cases are different. Now let S be a sphere of unit radius.
Given an involutional symmetric bounded n-Venn diagram D, let V1 and V2
be two (n + 2)-Venn diagrams on S resulting from D using Edwards’ method
and Lemma 4 respectively. Consider mapping f , such that for any point p ∈ S
with latitude φ and longitude θ, f(φ, θ) = (−φ, π/2 − θ). Because of the half-
turn symmetry of D, both V1 and V2 are invariant under the mapping f up to
relabelling of the curves. Therefore, they both have symmetry group order 8.
As an example, Figure 6 shows the cylindrical projection of the two constructed
symmetric 6-Venn diagrams.

4 Concluding remarks

Bounded Venn diagrams generalize Edwards’ construction of simple Venn di-
agrams with symmetry group order four on the sphere. We showed here that
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involutional bounded Venn diagrams are fundamental domains which can be
used for constructing symmetric Venn diagrams with 4-fold rotational symme-
try. We provided separate constructions of involutional simple bounded n-Venn
diagrams for even and odd cases by Lemma 5 and Lemma 6 respectively, where
n 6= 3. The resulting bounded Venn diagrams in both cases have 2-fold symme-
try which proves the existence of simple symmetric (n+ 2)-Venn diagrams with
isometry groups of order eight.

Theorem 2. There exists a simple symmetric n-Venn diagram on the sphere
with isometry group of order 8 for n = 2 or n ≥ 4.

Note that the planar dual of a simple n-Venn diagram is a maximal span-
ning subgraph of the n-dimensional hypercube. Symmetries are preserved with
primal/dual transitions. Therefore, by Theorem 2, we can equivalently say that,
for any n 6= 3, there exists a maximal planar spanning subgraph of the (n+ 2)-
dimensional hypercube with an automorphism of order eight.
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