Generation of Rooted Trees and Free Trees

by

Gang Li
B.S., People's University of China, 1990
M.S., University of Calgary, 1994

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in the Department of Computer Science

We accept this thesis as conforming
to the required standard

Dr. Frank Ruskey, Co-supervisor (Department of Computer Science)

Dr. Dominique Roelants, Co-supervisor (Department of Computer Science)

Dr. John Ellis, Department Member (Department of Computer Science)

Dr. G. MacGillivray, External Examiner (Department of Mathematics and Statistics)
© $\operatorname{Gang} \mathrm{Li}, 1996$
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.

Supervisor: Dr. Frank Ruskey

ABSTRACT

In this thesis we present two new recursive algorithms for generating unlabeled rooted trees and unlabeled free trees. We first simplify Beyer-Hedetniemi's [5] iterative algorithm for generating rooted trees by using the more natural parent array representation. We then develop a new recursive algorithm which is much simpler, more flexible and easier to analyze. With some simple modifications, our algorithm will generate rooted trees of size n with height lying in a given range and/or with the number of children of each node bounded by a given integer. Our recursive algorithm for generating rooted trees is then extended to generate free trees. We also show how to make some simple modifications to generate free trees with some height constraints and/or with a degree restriction. Both algorithms and their modifications run in constant amortized time which is the best possible.

Examiners:

Dr. Frank Ruskey, Co-supervisor (Department of Computer Science)

Dr. Dominique Roelants, Co-supervisor (Department of Computer Science)

Dr. John Ellis, Department Member (Department of Computer Science)

Dr. G. MacGillivray, External Examiner(Department of Mathematics and Statistics)

Contents

Abstract ii
Contents iii
List of Tables v
List of Figures vi
List of Symbols viii
Acknowledgements xi
1 Introduction 1
1.1 What are Trees and What is Tree Generation? 1
1.2 Representations of Trees 2
1.2.1 Rooted Trees 3
1.2.2 Free Trees 4
1.3 About the Generation of Trees 6
2 Previous Algorithms for Generating Rooted Trees 8
2.1 An Introduction 8
2.2 Counting the unlabeled rooted trees 8
2.3 Previous Algorithms for Generating Rooted Trees 9
2.4 The Beyer-Hedetniemi Iterative Algorithm 10
3 A New Recursive Algorithm for Generating Rooted Trees 14
3.1 A Recursive Algorithm 14
3.2 Proof of Correctness 16
3.3 Complexity Analysis 22
3.4 Generating Rooted Trees with Height Restrictions 23
3.5 Generating Rooted Trees with Parenthood Restrictions 24
3.6 Final Remarks 27
4 Previous Algorithms for Generating Free Trees 29
4.1 An Introduction 29
4.2 Counting the Free Trees 29
4.3 Generating Free Trees 32
4.4 An Iterative Algorithm 34
5 A New Recursive Algorithm for Generating Free Trees 40
5.1 An Introduction 40
5.2 The Recursive Algorithm 40
5.2.1 How to approach the problem 40
5.2.2 How to generate L_{T} 's in relex order 44
5.2.3 How to generate R_{T} 's in relex order 49
5.2.4 Generating free trees in relex order 55
5.3 Proof of Correctness 58
5.4 Complexity Analysis 61
5.5 Generating Free Trees with Diameter Restrictions 68
5.6 Generating Free Trees with Bounded Degree 69
6 Conclusions 71
Bibliography 72
Appendix 75
A Wright,Richmond,Odlyzko and McKay's Free Tree Program 75
B Implementation of $J u m p[]$ 78
C Pascal code for recursive generation of free trees 80

List of Tables

2.1 The number r_{n} of rooted trees with n nodes 9
3.1 The numbers of rooted trees of various heights. 24
3.2 Number $b_{n, m}$ of rooted trees of size n with at most m children. 26
3.3 The running time(in microseconds) comparison of BH's iterative and our new recursive algorithm. 28
4.1 The number f_{n} of free trees with n nodes 32
4.2 Average number of positions accessed by the WROM algorithm. 38
5.1 Average number of recursive calls for generating free trees 62
5.2 The running time (in seconds) comparison of our algorithm with the WROMalgorithm 68
5.3 The number of free trees with height restrictions 69
5.4 The number of Cayley m-free trees with n nodes 70

List of Figures

1.1 A preorder labeled rooted tree with root 1. 2
1.2 Two equivalent rooted trees with their level sequences and parent ar- rays. The tree and its representations on the right are canonic. 3
1.3 A free tree with two centers a and b. The tree on the right is its corresponding rooted version. 4
1.4 Free trees with 7 nodes and their canonic representation in level se- quences 5
1.5 The same set of strings (all well formed parenthesis of length 8) listed in different orders. 7
2.1 All unlabeled rooted trees of size 4. 9
2.2 Copy Strategy: The tree on the right is the successor of the tree on the left. 11
2.3 (a) The parent arrays of canonic rooted trees of size 6 in relex order.
(b) The corresponding level sequences. 12
2.4 Beyer and Hedetniemi's algorithm 12
2.5 Simplified Pascal implementation of the Beyer-Hedetmieni algorithm. 13
3.1 The tree of rooted trees(up to 5 nodes) \mathcal{R}_{5} 14
3.2 Pseudocode of the recursive algorithm for generating rooted trees 15
3.3 Recursive CAT algorithm for generating rooted trees. 17
3.4 The tree of rooted "binary" trees (up to 6 nodes) 25
4.1 Weights of the nodes in a free tree. 30
4.2 Two different ways to select the root. 35
4.3 Primary canonical level sequences with $n=8$. 35
4.4 (R1) fails: $\operatorname{NEXT}()$ generate (b) from (a). 36
4.5 (R2.1) fails: $\operatorname{NEXT}()$ generate (b) from (a). 37
4.6 (R2.2) fails: $\operatorname{NEXT}()$ generate (b) from (a). 37
4.7 The WROM algorithm 37
4.8 Free trees generated by the WROM algorithm. 39
5.1 The Hasse diagram of the poset of free trees with at most 7 nodes. 41
5.2 Two subtrees of unicentral and bicentral free trees. 43
5.3 For $N=10, h=3$, (a) Biggest L_{T} for unicentral case, (b) Biggest L_{T} for bicentral case, (c) Smallest L_{T} for unicentral case, (d) Smallest L_{T} for bicentral case. 45
5.4 The successor of the smallest free tree of height h. 47
5.5 The code to modify $\operatorname{Gen}(p, s, c L)$ to make the successor of L_{T}. 54
5.6 An algorithm for generating R_{T}. 56
5.7 A recursive algorithm for generating unlabeled free trees 57
5.8 Output of our free tree recursive algorithm for $N=8$. 59
5.9 Two forms of the lexicographically smallest R_{T}. 60
5.10 The computation tree \mathcal{F}_{n} of our recursive free tree generation algorithm. 63
5.11 Free trees in $G 2$ and $G 3$. 64

List of Symbols

$\mathbf{B}_{n} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$............................. b_{n} The number of binary rooted trees with n nodes $\mathcal{R}_{n} \ldots$. The computation tree of our recursive rooted tree algorithm with n nodes $\mathcal{R}_{<h}$. The computation tree of our recursive rooted tree algorithm with heights less than h
$\mathcal{R}_{=h} \ldots$. . The computation tree of our recursive rooted tree algorithm with heights exactly h
$\mathcal{R}_{>h} \ldots$. The computation tree of our recursive rooted tree algorithm with heights greater than h
$\mathbf{R}_{n} \ldots \ldots \ldots \ldots \ldots \ldots$. . The set of all unlabeled rooted trees with n nodes $r_{n} \ldots \ldots . \ldots . \ldots$. . The number of unlabeled rooted trees with n nodes $\mathcal{F}_{n} \ldots \ldots$. . The computation tree of our recursive free tree algorithm with n nodes
 $f_{n} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
 $\mathbf{L}_{n} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.. $l e v_{T} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$..
 $\left\langle l e v_{T}[1 . . n]\right\rangle \ldots$. . The level sequence of the rooted tree T with n nodes $\left\langle p a r_{T}[1 . . n]\right\rangle \ldots \ldots \ldots \ldots \ldots$.
\qquad
\qquad
$\preceq \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$..aphically smaller than or equal to
 $\succeq \ldots .$. . Lexicographically larger than or equal to

 $\operatorname{succ}(T) \ldots \ldots . \ldots . \ldots . \ldots . . .$. . The successor of the rooted tree T in relex order

Acknowledgements

My deepest thanks to my supervisor Dr. Frank Ruskey and Dr. Dominique Roelants for their academic supervision and financial support. Without them, this thesis will not be possible.

My thanks to Department of Computer Science for providing the computing facilities and financial support.

I also thank my wife, my parents for every thing they did to help me and encourage me to complete my graduate program here in University of Victoria.

Chapter 1

Introduction

1.1 What are Trees and What is Tree Generation?

A (free) tree is a undirected, acyclic, connected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. The distinguished node is called the root of the tree (we always draw the root at the top, see Figure 1.1). An ordered tree is a rooted tree in which the children of each node are ordered. A labeled rooted tree is an ordered tree in which every node is uniquely labeled by an integer from $\{1,2, \ldots, n\}$, where n is the size of the tree (see Figure 1.1). For a tree T, by $|T|$ we denote the size of the tree T, i.e., the number of nodes in T. There are many different labeling schemes. A preorder labeling is obtained by labeling the nodes in the order that they are encountered in a preorder traversal of the tree. We will be using this labeling scheme throughout the thesis.

The tree is a widely used data structure in computer science. Various kinds of trees have been developed for different purposes. For example, quadtrees and octrees are hierarchical data structures for efficiently storing image data (see [31]); AVL trees are height balanced trees used for fast key searching in database systems.

Early mathematical research on tree was done by Cayley in the 1850's [20]. He found recursive formulas for counting the number of trees, or rooted trees, of finitely many nodes, where the degree of each node was not limited. An illustration of these

Figure 1.1: A preorder labeled rooted tree with root 1.
formulas can be also found in Knuth's book[6] and Otter's paper [12].
Tree enumeration was possibly first found useful by chemists in the study of structurally isomeric, aliphatic hydrocarbons. Cayley was the first to introduce quartic trees (every node has degree one or four) which represents the structure of the hydrocarbons $C_{n} H_{2 n+2}[4]$.

1.2 Representations of Trees

There are many different ways to represent a tree. One of the very popular ways is label representation sequences. We first label the tree, and then form a sequence of the nodes using the labels assigned to them, which defines the structure of the tree. For some trees, additional information has to be put into the sequence, such as the color of each node in red-black trees. Usually, for rooted trees and free trees, we use positive numbers $1,2 \ldots, n$ as labels, so the sequences which represent these trees are of positive integers.

Let $s=\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle$ be a sequence of positive integers, and $t=\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle$ be another sequence of positive integers. Let $k=\min (m, n)$. We say s is lexicographically smaller than t, or $s \prec t$, if the following conditions are satisfied:

1) there exists an integer $j>0$ and $j \leq k$ so that $s_{i}=t_{i}$ for $0<i<j$, and $s_{j}<t_{j}$, or

lev: 0121233122 par: 0121455188

lev: 0123312212
par: 0123316619

Figure 1.2: Two equivalent rooted trees with their level sequences and parent arrays. The tree and its representations on the right are canonic.
2) $s_{i}=t_{i}$ for $0<i \leq k$ and $n>m$.

If sequence s is the representation of tree S and t is the representation of tree T, then we say S is lexicographically smaller than T, written $S \prec T$, if $s \prec t$.

1.2.1 Rooted Trees

Among all of the representations for rooted trees, the level sequence and the parent array will be the most frequently used in this thesis.

Let \mathbf{R}_{n} be the set of all unlabeled rooted trees with n vertices. Let tree $T \in \mathbf{R}_{n}$ be arbitrarily ordered and then preorder labeled. The encoding sequence $\left\langle l_{1}, l_{2}, \ldots, l_{n}\right\rangle$ is the level sequence of T if l_{i} is the level of node i in T. The encoding sequence $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ is the parent array of T if p_{i} is the parent of node i in T. The parent of node 1 is 0 . By level, we mean the length of the path from the node to the root of the tree. We also use $\left\langle\operatorname{lev}_{T}[1 . . n]\right\rangle, \operatorname{lev}_{T}$ for short, to represent the level sequence of T of size n, and $\left\langle\operatorname{par}_{T}[1 . . n]\right\rangle$, or $p a r_{T}$, to represent the parent array of T.

Given a rooted tree T, we use $T(r)$ to denote a subtree rooted at r which includes r and all descendants of r in T. A node d in a rooted tree T is a descendant of a node e in T if and only if e is on the path from d to the root of T (A node is not descendant of itself).

For the rooted tree shown in Figure 1.1, its level sequence is 0122311233 and its parent array is 0122411788 . See also Figure 1.2 for some other examples.

Two ordered trees are equivalent if one can be transformed to the other by recur-

Figure 1.3: A free tree with two centers a and b. The tree on the right is its corresponding rooted version.
sively reordering the subtrees. The two trees shown in Figure 1.2 are equivalent. This equivalence relation partitions the set \mathbf{O}_{n} of ordered trees into equivalence classes, and \mathbf{R}_{n} is the set of the representatives of these equivalence classes. Now the problem is to pick a representative for each class. We say an ordered tree T in \mathbf{O}_{n} is canonic if its level sequence $l e v_{T}$ is lexicographically greatest in its class. In Figure 1.2, the tree on the right is canonic. If an ordered tree is canonic, we also say that its level sequence and parent array are canonic. If the level sequence of a canonic rooted tree T is lexicographiclly greater than that for another canonic rooted tree T^{\prime}, then we also say T is (lexicographically) greater than T^{\prime}. In this thesis, unlabeled rooted trees will be represented by their canonic level sequences or their canonic parent arrays, unless otherwise indicated.

1.2.2 Free Trees

It is easy to represent a rooted tree because of its distinguishable root. For free trees, things are different.

Let \mathbf{L}_{n} be the set of all labeled free trees of size n, and \mathbf{F}_{n} be the set of all unlabeled free trees of size n. A center of a free tree is a node whose maximal distance to all other nodes in the tree is minimal. It is well known [32] that every free tree has either one or two adjacent centers (see Figure 1.3). Let T be a labeled free tree in \mathbf{L}_{n}. If T has one center r, then T_{r} is the rooted version of T by rooting T at node r. If T has two centers, q and r, then they must be adjacent. By removing
the edge between these two nodes, we obtain two rooted subtrees $Q(q)$ and $R(r)$. Let Q be the canonic rooted tree equivalent to $Q(q)$ and R be the canonic rooted tree for $R(r)$. If $l e v_{Q}$ is lexicographically less than or equal to $l e v_{R}$, then we pick q as the root for T which gives the rooted version T_{q} of free tree T; otherwise we pick r which gives the rooted version T_{r} of T. In either case (one center or two), this root in the rooted version of a free tree is called the canonic center of the free tree, and the canonic parent array or level sequence of this rooted version is called the canonic representation of the free tree T.

As long as we transform a free tree into its corresponding rooted tree, we can represent the free tree by the level sequence or the parent array of the corresponding canonic rooted tree. And clearly, the above mapping between unlabeled free trees and unlabeled rooted trees is one to one. Now, we can generate all unlabeled free trees in \mathbf{F}_{n} by listing all the canonic representations of corresponding rooted trees of length n (see Figure 1.4).

Figure 1.4: Free trees with 7 nodes and their canonic representation in level sequences

Similarly to the rooted tree case, when we say free tree T is greater than free tree T^{\prime}, we mean that the representation, either in level sequence or in parent array, of T is lexicographically greater than that of T^{\prime}.

1.3 About the Generation of Trees

There are two different ways of generating trees: random generation and listing. Random generation is also called random selection which one constructs or chooses a tree of a given size uniformly at random (see Wilf [17]). By listing, we mean that all trees of a certain size will be produced in some designated order.

In this thesis, we will only discuss problems on listing trees. Hence generating means listing in this thesis.

Usually, algorithms for generating trees will produce the trees in some specific order. There are two kinds of orderings that are commonly used: lexicographic order, and Gray code order. As for lexicographic order, there are some variants (see Figure 1.5 for examples): relex order which is reversed lexicographical order, and colex order which is lex order if we reverse each sequence. Gray code is an ordering in which two consecutive sequences are very close in terms of a certain closeness relation. For example, two sequences differ only in one position.

If the cost of generating a tree by an algorithm is bounded by a constant, amortized over all trees, we say the algorithm is CAT(Constant Amortized Time).

Generation algorithms fall into one of two classes: iterative or recursive. By iterative generation, we mean the next tree is generated by a function call which works on the currently generated or initialized tree. By recursive generation, we mean the main generation function is recursive and each tree is generated by a series of recursive calls instead of only one function call as in iterative algorithms.

In Chapter 2 of this thesis, you will be introduced to some previously known algorithms for generating rooted trees. Among those, the Beyer-Hedetniemi algorithm will be given detailed attention. Chapter 3 will present a new recursive algorithm for generating unlabeled rooted trees, and show that, compared with the BeyerHedetmieni algorithm, this new algorithm is much simpler, flexible, more efficient, and easier to analyze. We will then extend this algorithm to unlabeled free trees by first introducing some previous algorithms for generating free trees, in Chapter 4, and then presenting the new recursive algorithm, in Chapter 5, for generating free

11110000	11001010	10101010	11110000
11101000	11001100	10101100	11101000
11100100	11011000	10110010	11011000
11100010	11010100	10110100	10111000
11011000	11010010	10111000	11100100
11010100	11110000	11001010	11010100
11010010	11101000	11001100	10110100
11001100	11100100	11010010	11001100
11001010	11100010	11010100	10101100
10111000	10110010	11011000	11100010
10110100	10110100	11100010	11010010
10110010	10111000	11100100	10110010
10101100	10101100	11101000	11001010
10101010	10101010	11110000	10101010
relex order	Gray code	lex order	colex order

Figure 1.5: The same set of strings (all well formed parenthesis of length 8) listed in different orders.
trees. The new recursive algorithm for free trees is CAT, uses linear space, and is more efficient (even though it is recursive) than the old algorithms.

It is our convention that we use Propositions to describe straightforward facts which will help to understand the following discussion, or to assist the proof of a lemma or a theorem. A Lemma is a statement which is not trivial and hence needs a proof. A Theorem is a major result which either comes from a reference paper or needs a proof.

Chapter 2

Previous Algorithms for Generating Rooted Trees

2.1 An Introduction

Rooted trees occur throughout computer science. For example, they are used in data structures for disjoint sets, and in mathematics, where they are studied in conjunction with bracketing systems, and even in biology, where they are used for the evolutionary classification of species. This chapter first discusses how to count the number of rooted trees, then briefly introduces some previous algorithms for generating rooted trees. The algorithm due to Beyer and Hedetniemi will be presented in detail.

2.2 Counting the unlabeled rooted trees

In order to design algorithms to generate all unlabeled rooted trees, it is useful to know the number of them with fixed size n. We follow Knuth's [6] discussion on counting rooted trees.

For small trees, we can just draw them to figure out this number. Figure 2.1 gives all possible unlabeled rooted trees of size 4.

For any given size n, let $r_{n}=\left|\mathbf{R}_{n}\right|$ be the number of unlabeled rooted trees. Obviously $r_{1}=1$. If $n>1$, the tree has a root and various subtrees. Let j_{k} be the

Figure 2.1: All unlabeled rooted trees of size 4.
number of subtrees with k nodes. Then we have

$$
\binom{r_{k}+j_{k}-1}{j_{k}}
$$

ways to choose (with repetition) j_{k} of the r_{k} possible k-vertex rooted trees, which gives us

$$
\begin{equation*}
r_{n}=\sum_{j_{1}+2 j_{2}+\cdots+(n-1) j_{n-1}=n-1} \prod_{k=1}^{n-1}\binom{r_{k}+j_{k}-1}{j_{k}} \tag{2.1}
\end{equation*}
$$

Cayley[20] further found that the generating function for r_{n} satisfies:

$$
A(x)=x /(1-x)^{r_{1}}\left(1-x^{2}\right)^{r_{2}}\left(1-x^{3}\right)^{r_{3}} \cdots .
$$

Using equation 2.1, we can compute a table of r_{n} for $n=1 \ldots 14$ (see Table 2.1).

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
r_{n}	1	1	2	4	9	20	48	115	286	719	1842	4766	12486	32973

Table 2.1: The number r_{n} of rooted trees with n nodes

2.3 Previous Algorithms for Generating Rooted Trees

Several algorithms have been developed for generating (i.e., listing) rooted trees.
The earliest algorithm seems to be that of Scions [16]. He introduced the level sequence representation of the rooted trees. Both recursive and iterative approaches were applied in his algorithm. He claimed his algorithm was CAT (no proof was given).

Another method of generating rooted trees was developed by Kozina [19] whose algorithm ran in time $O(n)$ per tree (not CAT).

Pallo [15] introduced a new encoding, called the weight sequences, of binary rooted trees, and algorithms for generating, ranking and unranking binary rooted trees were given. His algorithm for generating binary rooted trees is CAT.

An algorithm for generating binary trees in lexicographic order was presented by Ruskey and $\mathrm{Hu}[9]$. Ruskey [7] later extended this algorithm to k-ary trees which generate k-ary trees in $O(k)$ per tree.

Very recently, Vajnovszki [25] presented a new encoding for binary unordered trees and used this coding scheme to generate binary unordered rooted trees. This algorithm is CAT.

However, the most wellknown algorithm is due to Beyer and Hedetniemi [5] (It is also described in the book of Wilf [17]). They generalized Ruskey's [7] result by presenting a very simple iterative CAT algorithm for generating unlabeled rooted trees.

Kubicka and Kubicki[14] later extended Beyer and Hederniemi's [5] algorithm to generate binary rooted trees in constant amortized time.

We will discuss Beyer and Hedetniemi's algorithm in detail because it is related to our new recursive algorithm which will be presented in Chapter 3.

2.4 The Beyer-Hedetniemi Iterative Algorithm

Beyer and Hedetniemi's algorithm iteratively generates all canonic rooted trees represented by level sequences. They were the first to show an algorithm for generating rooted trees in constant time per tree, amortized over all trees, i.e., a CAT algorithm.

The algorithm lists these canonic level sequences in relex (reversed lexicographic) order. Let $\operatorname{lev}_{T}=\left\langle l_{1}, l_{2}, \ldots, l_{n}\right\rangle$ be the level sequence of a rooted tree T, let $\operatorname{succ}_{T}=$ $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$ denote the relex successor of $l e v_{T}$ and let

$$
p=\max \left\{i: l_{i}>1\right\} \text { and } q=\max \left\{i: i<p, l_{i}=l_{p}-1\right\} .
$$

In other words, p is the position of the rightmost element larger than 1 , and q is
the position of the parent of node p. For example, in the level sequence $\langle 01233211\rangle$, $p=6$ and $q=2$. Note that p must be a leaf. Then s_{i} is determined by

$$
s_{i}= \begin{cases}l_{i} & \text { for } 1 \leq i<p \tag{2.2}\\ s_{i-p+q} & \text { for } p \leq i \leq n\end{cases}
$$

Figure 2.2: Copy Strategy: The tree on the right is the successor of the tree on the left.

The subsequence $l_{q}, l_{q+1}, \ldots, l_{p-1}$ represents the subtree rooted at q. The update of s_{i} 's repeatedly copies this subsequence (or this subtree rooted at q). For example, the successor of the level sequence $\langle 01233221111111\rangle$ is $\langle 01233212332123\rangle$. See Figure 2.2.

We will extend this idea later to recursively generating rooted trees, and we call it the Copy Strategy (see Chapter 3).

The algorithm starts with the lexicographically largest canonic level sequence of length n, which is $\langle 012 \ldots n-1\rangle$. It then repeatedly applies the successor function (2.2) to the current canonic level sequence to obtain its successor, until the lexicographically smallest canonic level sequence, $\langle 0111 \ldots 1\rangle$, is obtained. The output of the Beyer-Hedetniemi's algorithm for $n=6$ is shown in Figure 2.3.

Given a canonic level sequence $\left\langle l_{1}, l_{2}, \ldots, l_{n}\right\rangle$, the procedure in Figure 2.4 will find the successor of the level sequence:

The direct implementation of the above algorithm will not be CAT, since Step 1 , to find p will take $n-p+1$ actions (an action is a comparison or an assignment which takes constant amount of time independent of n), and Step 2 , to find q will take another $p-q$ actions. Together with Step 3, there will be $2 *(n-p+1)+p-q$

012345	012321	012345	012321
012344	012315	012344	012312
012343	012311	012343	012311
012342	012222	012342	012222
012341	012221	012341	012221
012333	012215	012333	012212
012332	012211	012332	012211
012331	012141	012331	012121
012325	012111	012323	012111
012322	011111	012322	011111
	(a)	(b)	

Figure 2.3: (a) The parent arrays of canonic rooted trees of size 6 in relex order. (b) The corresponding level sequences.
procedure NEXT();
Step 1: find the biggest index p so that $l_{p}>1$.
Step 2: find the parent position q of node p.
Step 3: copy the subsequence l_{q}, \ldots, l_{p-1} repeatedly into subsequence l_{p}, \ldots, l_{n}. end; $\{$ of NEXT $\}$

Figure 2.4: Beyer and Hedetniemi's algorithm
actions. A clever implementation of the algorithm will reduce $p-q$ to 1 , so that the total actions taken by $\operatorname{NEXT}()$ will only be $2(n-p+1)+1$.

We use an array $L[1 . . n]$ to store the level sequences of rooted trees, and par $[1 . . n]$ to store the position of the parent of each node i. So, $q=\operatorname{par}[p]$. By updating array $\operatorname{par}[]$ when updating array $L[]$, we can reduce $p-q$ to 1 . So we only need to amortize $n-p+1$ over all rooted trees.

The simplified Pascal implementation of the Beyer-Hedetniemi algorithm is shown in Figure 2.5.

The average number of steps s required to generate single tree is given by the following formula:

$$
\begin{equation*}
s=\frac{1}{r_{n}} \sum_{T \in \mathcal{R}_{n}}(n-p(T)+1) \tag{2.3}
\end{equation*}
$$

where $p(T)$ is the p, defined above, associated with rooted tree T.
In [5], it was shown that $s \leq 2$. But Kubicka[11] refined the bound to 1.5113 .

```
procedure NEXT
var
    i,q : integer
begin
{r1} while L[p] = 1 do p:= p-1
{r2} if p = 1 then done:= true else
{r3} if (L[p] = 2) and (L[p-1] = 1) then begin
{r4} L[p] := 1; par[p] := par[p-1]; printit
{r5} end else begin
{r6} q := p - par[p]
{r7} for i:=p to n do begin
{r8} L[i] := L[i-q]
{r9} if par[i-q] < p-q then
{r10} par[i] := par[i-q]
{r11} else
{r12} par[i] := q + par[i-q]
{r13} end
{r14} p := n
{r15} printit { print out the tree }
{r16} end
end;
```

Figure 2.5: Simplified Pascal implementation of the Beyer-Hedetmieni algorithm.

Chapter 3

A New Recursive Algorithm for Generating Rooted Trees

3.1 A Recursive Algorithm

Figure 3.1: The tree of rooted trees(up to 5 nodes) \mathcal{R}_{5}

Before we present our recursive algorithm, let us first consider Figure 3.1. Figure 3.1 is a tree, we call it \mathcal{R}_{5}, formed by all unlabeled rooted trees of at most 5 nodes. The
rooted trees at the same level in \mathcal{R}_{5} are of the same size, and organized in relex order (if represented by their canonic level sequences). Let \mathcal{R}_{n} be such tree of rooted trees with at most n nodes. In such a tree-of-trees \mathcal{R}_{n}, the rooted tree T of size $m<n$ is a parent of rooted tree T^{\prime} of size $m+1$ if and only if T is obtained by removing node $m+1$ from T^{\prime}. So, the only rooted tree of size 1 will be the root of \mathcal{R}_{n}.

Observe that, given any canonic rooted tree T of size m, we can obtain its parent by removing the last node m, and obtain its children by adding node $m+1$ as the rightmost child of some node on the rightmost path of T. We call these node in T parent candidates of new node $m+1$. We call children of T in \mathcal{R}_{n} the canonic extensions of T. It seems that some nodes on the rightmost path of T can not be the parent candidates of node $m+1$. For example, the node 4 in the second rooted tree at the fourth level of \mathcal{R}_{5} in Figure 3.1 can not be the parent candidate of node 5. To generate children of T in relex order, we can simply add node $m+1$ as the rightmost child of the lower level parent candidates first.

Based on above observations, we have the recursive algorithm GenRooted() (see Figure 3.2).

```
procedure GenRooted(T)
{L1}if |T| \geqn then output the tree
{L2}else
{L3} for each parent candidate p of node |T| in T do begin
{L4} T:=T by adding node |T| +1 as the child of p;
{L5} GenRooted(T)
{L6} end
end; { of GenRooted}
```

Figure 3.2: Pseudocode of the recursive algorithm for generating rooted trees

The algorithm GenRooted() starts from the smallest rooted tree with only one node. It can generate rooted trees in lexicographic order or relex order depending on the order of parent candidates in line $\{\mathrm{L} 3\}$. We choose to follow the Beyer-Hedetniemi algorithm to generate rooted trees in relex order. \mathcal{R}_{5} becomes the computation tree of the algorithm GenRooted() when $n=5$. GenRooted() actually traverses the
computation tree \mathcal{R}_{n} in preorder.
Now, the problem becomes how to choose those parent candidates so that the resulting rooted tree after adding the new node preserves the canonic property. Observe that if p is a parent candidate, then the parent of p is also a parent candidate (see the next section for more details). Then we only need to know, for a canonic rooted tree T with n nodes, how to add a new node to get its biggest canonic extension.

To solve this problem, we adopt the idea from [5] (see also Chapter 2 and 4) - we apply the so called copy strategy (see next section for more details) to help find such a parent candidate which leads to the biggest canonic extension of the rooted tree T. To implement the copy strategy, we have to know which subtree to copy, i.e., the root and the size of that subtree.

Let s be the root of the subtree to copy, and $c L$ be the size of the subtree. The algorithm Gen() in Figure 3.3 implements the copy strategy: initially, s and $c L$ are set to 0 . This helps us to initialize the biggest canonic rooted tree of size n, which is a chain of length $n-1$: when $s=0$, we add a new node to the very end of the chain (see line $\{\mathrm{R} 3\}$). After the chain of length $n-1$ is built, s and $c L$ will get their first non-zero values in lines $\{R 9\}$ and $\{R 11\}$, respectively.

Given any rooted tree T of size $p-1$, to generate the biggest extension of T, we follow the current s and $c L$ to continue copying the previously chosen subtree (see line $\{\mathrm{R} 4-\mathrm{R} 7\}), s$ and $c L$ will not be changed. To generate all other extensions of T, we add node p as a child of its current grandparent $\operatorname{par}[\operatorname{par}[p]]$ (see line $\{\mathrm{R} 10\}$). we set $s=\operatorname{par}[p]$ and $c L=p-\operatorname{par}[\operatorname{par}[p]]$ (see lines $\{\mathrm{R} 9\}$ and $\{\mathrm{R} 11\}$, respectively) for further use.

3.2 Proof of Correctness

First, we define some terms. Nodes with the same parent are siblings. If $c_{1}<c_{2}<$ $\cdots<c_{m}$ are all the siblings of node p, and i is the largest index for which $c_{i}<p$, we say the c_{1} is the leftmost sibling of p, and c_{i} the rightmost younger sibling of p. We say tree T is a prefix of tree T^{\prime} if $l e v_{T}$ is a prefix of $l e v_{T^{\prime}}$.

```
procedure Gen( p, s, cL : integer);
begin
{R1} if p>n (*or ((par [p-1] = 1) and (par [p-2] = 1))*) then PrintIt
{R2} else begin
{R3} if cL = 0 then par[p] := p-1 else <- initialize first tree
{R4} if par[p-cL] < s <- gen biggest extension
{R5} then par[p] := par[s]
{R6} else par[p] := cL + par[p-cL];
{R7} Gen( p+1, s, cL );
{R8} while par[p] > 1 do begin <- gen other extensions
{R9} s := par[p]; <- find new subtree to copy
{R10} par[p] := par[s];
{R11} Gen( p+1, s, p-s )
{R12} end
{R13} end
end; {of Gen}
```

Figure 3.3: Recursive CAT algorithm for generating rooted trees.
Given two sequences T_{1} and T_{2}, we write $T_{1} \prec T_{2}$ if and only if T_{1} is lexicographically less than T_{2}. We show in Lemma 3.2.1 that the level sequence and the parent array are equivalent in terms of lexicographic ordering. For canonic rooted trees T and S, we write $T \prec S$ if $\operatorname{par}_{T} \prec \operatorname{par}_{S}$; we write $T \equiv S$ if $p a r_{T}=p a r_{S}$.

Lemma 3.2.1 For canonic trees T and S of the same size, $\operatorname{par}_{T} \preceq$ par $_{S}$ if and only if $l e v_{T} \preceq l e v_{S}$.

Proof:By induction on the size. It is trivial to check the lemma holds for trees of size 1.

Assume that the lemma holds for all canonic rooted trees of size $n-1$. Suppose T and S are canonic rooted trees of size n. Let $\left\langle p a r_{T}[1 . . n]\right\rangle$ and $\left\langle p a r_{S}[1 . . n]\right\rangle$ be the parent arrays of trees T and S respectively; $\left\langle l e v_{T}[1 . . n]\right\rangle$ and $\left\langle l e v_{S}[1 . . n]\right\rangle$ be the level sequences of T and S respectively. If $\operatorname{par}_{T} \prec \operatorname{par}_{S}$ then either $\left\langle\operatorname{par}_{T}[1 . . n-1]\right\rangle \prec$ $\left\langle\operatorname{par}_{S}[1 . . n-1]\right\rangle$ or $\left\langle\operatorname{par}_{T}[1 . . n-1]\right\rangle=\left\langle\operatorname{par}_{S}[1 . . n-1]\right\rangle$ and $\operatorname{par}_{T}[n]<\operatorname{par}_{S}[n]$. In the first case, we have $\left\langle l e v_{T}[1 . . n-1]\right\rangle \prec\left\langle l e v_{S}[1 . . n-1]\right\rangle$ which implies that $l e v_{T} \prec l e v_{S}$ by definition of lexicographic order. The second case implies that T and S are the
same if node n is removed from both trees, and the parent of node n in T is a proper ancestor of the parent of n in S. So, we have $l e v_{T}[n]<l e v_{S}[n]$ which implies that $l e v_{T} \prec l e v_{S}$. Similarly, we can prove that if $l e v_{T}[n] \preceq l e v_{S}[n]$ then $\operatorname{par}_{T}[n] \preceq p a r_{S}[n]$.

We say that subtrees, T_{1} and T_{2}, of T are comparable subtrees if the roots of these two trees are siblings. Recall that $T(p)$ denotes the subtree of T rooted at node p.

Since the trees will be generated in relex order, we shall produce the lexicographically biggest tree first in the process of constructing a tree with n nodes based on a tree with $n-1$ nodes already generated.

Proposition 3.2.1 Given a canonic tree T, if $p_{1}<p_{2}<\ldots<p_{k}$ is a sequence of consecutive children of a node p in T, then $T\left(p_{i}\right) \succeq T\left(p_{i+1}\right)$ for $1 \leq i \leq k$.

Now suppose that we have a tree T with $n-1$ nodes and want to extend to a tree with n nodes. Because of the preorder labeling, node n must be the child of some ancestor of node $n-1$ (a node is considered to be an ancestor of itself). That is to say, node n should be added as a rightmost child of some node on the rightmost path of the current tree.

Proposition 3.2.2 If $\langle\operatorname{par}[1 . . n-1]$, $\operatorname{par}[n]\rangle$ is canonic and $\operatorname{par}[n] \neq 1$, then $\langle\operatorname{par}[1 . . n-1], \operatorname{par}[\operatorname{par}[n]]\rangle$ is also canonic.

Suppose root $=p_{1}, p_{2}, \ldots, p_{k}=n-1$ is the rightmost path of a canonic tree T of size $n-1$. We say that p_{i} is a valid position if we add a child to p_{i}, and the new tree is still canonic. If p is a valid position, then by Proposition 3.2.2, all the ancestors are valid positions too.

Lemma 3.2.2 If T is a canonic tree with $n-1$ nodes, then the valid positions of T will produce all possible canonic trees with n nodes and T as their prefix

Proof:Any canonic tree of size n with T as its prefix must have its node n added as the child of an ancestor p of node $n-1$. Hence p is a valid position because it is on the rightmost path of T, and the new tree with n nodes is canonic.

Obviously, the lexicographically largest extension of a tree T is created by adding a child to the valid position with biggest level(farthest from the root). Now, we wish to know how to determine this position. As a matter of fact, all nodes on the rightmost path are candidates for valid positions, and if node $n-1$ is valid, then it is the one with the greatest level.

Let p_{i} be as defined above, and c_{i} is rightmost younger sibling of p_{i} (a node is not a sibling of itself), then by Proposition 3.2.1, $T\left(c_{i}\right) \succeq T\left(p_{i}\right)$.

Proposition 3.2.3 T^{\prime} is a canonic extension of T by adding node n as par $[n]=p_{i}$ if and only if $T^{\prime}\left(p_{j}\right) \preceq T^{\prime}\left(c_{j}\right)$ for all $j \geq i$.

Proposition 3.2.4 Let T be a canonic tree, and let $a_{1}, a_{2}, \ldots, a_{m}$ be consecutive children of the root of T. Suppose i is the smallest index such that $T\left(a_{i}\right)=T\left(a_{i+1}\right)=$ $\cdots=T\left(a_{m-1}\right)$ and $T\left(a_{m}\right)$ is a prefix of $T\left(a_{m-1}\right)$. Let L_{j} be the subsequence in lev ${ }_{T}$ associating with $T\left(a_{j}\right)$ for $1 \leq j<i, L$ for $T\left(a_{k}\right)$ where $i \leq k<m$, and L^{\prime} for $T\left(a_{m}\right)$. An extension T^{\prime} of $T,\left\langle 0, L_{1}, \ldots, L_{i-1}, L, \ldots, L, L^{\prime}, b\right\rangle$, is canonic and lexicographically largest if $\left\langle L^{\prime}, b\right\rangle$ is a prefix of L when $T\left(a_{m-1}\right)$ is bigger in size than $T\left(a_{m}\right)$, or $\langle b\rangle$ is a prefix of L when $T\left(a_{m-1}\right)=T\left(a_{m}\right)$.

The above proposition tells that we can copy the rightmost comparable subtree to expand to a greatest tree in lex order if the subtree that contains node $n-1$ is a prefix of its rightmost comparable subtree. But such expansion will not always preserve the canonicity if there is more than one subtree containing $n-1$ which are prefixes of their rightmost comparable subtrees. The following definition is important in finding the right comparable subtree (if this tree has been repeatedly copied more than once, we choose the first one) to produce the greatest in lex order and preserve the canonicity. We call the root of this subtree the critical node.

Definition 3.2.1 Let q be the smallest ancestor (a node is an ancestor of itself) of $n-1$ such that $T(q)$ is a prefix of $T(c)$, where c is the rightmost proper sibling of q. Then the critical node s is the leftmost sibling of c such that $T(s) \equiv T(c)$. $c L=|T(s)|$ is the size of $T(s)$.

The Critical node s is well-defined for all rooted trees except the greatest tree $\langle 0,1, \ldots, n-1\rangle$, since the siblings of the first ancestor with at least one sibling could be the candidates for the critical node. For the exceptional case, i.e. the greatest canonic tree (which is actually a chain), we let $s=0$ and $c L=0$. We will not do any copying, we just add node n as the child of node $n-1$.

Observe that a tree is canonic if and only if all its subtrees are canonic.

Lemma 3.2.3 The tree T^{\prime} of size n extended, by copying subtree $T(s)$, where s is the critical node, from T of size $n-1$ is canonic and lexicographically greatest among all rooted trees of size n.

Proof:Let s be as defined in the Definition 3.2.1. Since we are actually copying subtree $T(s)$, the subtree $T^{\prime}(\operatorname{par}(s))$ is canonic and lex largest with prefix $T(\operatorname{par}(s))$ by Proposition 3.2.4. Let c be rightmost younger sibling of $\operatorname{par}(s)$, then we know that $T(\operatorname{par}(s)) \prec T(c)$ and $T(\operatorname{par}(s))$ is not a prefix of $T(c)$ because of the minimality of s. So, $T^{\prime}(\operatorname{par}(s)) \prec T^{\prime}(c)$ where $T^{\prime}(c)=T(c)$. Similarly, we can prove that all subtrees rooted at ancestors of s, which are all valid positions, are canonic (including the root of T^{\prime}), hence T^{\prime} is canonic.

Since $T^{\prime}(\operatorname{par}(s))$ is the lex largest extension of $T(\operatorname{par}(s))$, any larger extension of tree T will definitely enlarge $T(\operatorname{par}(s))$ further because the newly added node n in T^{\prime} must be a descendant of $\operatorname{par}(s)$ on the rightmost path. This is contrary to the fact that $T^{\prime}(\operatorname{par}(s))$ is the lexicographically largest extension of $T(\operatorname{par}(s))$. Hence T^{\prime} is the lex largest extension of T.

Suppose we are given any prefix $\langle\operatorname{par}[1 . . k]\rangle$, then to generate the parent arrays of all rooted trees with n nodes, we divide the situation into two cases:
case 1: no trees with this prefix have been generated yet;
case 2: all trees with this prefix have been generated.

Copying Strategy:

\{Rule1\} For case 1, use the current s and $c L$ to continuously
copy subtree $T(s)$ of size $c L$.
$\{$ Rule2 $\}$ For case 2, set $s=\operatorname{par}[k]$, and $\operatorname{par}[k]=\operatorname{par}[s]$
if $\operatorname{par}[k]$ is not the root of the tree T.
Note that the first tree $\langle 0,1,2, \ldots, n-1\rangle$ will be initialized by the program. There is no doubt that it is the lexicographically greatest tree of size n. For this case, critical node s remains the same as in the initial call, $s=0$ and $c L=0$.

Lemma 3.2.4 \{Rule2\} in the Copying Strategy correctly updates the critical node s for any given prefix.

Proof:For the given prefix(which is a tree $T)\langle\operatorname{par}[1 . . k-1]$, $\operatorname{par}[k]\rangle$, either there exists an ancestor $p \neq k$ of k such that $T(p)$ is a prefix of its rightmost sibling, or there exists no such p. Let $a=\operatorname{par}[k]$ and $b=\operatorname{par}[\operatorname{par}[k]]$.

The second case implies that for any ancestor q of $k, T(q) \prec T(c)$ where c is the rightmost sibling of q. After the updating $\operatorname{par}[k]=\operatorname{par}[\operatorname{par}[k]]$, we get $T^{\prime},\langle\operatorname{par}[1 . . k-$ $1], \operatorname{par}[\operatorname{par}[k]]\rangle$. For any ancestor q of $a, T^{\prime}(q) \prec T(q)$, hence there exists no q such that $T^{\prime}(q)$ is a prefix of $T^{\prime}(c)$ where c is its rightmost sibling. So, only $T^{\prime}(k)$, the tree with only one node k, is a prefix of $T(a)$, where a is its rightmost sibling. And there is no sibling c^{\prime} of a such that $T^{\prime}(a)=T^{\prime}\left(c^{\prime}\right)$ since a is a valid position for $\langle\operatorname{par}[1 . . k-1]\rangle$. So $s=a$ for prefix $\langle\operatorname{par}[1 . . k-1]$, $\operatorname{par}[\operatorname{par}[k]]\rangle$.

For the first case, any ancestor p of node k in T^{\prime} has no sibling c such that $T^{\prime}(p)$ is a prefix of $T^{\prime}(c)$, even though $T(p)$ might be the prefix of the tree rooted at p 's rightmost sibling, because $T^{\prime}(p) \prec T(p)$. Similarly, only $T^{\prime}(k)$ is the prefix of the subtree $T^{\prime}(a)$, and $s=a$.

Pascal code is shown in Figure 3.3 as the procedure $\operatorname{Gen}(p, s, c L)$. The procedure produces all parent arrays with prefix $\langle\operatorname{par}[1 . . p-1]\rangle$. The initial call is $\operatorname{Gen}(1,0,0)$; no initialization is necessary.

Theorem 3.2.1 If \langle par $[1 . . p-1]\rangle$ is the parent array of a canonic tree T, the critical node of T is s, and $c L=|T(s)|$, then the call $\mathrm{Gen}(\mathrm{p}, \mathrm{s}, \mathrm{cL})$ generates all canonic trees of size n whose parent array has prefix $\langle\operatorname{par}[1 . . p-1]\rangle$.

Proof: We shall prove the theorem by induction on decreasing values of p for fixed n. The theorem is true if $p>n$ because $\langle\operatorname{par}[1 . . n]\rangle$ is the only tree of size n with the prefix of itself. Line $\{R 1\}$ in procedure Gen() will simply output the tree.

Assume for any $p+1 \leq n$, the theorem holds. We want to show that that $\operatorname{Gen}(p, s, c L)$ will generate all canonic trees with prefix $\langle\operatorname{par}[1 . . p-1]\rangle$. If the tree is the first tree in the list, i.e., $c L=0$, we just append node p as child of $p-1$. This is the lex largest tree. Otherwise, by Lemma 3.2.4, s and $c L$ have been correctly updated by previous calls at line $\{R 9\}$ and $\{R 11\}$ respectively, and Lemma 3.2.3 guarantees the valid position with the biggest level will be generated first at lines $\{R 4-R 7\}$ by applying $\{$ Rule 1$\}$. By Lemma 3.2.2, all possible extensions to trees of size p will be generated at lines $\{R 8-R 12\}$ by applying $\{R u l e 2\}$. Then, by our assumption, all these extensions will be wholly expanded to canonic trees of size n.

3.3 Complexity Analysis

We now argue that the algorithm is CAT. Observe that every iteration of the while loop results in a recursive call, and that the total amount of computation is proportional to the number of recursive calls. Let r_{n} denote the number of rooted trees with n nodes. The number of recursive calls is $r_{1}+r_{2}+\cdots+r_{n}$.

From Knuth [6], pg. 396:

$$
\begin{equation*}
r_{n} \sim 0.43992 \ldots(2.95576 \ldots)^{n} n^{-3 / 2} \tag{3.1}
\end{equation*}
$$

Let $T(x)=\sum_{i \geq 0} r_{i} x^{i}$ be the ordinary generating function of the sequence $\left\{r_{n}\right\}$. It's radius of convergence is $\rho \approx 0.3383219$. Kubicka [11] shows that asymptotically

$$
\frac{1}{r_{n}} \sum_{i=0}^{n} r_{i} \sim \frac{1}{1-\rho} \approx 1.5113
$$

This constant ratio implies that the algorithm is CAT.
The preceding proof relied on the asymptotic expression (3.1). By slightly modifying the algorithm, we can prove, by completely elementary means, that the algorithm
is CAT. In the computation tree \mathcal{C}_{n}, nodes with one child only occur if the corresponding rooted trees have two successive nodes whose parent is the root; i.e., if $\operatorname{par}[p-1]=\operatorname{par}[p-2]=1$. Removing the comment delimiters $\left({ }^{*}\right.$ and $\left.{ }^{*}\right)$ at line $\{R 1\}$ eliminates nodes with only one child. The computation tree now has more leaves than internal nodes and so clearly the underlying algorithm is CAT, since only a constant amount of computation is done at each node. Ruskey [8] calls this the Path Elimination Technique (PET).

3.4 Generating Rooted Trees with Height Restrictions

By slightly modifying the procedure Gen() of Figure 3.3, we can also generate trees with height restrictions, without losing the CAT property. The computation trees of these modified algorithms are certain subtrees of \mathcal{R}_{n}, the computation tree of the original recursive rooted tree algorithm in Figure 3.3.

To generate all trees of height at least h, initialize $\operatorname{par}[1 . . h+1]$ to be $0,1, \ldots, h$ and then call $\operatorname{Gen}(h+2,0,0)$. To generate all trees of height exactly h, initialize $\operatorname{par}[1 \ldots h+1]$ to be $0,1, \ldots, h$ and then call $\operatorname{Gen}(h+2, h+1,1)$. To generate all trees of height at most h change the test $c L=0$ at line $\{R 3\}$ to

```
(cL = 0) and (p <= h+2)
```

and ignore the first tree generated (which has height $h+1$ and acts as the initialization of the recursive construction).

In all three cases the resulting algorithms are CAT. Recall that \mathcal{R}_{n} is the computation tree for the algorithm in Figure 3.3. Let $\mathcal{R}_{>h}$ be computation tree for the algorithm of generating trees with height at least h, and $\mathcal{R}_{=h}$ for the algorithm of generating trees with height h, and $\mathcal{R}_{<h}$ for the algorithm of generating trees with height at most h. Since each node in the computation trees are associated with a recursive call $\operatorname{Gen}(p, s, c L)$, we label each node of \mathcal{R}_{n} by $(p, s, c L)$. So the root of \mathcal{R}_{n} will be $(1,0,0)$.

h	1	2	3	4	5	6	7	8	9	10	11	12	13
$n=9$	1	21	76	93	61	26	7	1					
$n=10$	1	29	147	225	180	94	34	8	1				
$n=11$	1	41	277	528	498	308	136	43	9	1			
$n=12$	1	55	509	1198	1323	941	487	188	53	10	1		
$n=13$	1	76	924	2666	3405	2744	1615	728	251	64	11	1	

Table 3.1: The numbers of rooted trees of various heights.

The computation tree $\mathcal{R}_{>h}$ is the subtree of \mathcal{R}_{n} rooted at $(h+2,0,0) ; \mathcal{R}_{=h}$ is the subtree of \mathcal{R}_{n} rooted at $(h+1,0,0)$ minus the subtree of \mathcal{R}_{n} rooted at $(h+2,0,0)$; $\mathcal{R}_{<h}$ is the subtree of \mathcal{R}_{n} obtained by deleting the subtree of \mathcal{R}_{n} rooted at $(h+2,0,0)$.

By applying the PET technique as above to eliminate those nodes with one child, the resulting computation trees, $\mathcal{R}_{>h}, \mathcal{R}_{=h}, \mathcal{R}_{<h}$, will have more leaves than internal nodes. This is because the subtree deletion of $\mathcal{R}_{=h}$ and $\mathcal{R}_{<h}$ can introduce at most one node with a single child.

3.5 Generating Rooted Trees with Parenthood Restrictions

In this section we consider rooted tree where each node has at most k children. Algorithms for the case of $k=2$ has been developed previously by Pallo in [15], by Ruskey in [9] and by Kubicka and Kubicki [14]. Our strategy is the same as in the rooted tree case; that is, we develop a recursive algorithm whose computation tree is that subtree of \mathcal{R}_{n}, call it $\mathcal{B}_{n, k}$, containing only rooted tree T so that $|T| \leq n$ and the number of children of each node in T is less than or equal to k. Figure 3.4 shows $\mathcal{B}_{6,2}$. An important difference from \mathcal{R}_{n} is that in $\mathcal{B}_{n, k}$ there can be rooted trees at levels less than n with no children. The three nodes in $\mathcal{B}_{6,2}$ boxed with dotted lines in Figure 3.4 are wasted steps, where two of them have no children.

Let b_{n} be the number of binary unordered trees. These numbers satisfy the recurrence relation $b_{0}=b_{1}=1$ and for even $n=2 k$,

Figure 3.4: The tree of rooted "binary" trees (up to 6 nodes).

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
r_{n}	1	1	1	2	4	9	20	48	115	286	719	1842	4766	12486	32973
$b_{n, 2}$	1	1	1	2	3	6	11	23	46	98	207	451	983	2179	4850
$b_{n, 3}$	1	1	1	2	4	8	17	39	89	211	507	1238	3057	7639	19241
$b_{n, 4}$	1	1	1	2	4	9	19	45	106	260	643	1624	4138	10683	27790

Table 3.2: Number $b_{n, m}$ of rooted trees of size n with at most m children.

$$
b_{2 k}=b_{0} b_{2 k-1}+b_{1} b_{2 k-2}+\cdots+b_{k-1} b_{k}
$$

and for odd $n=2 k+1$,

$$
b_{2 k+1}=b_{0} b_{2 k}+b_{1} b_{2 k-1}+\cdots+b_{k-1} b_{k+1}+\binom{b_{k}+1}{2}
$$

from which we may compute the numbers in Table 3.2.
Sloane's sequence database refers to these as the Wedderburn-Etherington numbers [34], [35]. Their ordinary generating function satisfies the functional equation $2 B(x)=2+x\left[B^{2}(x)+B\left(x^{2}\right)\right]$. Asymptotically (from Comtet [36], pg. 55),

$$
b_{n} \sim 0.7916 \ldots(2.48325354 \ldots)^{n} n^{-3 / 2}
$$

From the preceding expression it follows that

$$
\sum_{i=1}^{n} b_{i}=O\left(b_{n}\right)
$$

A naive approach is to introduce an array chi[1..n] whose i th entry is the number of children of node i. Replace each of the recursive calls $\operatorname{Gen}(p+1, s, c L)$ at lines $\{R \gamma\}$ and $\{R 11\}$ by the three lines

```
chi[par[p]] := chi[par[p]] + 1;
if chi[par[p]] <= k then Gen(p+1,s,cL);
chi[par[p]] := chi[par[p]] - 1;
```

The result is an algorithm whose running times are CAT for realistic values of n (i.e., on average there is at most 3 iterations of the loop for $n \leq 25$). There is
some redundancy in the algorithm: because if any node have k or more children, the algorithm will still check them to see if it is possible to attach a new child to the node.

We may obtain an algorithm that is provably CAT by maintaining an array jump [1..n] where jump $[i]$ is the closest ancestor of node i with less than k children, and an array rchild[1..n] where rchild[i] is the rightmost child of node $i .$. Array jump is the parent array of a certain "subtree" of T generated by the algorithm. See Appendix B for a Pascal implementation of jump [].

3.6 Final Remarks

The recursive algorithm for generating rooted trees we presented in this chapter is not only much simpler than the Beyer-Hedetniemi iterative algorithm, it is also much more flexible in the sense that it can be easily modified to generate rooted trees so that they are of size between n_{1} and n_{2}, each node has at most m children, and the height of the trees is between $l b$ and $u b$ (see Appendix B for its Pascal implementation). We have proved that this recursive algorithm is a CAT algorithm.

We did a small experiment on the actual running time of the simplified BeyerHedetniemi's algorithm and our recursive algorithm. The results were in Table 3.3. Both algorithms were implemented in Pascal and tested on the same machine. It shows that our recursive algorithm is faster than the iterative one.

n	trees	Iterative	time/tree	Recursive	time/tree
9	286	1940	6.783	1490	5.210
10	719	4880	6.787	3660	5.090
11	1842	12700	6.894	9300	5.049
12	4766	32200	6.756	23300	4.888
13	12486	84800	6.791	60900	4.877
14	32973	221000	6.702	157000	4.761
15	87811	591000	6.730	415000	4.726
16	235381	1560000	6.628	1100000	4.673
17	634847	4260000	6.710	2950000	4.647
18	1721159	11550000	6.711	7980000	4.636
19	4688676	31960000	6.816	21760000	4.641

Table 3.3: The running time(in microseconds) comparison of BH's iterative and our new recursive algorithm.

Chapter 4

Previous Algorithms for Generating Free Trees

4.1 An Introduction

A free tree is a connected graph without cycles. The generation of unlabeled free trees is more complicated than that of rooted trees due mainly to the absence of the root. In this chapter, we will first count the free trees. We will then give a brief discussion of previous algorithms for generating free trees. We will provide a detailed description of Wright, Richmond, Odlyzko and McKay's [18] algorithm. It is related to our new recursive algorithm which will be presented in the next chapter.

4.2 Counting the Free Trees

We discussed in Chapter 2 that free trees can be easily represented as a rooted tree by picking a node as the root. Enumeration of free trees is also related to rooted trees.

The number r_{n} of unlabeled rooted trees is given by the formula (2.1).
Let F be any free tree with n nodes, and r a node in F. Recall that T_{r} is the corresponding rooted version of T with r as root. Suppose there are k subtrees of the root r in T_{r}, with $s_{1}, s_{2}, \ldots, s_{k}$ nodes in these respective subtrees. So,

Figure 4.1: Weights of the nodes in a free tree.
$\sum_{1 \leq i \leq k} s_{i}=n-1$. In such circumstances, we say that the weight of r, weight (r), in F is $\max \left(s_{1}, s_{2}, \ldots, s_{k}\right)$. Thus in the tree in Figure 4.1, the node e has weight 3, and node f has weight $\max (5,2)=5$.

A node in a free tree with minimum weight is called a centroid of the free tree. Note that the centroid of a free tree is not necessarily a center of the free tree. For example, in Figure 4.1, the centroid is e, and the center is f.

Let r and $s_{1}, s_{2}, \ldots, s_{k}$ be as above, and let $t_{1}, t_{2}, \ldots, t_{k}$ be the roots of the subtrees emanating from r. Obviously, the weight of t_{1} is at least $n-s_{1}=1+s_{2}+\cdots+s_{k}$.

If there is a centroid c, we have

$$
\text { weight }(r)=\max \left(s_{1}, s_{2}, \ldots, s_{k}\right) \geq \text { weight }(c) \geq 1+s_{2}+\cdots s_{k},
$$

and this implies $s_{1}>s_{2}+\cdots+s_{k}$. A similar result can be derived if we replace t_{1} by t_{i} in the above discussion. So at most one of the subtrees can contain a centroid. This condition implies the following proposition:

Proposition 4.2.1 Any free tree F has either one or two adjacent centroids.

Conversely, if $s_{1}>s_{2}+\cdots+s_{k}$, there is a centroid in the subtree $T\left(t_{1}\right)$, since

$$
\operatorname{weight}\left(t_{1}\right) \leq \max \left(s_{1}-1,1+s_{2}+\cdots+s_{k}\right) \leq s_{1}=\operatorname{weight}(r),
$$

and the weight of all nodes in the subtrees $T\left(t_{2}\right), T\left(t_{3}\right), \ldots, T\left(t_{k}\right)$ is at least $s_{1}+1$. Now we have the following proposition:

Proposition 4.2.2 A node r in a free tree F is the only centroid if and only if

$$
\begin{equation*}
s_{j} \leq\left(\sum_{1 \leq i \leq k} s_{i}\right)-s_{j}, \text { for } 1 \leq j \leq k \tag{4.1}
\end{equation*}
$$

We now have that the free trees with one centroid is the number of rooted trees minus those rooted trees that violate the condition in equation (4.1). The number of free trees with one centroid therefore comes to

$$
r_{n}-\sum_{\substack{1 \leq i \leq j \\ i \neq j=n}} r_{i} r_{j} .
$$

Now, what is the number of free trees with two centroids? Since the weights of the two centroids is equal, n must be even and they each are weighted at $n / 2$. Let $n=2 m$. To form a bicentroidal free tree, we could just choose two rooted trees of size m with repetition and connect two roots by an edge. This gives the number of bicentroidal free trees:

$$
\binom{r_{m}+1}{2}
$$

Thus the total number of unlabeled free trees is

$$
\begin{equation*}
f_{n}=r_{n}-\sum_{\substack{i \leq j \\ i+j=n}} r_{i} r_{j}+\frac{\left(1-(-1)^{n-1}\right)}{2}\binom{r_{n / 2}+1}{2} \tag{4.2}
\end{equation*}
$$

The equation (4.2) above suggest a simple generating function for the number of unlabeled free trees (see [6]):

$$
\begin{aligned}
F(x) & =A(x)-\frac{1}{2} A(x)^{2}+\frac{1}{2} A\left(x^{2}\right) \\
& =x+x^{2}+x^{3}+2 x^{4}+3 x^{5}+6 x^{6}+11 x^{7}+23 x^{8}+\cdots
\end{aligned}
$$

where $A(x)$ is the generation function for r_{n}.
We can also use equation (2.1) to compute the number f_{n} of unlabeled free trees of size n (see Table 4.1).

Equation (4.2) gives no clue how to generate free trees, but it does show the relation between rooted trees and free trees. Some algorithms were developed based

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f_{n}	1	1	1	2	3	6	11	23	47	106	235	551	1301	3159	7741

Table 4.1: The number f_{n} of free trees with n nodes
on the idea that the set of unlabeled free trees is the subset of unlabeled rooted trees if free trees are represented by rooted trees as discussed before.

4.3 Generating Free Trees

Algorithms for generating various labeled or unlabeled rooted trees have been extensively investigated in the past, but to our knowledge few results have been published on generating unlabeled free trees (even though a significant amount of work has been done on the generation of labeled free trees). It is easier to generate bicentral and unicentral free trees separately. In [16], Scions wrote:"However, it has proved impossible so far to generate the interleaved set of unicentral and bi-central [free] trees except by carrying out a comparison between the next central tree and the next bi-central tree, which is essentially a sorting operation which we have previously avoided."

Read [1] did some early work in 1970. He formulated an algorithm for generating all free trees of size n. Unfortunately, since his algorithm must process and store all trees with $n-1$ nodes, the space required grew exponentially. Kozina [19] introduced a coding method using linear space and derived from it an algorithm for generating rooted trees and free trees. His free tree algorithm generated unicentral free trees and bicentral free trees separately. The running time is $O\left(n r_{n}\right)$ for rooted trees, $O\left(n^{2} r_{n}\right)$ for free trees since after generating each rooted tree, a checking procedure is needed to output only valid free trees. In 1981, Wilf [17] gave an algorithm for random generation of unlabeled free trees. But no systematic ways of generation all free trees was provided.

In 1981, Liu [24] published a paper on generating rooted trees and free trees
lexicographically. He first introduced an algorithm for generating rooted trees. Then this algorithm was extended to generate free trees.

He represented a rooted tree by a sequence of non-negative integers when the integer at position i gave the number of children it had. The nodes were labeled by a preorder traversal of the tree as we discussed in Chapter One. Two trees were equivalent if one can be obtained by rearranging the order of the subtrees of the other one. The representative of each equivalence class was the lexicographically largest sequence in this class. The algorithm was iterative. Given a sequence, it scanned the sequence from right to left to find the first node p with more than one child, reduced the number of children of p by one, and then made the rest of the sequence lexicographically largest. The algorithm outputed all valid representations of unlabeled rooted trees lexicographically from largest one, $(n-1,0,0, \ldots, 0)$, to smallest one, $(1,1, \ldots, 1,0)$.

A free tree was represented by a rooted tree where the root of the rooted tree was a center of the free tree. For bicentral free trees, the root was picked so that the resulting rooted tree was lexicographically bigger. Note that the representation of rooted tree mentioned above was always referred to as the lexicographically biggest one in its equivalence class.

The algorithm introduced by Liu for generating free trees was an extension of the one for rooted trees. The algorithm will generate all rooted trees. Only those valid representation of free trees will be output.

The complexity of Liu's rooted tree algorithm was $O\left(n r_{n}\right)$, where r_{n} is the number of unlabeled rooted trees. The complexity of his free tree algorithm was $O\left(n^{2} r_{n}\right)$ since all rooted trees would actually been generated in $O\left(n r_{n}\right)$ time and examined in $O(n)$ time. Note that $r_{n} / f_{n}=O(n)$ where f_{n} is the number of unlabeled free trees, so the average running time for each tree is $O\left(n^{2}\right)$.

In 1984, Tinhofer and Schreck [26] presented an algorithm for generating all unlabeled free trees as an application of their new method of coding unlabeled free trees. Their algorithm for coding the free trees is $O(n)$ where n is the size of the free trees.

The average length of their coding sequence is $0.84 n$, the algorithm ran in $O\left(n f_{n}\right)$ time where f_{n} is the number of free trees with n nodes, and the resulting list of coding sequences were not in lexicographic order. The average running time for each tree is $O(n)$.

In 1985, Wright, Richmond, Odlyzko and Mckay [18] extended Beyer and Hedetniemi's [5] algorithm for generating rooted trees to generating unlabeled free trees. The algorithm generates each tree in constant average time, independent of the size of the trees. We will discuss their algorithm in detail in the following section.

4.4 An Iterative Algorithm

An algorithm of Beyer and Hedetniemi[5] for generating rooted unlabeled trees was extended to generate unlabeled free trees by Wright,Richmond, Odlyzko and McKay [18]. We therefor call their algorithm the WROM Algorithm. All nonisomorphic trees of a given size are generated, without repetition, in time proportional to the number of trees.

The WROM algorithm adopts canonic level sequences for rooted trees as the representation of unlabeled free trees (see also the discussion in Chapter 1 on representation of free trees). They differ from our representation only on the selection of the root for bicentral free trees. They call the center they pick the primary root, and the canonic level sequence of the resulting rooted tree the primary level sequence.

For unicentral free trees, our canonic center is their primary root, and our canonic representations of free trees represent the exactly same free trees as their primary level sequences.

For bicentral trees, let c, d be two centers in free tree T, and $Q(c)$ and $R(d)$ be two rooted trees obtained by deleting the edge between c and d from T. Let $|Q(c)|$ and $|R(d)|$ be the number of nodes in Q and R respectively.

For any free tree T, the WROM algorithm's selection of primary root is defined by the following rules:
(R1) if T is unicentral, then c is the root if c is the center of T, or

Original free tree

WROM's root selection

Our selection

Figure 4.2: Two different ways to select the root.

01234123	01222212
01233123	01222122
01233122	01222121
01232123	01222111
01232122	01221221
01232121	01221212
01231231	01221211
01231222	01221111
01231221	01212121
01231212	01212111
01231211	01211111
	01111111

Figure 4.3: Primary canonical level sequences with $n=8$.
(R2) if T is bicentral with two centers, c, d, then c is the root if
(R2.1) $|Q(c)| \geq|R(d)|$ and
(R2.2) if $|Q(c)|=|R(d)|$, then $l e v_{Q(c)} \succeq l e v_{R(d)}$.
This representation is different from ours (see Chapter 1). Our representation is more natural in the sense that we always choose the lexicographically greatest canonic rooted tree as the representation of the free tree. The WROM algorithm's representation is inconsistent since for unicentral free trees they followed this rule, but for bicentral ones they didn't.

From now on in this section, we will always look at the rooted tree representation defined above for any given free tree.

Figure 4.4: (R1) fails: $\operatorname{NEXT}()$ generate (b) from (a).

The WROM algorithm trys to use the successor function, NEXT(), in Beyer and Hedetmieni's algorithm (see Figure 2.4) to generate all unlabeled free trees. Since the set of all primary canonic level sequences of free trees is a subset of all canonic level sequences of rooted trees (see [18] for details), only a filter system is needed to be built to skip over those canonic level sequences which are not primary.

Beyer-Hedetmieni's successor function NEXT() will always generate a canonic level sequence. The only problem raised when applying it to the free tree case is that the resulting canonic level sequence may not be primary, i.e., the resulting root may not be a primary root, if we treat the resulting tree as a free tree.

It turns out that there are only three classes of primary level sequences which will be transferred to a non-primary ones by Beyer and Hedetmieni's successor function NEXT():

Class 1: The transformation of primary level sequences in this class will violate only (R1) above. These trees must be a bicentral free tree with two subtrees $Q(c)$ and $R(d)$ (as above) where c is the root, and the leftmost subtree of c in $Q(c)$ is a chain, and the rest of subtrees are one-node subtrees. See Figure 4.4.

Class 2: The transformation of primary level sequences in this class will violate only (R2.1) above. Such a tree must be unicentral free tree, with c as primary root, in which the leftmost subtree of c has more than half of the nodes in the whole tree. See Figure 4.5.

Class 3: The transformation of primary level sequences in this class will violate only (R2.2) above. Such a tree must be a bicentral free tree, with c as primary root, d as the other center, and $|Q(c)|=|R(d)|, \operatorname{lev}_{Q(c)}=l e v_{R(d)}$ (for Q, R defined as before). See Figure 4.6.

(a)

(b)

Figure 4.5: (R2.1) fails: NEXT() generate (b) from (a).

(a)

(b)

Figure 4.6: (R2.2) fails: NEXT() generate (b) from (a).
The WROM algorithm then modifies the results generated by NEXT(). Figure 4.8 shows some examples of such modifications.

Let T be a free tree with n nodes in one of the classes above, and NEXT(L) denotes the level sequence generated by $\operatorname{NEXT}()$ from L. Let $L[i]$ be the level of node i, and $T_{1}, T_{2}, \ldots, T_{m}$ be the subtrees of primary root of T. Let S be the set of all primary level sequences of length n in Class 1,2 and 3 . The WROM algorithm for generating free trees is shown in Figure 4.7 based on above notations.

The WROM algorithm was shown to be very efficient. Table 4.2 shows that the average number of times the WROM algorithm access the positions in the level sequences $L[1 . . n]$ where n is the size of the rooted trees.

Theorem 4.4.1 [18] WROM's algorithm generates unlabeled free trees in Constant Amortized Time (CAT).
if $L \in S$ then begin
$L:=\operatorname{next}(L)$ where p initialized to $\left|T_{1}\right|+1$;
if $L\left[\left|T_{1}\right|+1\right]>1$ then $L[n-h+1 \ldots n]:=1,2, \ldots, h$;
else $L:=\operatorname{next}(L)$;
Figure 4.7: The WROM algorithm

n	trees	cost	cost/tree	n	trees	cost	cost/tree
4	2	7	3.500	13	1301	4555	3.503
5	3	11	3.667	14	3159	10709	3.390
6	6	26	4.333	15	7741	25469	3.290
7	11	44	4.000	16	19320	61729	3.195
8	23	97	4.217	17	48629	151897	3.124
9	47	189	4.021	18	123867	377951	3.051
10	106	416	3.925	19	317955	953876	3.000
11	235	887	3.774	20	823065	2423668	2.945
12	551	2006	3.641	21	2144505	6235148	2.907

Table 4.2: Average number of positions accessed by the WROM algorithm.

As discussed in Chapter 2 and 3, we simplified and introduced a recursive version of Beyer Hedetniemi's algorithm for generation of rooted trees. That idea can also be extended to simplify the WROM algorithm. In the next chapter, we present our new recursive algorithm for generating free trees.

A

non-primary
介

0122121

0122211
122122

Figure 4.8: Free trees generated by the WROM algorithm.

Chapter 5

A New Recursive Algorithm for Generating Free Trees

5.1 An Introduction

In this chapter, we first introduce our new recursive algorithm for generating unlabeled free trees. We then present a proof of its correctness and a complexity analysis. Finally, we modify our algorithm to generate free trees under some height and/or degree constraints.

5.2 The Recursive Algorithm

Our recursive algorithm for free trees is an extension of our recursive algorithm for rooted trees, since the set of rooted versions of all free trees is a subset of the set of all canonic rooted trees, i.e., the rooted version of a free tree is actually a rooted tree in which the root is always a center of the original free tree.

5.2.1 How to approach the problem

There are many approaches to the problem of generating unlabeled free trees.
One approach is to generate free trees of size n by examining and extending free trees of size $n-1$. Figure 5.1 presents all unlabeled free trees of at most seven nodes.

Figure 5.1: The Hasse diagram of the poset of free trees with at most 7 nodes.

The free trees at the same level have the same number of nodes, and are organized in relex (reversed lexicographic) order. We define a partial order \prec among all free trees with at most n nodes. Define $T \prec T^{\prime}$ if $|T|<\left|T^{\prime}\right|$ and T can be obtained by recursively remove some leaves from T^{\prime}, i.e., T^{\prime} is a "supertree" of T. In Figure 5.1 we show the Hasse diagram of the poset of all free trees with at most 7 nodes.

The Hasse diagram in Figure 5.1 illustrates that it is possible to generate free trees of size n from free trees of size $n-1$ by adding a leaf to a free tree of size $n-1$ as a child of some leaf. Given a free tree T of size $n-1$, to generate all T^{\prime} so that $T \prec T^{\prime}$ and $\left|T^{\prime}\right|=n$, we need to solve two problems: one is how to pick the right leaf to add a new node as its child; the other is how to avoid duplicates (since the Hasse diagram in Figure 5.1 is not a tree structure, there are "loops" in it). Read [1] developed an algorithm which could generate all free trees of size n from all free trees of size $n-1$, but his algorithm had to examine and store all free trees of size $n-1$, and the space was exponential with respect to n. Another problem with this approach is that it is hard to generate all free trees of size n lexicographically in terms of the level sequence representation. The lexicographically biggest free tree of size $n-1$ may not always be used to generate the lexicographically biggest free tree of size n by adding a leaf. See, for example, the leftmost tree at level $n=6$ in Figure
5.1 can not be generated from the leftmost tree at level $n=5$ by adding a leaf.

Another approach is the WROM iterative algorithm. The algorithm adopted the idea from the Beyer-Hedetniemi algorithm for generating rooted trees. It used unlabeled rooted trees to represent free trees as we discussed in Chapter 1. It first initialized the lexicographically biggest free tree. It then applied Beyer-Hedetniemi's iterative algorithm to generate its successor. There are some cases where BeyerHedetniemi's algorithm generates some rooted trees which can not be used as a representation of a free tree (see [5] for definition of the representation). The WROM algorithm uses some techniques to detect and fix these failure cases (see Chapter 2 for details). For easy detection and repair, the WROM algorithm uses an unnatural way to represent free trees. Recall that a free tree is transferred into a rooted tree by picking a root for it. For unicentral free trees, the WROM algorithm picks the unique center as the root and arranges the subtrees of the resulting rooted tree recursively so that the subtrees on the left are always lexicographically bigger or equal to the ones on the right. But for bicentral free trees, there are two centers. By deleting the edges between these two centers we have two rooted subtrees (see Chapter 1 for more explanation). The WROM algorithm picks the center not purely according to the lexicographic order of the two rooted subtrees. It always arranges the bigger sized subtree on the right side of the root, and if they are of the same size, arranges the lexicographically bigger subtree on the right side of the root instead of the left as in unicentral case (see Figure 4.2 for some examples).

Compared to the WROM algorithm, we pick the root in a very natural and consistent way: we always pick the center which lexicographically maximizes the canonic level sequence of the resulting rooted tree T_{r}.

Our goals are, first, to maintain the same natural canonic representation of free trees extended from that of rooted trees (see Chapter 1), and second, to develop a simpler, more flexible recursive algorithm for generating free trees in relex order.

Recall from Chapter 1 that we represent a free tree T by picking a root r and then transferring it to its rooted version, a canonic rooted tree, T_{r}. The level sequence

Figure 5.2: Two subtrees of unicentral and bicentral free trees.
$l e v_{T_{r}}$ and parent array $\operatorname{par}_{T_{r}}$ of this canonic rooted tree T_{r} becomes the representation of the free tree T.

If $|T|>2$, we further divide the rooted version of the free tree T into two subtrees, L_{T} and R_{T} whose heights differ by at most one. See Figure 5.2. The definitions of L_{T} and R_{T} are given below:

If T is unicentral with center r, let $r_{1}, r_{2}, \ldots, r_{m}$ be the children of root r in the rooted version T_{r} of T, and let $T\left(r_{i}\right)$ be the subtree of T_{r} rooted at r_{i} for $i=1 \ldots m$. From the definition of T_{r} we know that $T_{i} \preceq T_{j}$ if $i>j$. Now, we delete the edge between r and r_{1}. We have two rooted subtrees: L_{T} and R_{T}. The left subtree L_{T} is $T\left(r_{1}\right)$ and the right subtree R_{T} is T_{r} after removing subtree $T\left(r_{1}\right)$, denoted by $T_{r} \backslash T\left(r_{1}\right)$. See Figure 5.2.

If T is bicentral, let r be the center which lexicographically maximizes the canonic level sequence of the resulting rooted tree T_{r}, i.e., the rooted version of T, and c be the other center of T. After deleting the edge between r and c, similarly, we have two rooted subtrees of $T_{r}: L_{T}$ and R_{T}. The left subtree L_{T} is $T(c)$ and the right subtree R_{T} is T_{r} after removing $T(c)$, denoted by $T_{r} \backslash T(c)$. See Figure 5.2.

Let r be the canonic center we choose, and $r_{1}<r_{2}<\cdots<r_{m}$ be the children of r. Then node r_{1} is the root of L_{T} by definition. Recall that $T_{r}\left(r_{i}\right)$ is the subtree, rooted at r_{i}, of rooted tree T_{r}. Observe that by the definition of the rooted version T_{r} of T, and the way we choose L_{T} and R_{T}, we have the following proposition.

Proposition 5.2.1 If T is unicentral, then $L_{T} \succeq T_{r}\left(r_{2}\right) \succeq \cdots \succeq T_{r}\left(r_{m}\right)$. If T is
bicentral, then $L_{T} \succeq R_{T}$.

Note that if T is a free tree in the WROM algorithm, we can define the same L_{T} and R_{T}, but Proposition 5.2 .1 is not always true for the bicentral case: it is not true when $\left|L_{T}\right|=\left|R_{T}\right|$ and L_{T} not equivalent to R_{T}; sometimes true, sometimes not true otherwise (see Chapter 4 for details).

Since L_{T} and R_{T} are both canonic rooted trees, Figure 5.2 illustrates a way to construct the rooted version of a free tree T : first build a rooted tree L_{T}, then build a rooted tree R_{T} so that $|T|=\left|L_{T}\right|+\left|R_{T}\right|$ and Proposition 5.2.1 is satisfied. By connecting the root of L_{T} and the root of R_{T}, and making the root r of R_{T} as the new root, we form the rooted version T_{r} of the desired free tree T.

Now, the problem becomes how to generate free trees in relex order. Here is our strategy: We first label the root of R_{T} as 1 , the root of L_{T} as 2 , and let parent of 2 be 1 , parent of 1 be 0 . We then generate all those L_{T} 's in relex order by using our recursive rooted tree algorithm with initial call $\operatorname{Gen}(3,0,0)$, and then for fixed L_{T}, we generate corresponding R_{T} 's in relex order. The parent array of T_{r} will be

$$
\langle p_{1}, \underbrace{p_{2}, \ldots, p_{s L}}_{L_{T}}, \underbrace{p_{s L+1}, \ldots, p_{N}}_{R_{T}}\rangle
$$

where p_{i} is the parent of node i in T_{r}. Note that it is always true that $p_{1}=0$ and $p_{2}=1$.

5.2.2 How to generate L_{T} 's in relex order

We have a recursive algorithm $\operatorname{Gen}()$ for generating rooted trees of fixed size (see Chapter 3). Suppose we want to generate all free trees of fixed size n. Observe that the size of L_{T} is not fixed even though the size of T is fixed. This makes the problem harder as we can not directly use Gen().

The reason that the size of L_{T} is not fixed is that the difference between the height of L_{T} and R_{T} must not exceed 1, due to the root selection method for the rooted version of the free tree T.

Proposition 5.2.2 For a rooted version T_{r} of a free tree T of size N and height h, the biggest possible size of L_{T} is obtained when the R_{T} is a chain of length $h-1$ for the bicentral case, and height h for the unicentral case.

Proposition 5.2.2 implies the following proposition.

Proposition 5.2.3 The lexicographically biggest possible L_{T} for a free tree T of size N and height h is the lexicographically biggest rooted tree of size $N-h$ and height $h-1$ for bicentral case, or of size $N-h-1$ and height $h-1$ for unicentral case.

Figure 5.3 (a) and (b) show an example for $N=10, h=3$.

Proposition 5.2.4 Let T be a free tree with N nodes and height h. The smallest value of $\left|L_{T}\right|$ is obtained when L_{T} has the following form.
(a) If T is unicentral, then L_{T} is a chain of length $h-1$.
(b) If T is bicentral and not an odd length chain, then L_{T} is a chain C of length $h-1$ together with a node attached at a non-leaf of C.
(c) If T is an odd length chain (and so $h=N / 2$), then L_{T} is a chain of length $h-1$.

See Figure 5.3 (c) and (d) for example.

(a)

(c)

(b)

(d)

Figure 5.3: For $N=10, h=3$, (a) Biggest L_{T} for unicentral case, (b) Biggest L_{T} for bicentral case, (c) Smallest L_{T} for unicentral case, (d) Smallest L_{T} for bicentral case.

So, to generate all L_{T} 's, we have to consider these constraints related to the height of T_{r}. Now two things need to be taken care of: generating all possible L_{T} 's under these size constraints and generating them in relex order.

Let $N=|T|$ be the size of $T, s L=\left|L_{T}\right|+1$ be the label of the last node in L_{T}, and h be the height of the rooted version T_{r} of T. Proposition 5.2.5 tells us the lexicographically biggest free tree of size N.

Proposition 5.2.5 Let T_{r} be the canonic rooted version of free tree T, with L_{T} and R_{T} defined as before. Then T_{r} is the lexicographically biggest among all free tree T of size N if
1). $s L=\left|L_{T}\right|+1=\lceil N / 2\rceil+1$ and $h=\lfloor N / 2\rfloor$, and
2). If N is even, then both L_{T} and R_{T} are chains of length $h-1$, or
3). If N is odd, then L_{T} is the lexicographically biggest rooted tree of size s $L-1=\left|L_{T}\right|$ and height $h-1$, and R_{T} is a chain of length $h-1$.

The leftmost tree at the bottom level (level 7) of Figure 5.1 shows an example of case 3) with $N=7$ and the leftmost tree at level 6 shows an example of case 2) with $N=6$.

Recall that our recursive algorithm $\operatorname{Gen}(p, s, c L)$ for generating rooted trees in Figure 3.3 generates rooted trees of fixed size n in relex order: the greater the height of a rooted tree, the earlier it gets generated. To generate L_{T}, we first initialize n to be $s L$, the size of L_{T} plus one (since the label of L_{T} starts with node 2 instead of 1), and then run the algorithm $G e n(p, s, c L)$. When the size of L_{T} needs to be changed, we change the value of n in the algorithm, and continue the execution of the recursive call $\operatorname{Gen}(p, s, c L)$.

There are two instances when $s L$ changes. One is after the node $\left|L_{T}\right|+1$, the last node in L_{T}, is added as the rightmost child of the root of L_{T}, which is 2 according to our preorder labeling; the other is when the height of L_{T} is reduced (by one).

After the node $\left|L_{T}\right|+1$ being added as the rightmost child of the root of L_{T}, we generate the successor of L_{T} by throwing away the node $\left|L_{T}\right|+1$. This node will be used in R_{T}. So, the size of the successor of L_{T} is one less than the size of L_{T}.

suce(T)

Figure 5.4: The successor of the smallest free tree of height h.

Note that this is a modification to the original rooted tree algorithm $\operatorname{Gen}(p, s, c L)$. The original algorithm will not generate rooted trees of varied size. To implement this modification, we need only reduce $s L$ by one and output the new L_{T}, represented by the sequence $L[2 . . s L]$, after the while loop at line R8-R12. We call this modification as Modification L1. We call the modified version of $\operatorname{Gen}()$ for generating L_{T} GenLT().

Observe that

Proposition 5.2.6 If the last node, $\left|L_{T}\right|+1$, in L_{T} is the rightmost child of the root 2 of L_{T}, then by removing this node, we obtain the lexicographically biggest rooted tree among those rooted trees of size less than or equal to N and lexicographically smaller than L_{T}.

When the height of L_{T} is going to be reduced by one, what is the successor of the current free tree T ? Observe that by Proposition 5.2.6, we have

Lemma 5.2.1 Only when rooted tree L_{T} is a chain will the modified recursive algorithm GenLT() reduce the height of L_{T} by one (and only one) when generating the successor of L_{T}. This happens when $s=0$ in the while loop at line $R 8$ in $\operatorname{Gen}(p, s, c L)$.

Proof:Since the successor of L_{T} can be of various size, if L_{T} is not a chain, $\operatorname{Gen} L T()$ will not have to move the last node on the leftmost path of L_{T} in order to reduce the height of L_{T}. Simply removing a leaf not on the leftmost path of L_{T} will give a rooted tree which has the same height as L_{T}, but is lexicographically smaller.

To generate the successor, $\operatorname{succ}\left(L_{T}\right)$, of L_{T} mentioned in Lemma 5.2.1, we need to make the left subtree $L_{\operatorname{succ}(T)}$ in the successor, $\operatorname{succ}(T)$, of T as large as possible. By Proposition 5.2.3, $\operatorname{succ}(T)$ must be a bicentral free tree such that $R_{\text {succ }(T)}$ is just a chain and $L_{\operatorname{succ}(T)}$ is the lexicographically biggest in its size and height. Suppose p is the last node of L_{T} mentioned above. To generate $\operatorname{succ}(T)$, we only need to reset h, which is currently $p-1$ since L_{T} is a chain, to $p-2$, then reset $s L$ to $N-h+1$, and then continue the execution of the algorithm $\operatorname{Gen} L T()$. The algorithm will then generate the successor $L_{\operatorname{succ}(T)}$ of L_{T} with new size $N-h+1$ instead of h (see Figure 5.4. We call this modification of the algorithm GenLT() Modification L2. We add this modification into $\operatorname{Gen} L T()$, and still call the modified algorithm $\operatorname{GenLT}()$.

Proposition 5.2.7 Given the rooted version T_{r} of a free tree T with L_{T} a chain of length $h-1$, where h is the height of T_{r}, Modification L2 will result in generating the lexicographically greatest successor succ (T) of T, in the corresponding rooted version, such that $R_{\text {succ(T) }}$ is a chain of height $h-2$ and $L_{\operatorname{succ}(T)}$ is the lexicographic biggest rooted tree of size $N-h+2$ and height $h-2$.

Now, the prototype of our new algorithm for generating left subtree L_{T} will be $\operatorname{GenLT}(p, s, c L, h, s L)$, where $p, s, c L$ are inherited from $\operatorname{Gen}(p, s, c L)$ with the same meaning (see Chapter 3). We add $s L$, the label of the last node in L_{T}, as a parameter to trace the current size of L_{T}, and h, the height of T, as another new parameter. Recall that GenLT is obtained by implementing Modification L1 and L2 in $\operatorname{Gen}(p, s, c L)$.

We first initialize root of R_{T} as 1 , root of L_{T} as 2 , and $\operatorname{par}[2]=1$. The initial call will be $\operatorname{GenLT}(3,0,0, h, s L)$ (see Figure 5.2 .2 for the algorithm GenLT) with h and $s L$ as set in Proposition 5.2.5. To implement Modification L2, we just insert the following lines after $\{\mathrm{R} 8\}$ in $\operatorname{Gen}(p, s, c L)$:

```
if s=0 then begin
    h := p - 2;
    sL := N - h + 1;
end;
```

Since the node $p p$ on the leftmost path of L_{T} is added into L_{T} by recursive call $\operatorname{GenLT}(p p, 0,0, h, s L)$ as in $\operatorname{Gen}(p p, 0,0)$, we use $s=0$ to identify the situation when the last node p of L_{T} is on the leftmost path of L_{T}, i.e., L_{T} is a chain.

For Modification L1, we simply add the line

```
GenRT(p,2,p-2,h,sL-1);
```

after the while loop (line $\{$ R8-R12 $\}$) in $\operatorname{Gen}(p, s, c L)$ to generate R_{T} such that the last node p in the current left subtree L_{T} is transferred to the right subtree in the successor of the current T. Note, Gen $R T$ will be discussed in the next section.

There are some other small modifications to transfer $\operatorname{Gen}()$ into $\operatorname{GenLT}()$. In line $\{\mathrm{R} 1\}$ of $\operatorname{Gen}(), n$ will be replaced by $s L$ to indicate the completion of L_{T}, and PrintIt is replaced by $\operatorname{Gen} R T()$ to generate the right subtree R_{T} for the current left subtree L_{T}. Since the root of L_{T} is 2 instead of 1 , we replace 1 by 2 at line $\{\mathrm{R} 8\}$ in $G e n()$. Algorithm $G e n R T()$ will be discussed in the next section.

5.2.3 How to generate R_{T} 's in relex order

For a fixed L_{T}, we will then generate R_{T} 's for unicentral case first and then the bicentral case.

Since for a fixed L_{T}, the height of R_{T} in a bicentral T is one bigger than the height of R_{T} in a unicentral T. So, we have the following proposition.

Proposition 5.2.8 Given any bicentral free tree T and unicentral free tree T^{\prime}. If $|T|=\left|T^{\prime}\right|$ and L_{T} is equivalent to $L_{T^{\prime}}$, then $R_{T} \preceq R_{T^{\prime}}$.

First we have to make sure that the number of nodes left from GenLT is enough to generate R_{T} since we require the height of R_{T} to be exactly h for unicentral case, and $h-1$ for bicentral case, where h is the height of the rooted version T_{r} of T. So, if $p=\left|L_{T}\right|+1=s L$ is the label of the last node of L_{T} (hence $N-p$ is the number of nodes left for R_{T}), we require that $N-p>=h$ for unicentral case, and $N-p>=h-1$ for bicentral case.

```
procedure GenLT( p, s, cL, h, sL : integer);
begin
{T1} if p > sL then GenRT(p,2,p-2,h,sL) {n->sL; PrintIt->GenRT}
{T2} else begin
{T3} if cL = 0 then par[p] := p-1 else
{T4} if par[p-cL] < s
{T5} then par[p] := par[s]
{T6} else par[p] := cL + par[p-cL];
{T7} GenLT( p+1, s, cL, h, sL );
{T8} while par[p] > 2 do begin {change 1 to 2}
{T9} if s = 0 then begin {Modification L2}
{T10} h = p-2; { ,', }
{T11} sL = N - h + 1 { ,', }
{T12} end; { ', }
{T13} s := par[p];
{T14} par[p] := par[s];
{T15} GenLT( p+1, s, p-s, h, sL )
{T16} end;
{T17} GenRT(p,2,p-2,h,sL-1) {Modification L1, add GenRT}
{T18} end
end; {of GenLT};
```

Lemma 5.2.2 For N, p, h as above, $N-p>=h-1$.

Proof:Initially, we set $s L$ so that $N-p=N-s L=h-1$ (see Proposition 5.2.5). $s L$ will only be modified in two cases, Modification L1 and L2. Modification L1 will reduce $s L$ by one, hence $N-p$ will be greater than $h-1$. Modification L2 set $s L$ so that $N-p=h-1$ (see Proposition 5.2.7).

We then have to check whether Proposition 5.2 .1 will be satisfied if we adopt $G e n()$ as $\operatorname{GenRT}()$ to generate R_{T}.

For unicentral case, if we have at least $h+1$ nodes, including the root 1 , for R_{T}, we can always do the following without violating Proposition 5.2.1: (Otherwise, no unicentral T will be generated with the current L_{T}.)

Proposition 5.2.9 For fixed L_{T}, to generate the lexicographically biggest T_{r} of a unicentral free tree T, we can call $G e n(p, 2, s L)$ to copy subtree L_{T} repeatedly.

For bicentral case, from Lemma 5.2.2, we know we have at least enough nodes to build a chain of length $h-1$, and this is a valid rooted version of a bicentral free tree. What happens when we have more nodes? We have to make sure Proposition 5.2 .1 is preserved.

Lemma 5.2.3 If h is the current designated height of the rooted version T_{r} of a bicentral free tree $T, N=|T|$, and p is the last node in L_{T}, then R_{T} can be built without violating Proposition 5.2.1 only when one of the following conditions is satisfied:

$$
\begin{aligned}
& \text { (D1) }(p-1) * 2 \geq N \text {, or } \\
& \text { (D2) }(p-h-1=1) \text { and par }[p]>2 \text {, or } \\
& \text { (D3) }(p-h-1 \geq 2) \text { and }((\operatorname{par}[h+2]>2) \text { or }(\operatorname{par}[h+3]>2)) \text {. }
\end{aligned}
$$

Proof: When condition (D1) is satisfied, $\left|L_{T}\right| \geq\left|R_{T}\right|$, so we can just make a (partial) copy of L_{T} to generate R_{T}. L_{T} will be lexicographically greater than or equal to R_{T}.

When condition (D2) is satisfied, we know that L_{T} is just a chain C of length $h-1$ plus the last node p attached to a non-leaf node on the chain C which is not
the root 2 of L_{T}. Since the last node p is not the child of the root of L_{T}, L_{T} has a successor of the same size or of larger size. So, if $\left|L_{T}\right|<\left|R_{T}\right|$, we can generate R_{T} by finding the successor of L_{T}.

When condition (D3) is satisfied, L_{T} is not a chain. It has at least two more nodes than a chain of length $h-1$. So as long as L_{T} is not the lexicographically smallest of height $h-1$, we are done. We know by the recursive definition of canonic rooted trees, if there are two consecutive nodes at level one, i.e. children of root, then all the following nodes have to be at level one. We know that node $h+1$ is the node in L_{T} with highest level. If the two following nodes, $h+2$ and $h+3$ are children of node 2 , the root of L_{T}, then L_{T} is the lexicographically smallest of its size and its height. Otherwise we can always find a successor of L_{T} with the same height, $h-1$, so that R_{T} is the successor of the current L_{T}.

Lemma 5.2.3 will guarantee that if one of the conditions is satisfied, we can always expect a good and lexicographically biggest, with respect to the fixed L_{T}, R_{T} to be generated according to Proposition 5.2.1. We now apply $\operatorname{Gen}(p, s, c L)$ to generate R_{T} 's in order to build those bicentral free trees with fixed L_{T}.

Is it possible that all the conditions in Lemma 5.2 .3 fail, i.e., no R_{T} will be generated for a L_{T} generated by $G e n L T()$? Fortunately, this is impossible.

Lemma 5.2.4 If L_{T} is generated by GenLT(), then there exists at least one R_{T} so that Proposition 5.2.1 is satisfied.

Proof:The height h of the rooted version T_{r} of a free tree T plays an important role here. Observe that $h=\lfloor N / 2\rfloor$ is the biggest possible height of all free trees with N nodes. With such height, R_{T} will always exist. It is a chain of length $h-1$ for bicentral case, and h for unicentral case. See the first few trees at each level in Figure 5.1 for examples. If $h<\lfloor N / 2\rfloor$, then by Lemma 5.2 .2 we have at least $h-1$ nodes left for R_{T}. We can always generate R_{T} by copying L_{T} to form a unicentral T if there are more than $h-1$ nodes left for R_{T} (otherwise, we can simply generate
a R_{T} as a chain of length $h-1$ to form a bicentral T without violating Proposition 5.2.1).

For a fixed L_{T}, The first R_{T} to be generated is the lexicographically biggest one. Since the root of R_{T} has been set, we can use $\operatorname{Gen}(p, 2, p-2)$ to copy L_{T} except the root of L_{T} (note that $p-2=\left|L_{T}\right|-1$). But if the size of R_{T} is greater than the size of L_{T}, and we continuously make copies of L_{T}, R_{T} will be lexicographically bigger than L_{T}. In such a case, we need to find the lexicographically biggest R_{T} of height $h-1$ which is smaller than L_{T} (if $\left|R_{T}\right|=\left|L_{T}\right|$, we can just make a copy). The following lemma provides the solution to finding such an R_{T}.

Lemma 5.2.5 If $(s L-1) * 2<N$, i.e., $\left|L_{T}\right|<\left|R_{T}\right|$, then we can find the successor $R=\operatorname{succ}\left(L_{T}\right)$ of L_{T} with height $h-1$ and size $N-s L+1$ by doing the following:

Step1. Scan the array par [2..sL] backward to find the first position (i.e. the first node) q so that q is not a child of node $2\left(\right.$ root of L_{T}). If such q does not exist, then R does not exist, otherwise,

Step2. If $\operatorname{par}[q]=q-1$, i.e., q is the node on the leftmost path of L_{T} at level h of rooted version T_{r} of T, then no such R exists. Otherwise,

Step3. Reset $s=\operatorname{par}[q], \operatorname{par}[q]=\operatorname{par}[s]$, and start to copy the subtree rooted at s until reaching the node $|R|$, the last node in R.

Proof:This is just an extension of our algorithm for rooted trees, except that we now generate successors with different sizes and the same height, which will not affect the correctness of our algorithm for rooted trees. For Step2, before we start to generate R_{T}, we already check (see Lemma 5.2.3) to make sure such a situation will not happen, i.e., we won't be required to generate R in such a situation.

Lemma 5.2.5 shows how to modify $\operatorname{Gen}(p, s, c L)$ to generate the lexicographically biggest R_{T} with height $h-1$ which is lexicographically less than L_{T} when $\left|L_{T}\right|<\left|R_{T}\right|$.

When doing the copy using $\operatorname{Gen}(p, 2, p-2)$ to generate R_{T}, we let $p p$ be the node in R_{T} supposed to copy node q defined in Step1 of Lemma 5.2.5. To modify Gen() in order to identify $p p$, we do the following:

```
procedure modRT;
if ((sL-1)*2 < N) and (pp-cL<=sL) and (
    ((pp-cL+1<sL) and (par[pp-cL+1]=2) and
    (par[pp-cL+2]=2)) {Case1}
    or ((pp-cL+1=1) and (par[pp-cL+1]=2)) {Case2}
    or (pp-cL+1)) then begin {Case3}
    s:= par[pp]; cL:= pp-s;
    par[pp]:=par[s];
end else if par[p-cL]=2 then par[p]:= 1;
end {of modRT}.
```

Figure 5.5: The code to modify $\operatorname{Gen}(p, s, c L)$ to make the successor of L_{T}.

Observe that $p p$ must be encountered before we finish the first copy of L_{T} in the generation of R_{T} (actually, there won't be second copy after the modification-we will be copying a new subtree). So we have $p p-c L<=s L$. Since Lemma 5.2.3 guarantees that L_{T} is not the lexicographically smallest one, such a $p p$ exists, and it is not on the leftmost path of L_{T}. Then the corresponding node $q=p p-c L$ in L_{T} of $p p$ must fall into one of the following three cases:

Case1. $q=p p-c L$ is followed by at least two nodes of level 2, i.e., they are the children of the root of L_{T}. So, we can use $p p-c l+1<s L$ to indicate there are at least two nodes beyond $p p-c L$ in L_{T}, and they are children of node 2, i.e., $\operatorname{par}[p p-c L+1]=2$ and $\operatorname{par}[p p-c L+2]=2$.

Case2. $q=p p-c L$ is followed by only one node at level 2 which is the only one beyond $p p-c L$ in L_{T}, i.e., $p p-c L+1=s L$ and $\operatorname{par}[p p-c L+1]=2$.

Case3. $p p-c L$ is the last node in L_{T} which is not at level 2, i.e., $p p-c L+1>s L$. $p p-c L$ must be at level bigger than 2 because L_{T} is not the lexicographic smallest, and Case1 and Case2 has failed.

After identifying $p p$, we reduce the level of $p p$ by setting the parent of $p p$ be to the current grandparent of $p p$, then start to copy the subtree rooted at new rightmost sibling (used to be the parent of $p p$) of $p p$. Figure 5.2 .3 shows a piece of code, called $\bmod R T$, which will identify $p p$ and make the corresponding modification.

Since $\operatorname{Gen}(p, 2, p-2)$ (see Figure 5.2.2) will only copy the parenthood relation within L_{T} except the parenthood relation between the root 2 of L_{T} and the children of node 2, we have to make special arrangement. To make a copy of all nodes which are children of node 2 , root of L_{T}, we simply add the following code to the end of modRT.

```
else if par[p-cL]=2 then par[p]:=1;
```

After creating the first R_{T} for fixed $L_{T}, G e n(p, s, c L)$ will do the job to generate all successors of R_{T}. One more thing to be aware of is that we don't want the height of R_{T} get reduced for bicentral case (also for unicentral case). To avoid this, we only need to check at the beginning of the while loop in line $\{\mathrm{R} 8\}$ of $\operatorname{Gen}(p, s, c L)$ if $p>s L+h$ for unicentral case, and $p>s L+h+1$ for bicentral case If these conditions are satisfied, we go on. Otherwise, we skip the while loop.

After making all the modifications to $\operatorname{Gen}(p, s, c L)$, we have the algorithm GenRT for generating R_{T} in relex order (see Figure 5.6).

5.2.4 Generating free trees in relex order

Recall in the above section, before we generate R_{T} for a fixed L_{T} we have to check if there exists a valid R_{T}. We call this procedure $\operatorname{expand}()$ to check if R_{T} is obtainable.

Observe that $G e n L T()$ and $G e n R T()$ has many thing shared with $G e n()$. We implement the algorithm by merging these two recursive procedures together to form a new recursive procedure called GenFree(). We introduce parameter f in GenFree() where $f=0$ means we are now generating L_{T}, i.e., we are in the $\operatorname{GenLT}()$ part of GenFree() and $f=1$ means we are now generating R_{T}. Another parameter g will also be added so that $g=0$ means we are generating R_{T} for unicentral T and $g=1$ means we are generating R_{T} for bicentral T.

Our recursive algorithm for generating rooted version of free trees is shown in Figure 5.7.

```
procedure GenRT( p, s, cL, h, sL : integer);
begin
{W1} if p > N then PrintIt {We can now print the whole tree}
{W2} else begin
{W3} if cL = 0 then par[p] := p-1 else
{W4} if par[p-cL] < s
{W5} then par[p] := par[s]
{W6} else begin
{W7} par[p] := cL + par[p-cL];
{W8} if bicentral then modRT;
{W9} end;
{W10} GenRT( p+1, s, cL, h, sL);
{W11} while (par[p] > 2) and (not-reducing-height-of-RT) do begin
{W12} s := par[p];
{W13} par[p] := par[s];
{W14} GenRT( p+1, s, p-s, h, sL);
{W15} end;
{W16} end;
end {of GenRT};
```

Figure 5.6: An algorithm for generating R_{T}.

```
procedure expand(p, h, n: integer);
begin
{E1} if N-p >= h then GenRT(p+1,2,p-1,h,n,N,1,0);
{E2} if ((p-1)*2 >= N) or ((p-h-1=1) and (par[p]>2)) or
{E3} ((p-h-1>=2) and ((par[h+2]>2) or (par[h+3]>2))) then
{E4} GenRT(p+1,2,p-2,h,n,N,1,1)
end;
procedure GenFree( p, s, cL,h,sL, n, f,g : integer);
begin
{F1} if p > n then begin
{F2} if f = 0 then expand(p-1,h,n) else PrintIt
{F3} end else begin
{F4} if cL = 0 then par[p] := p-1 else
{F5} if par[p-cL] < s then par[p]:=par[s]
{F6} else begin
{F7} par[p] := cL + par[p-cL];
{F8} if g=1 then
{F9} if ((sL-1)*2 < n) and (p-cL<=sL) and (
{F10} ((p-cL+1<sL) and (par[p-cL+1]=2)
{F11} and (par[p-cL+2]=2))
{F12} or ((p-cL+1=sL) and (par [p-cL+1]=2))
{F13} or (p-cL+1>sL)) then begin
{F14} s:= par[p]; cL:= p-s;
{F15} par[p] := par[s]
{F16} end else if par[p-cL]=2 then par[p]:=1
{F17} end;
{F18} GenFree( p+1, s, cL,h,sL,n,f,g );
{F19} while (par[p] > 2) and ((f=0) or (p>sL+h-g)) do begin
{F20} if s=0 then h:= p-2;
{F21} s := par[p]; par[p] := par[s];
{F22} if f=0 then GenFree(p+1,s,p-s,h,0,N-h+1,f,g)
{F23} else GenFree(p+1,s,p-s,h,sL,n,f,g)
{F24} end;
{F25} if f=0 then expand(p-1,h,p-1)
{F26} end
end; {of GenFree};
```

Figure 5.7: A recursive algorithm for generating unlabeled free trees

The Figure 5.8 shows the output of our algorithm in parent arrays and level sequences for $N=8$.

5.3 Proof of Correctness

Theorem 5.3.1 Algorithm GenFree() in Figure 5.7 generates all canonic representatives of unlabeled free trees in relex order.

Proof:

First of all, the algorithm GenFree correctly inherits the Copying Strategy introduced in Gen since GenLT and GenRT do not modify the copying techniques implemented in Gen.

1) The algorithm generates the lexicographically largest correctly. To generate the lexicographically biggest free tree T, we first set $s L=\lceil N / 2\rceil$ and $h=\lfloor N / 2\rfloor$. Then call the recursive $\operatorname{GenFree}(3,0,0, h, 0, s L, 0,0)$. It will first generate L_{T} in exactly the same way as $G e n()$ with the height restriction. The correctness of Gen will guarantee that T described in Proposition 5.2.5.
2) For any given canonic representative of a free tree T of height h, the algorithm will produce its correct successor $\operatorname{succ}(T)$.
$\{$ Case 1$\}$. If the right subtree T_{R} is not the lexicographically smallest one of its size and its height, GenRT will correctly apply the Copying Strategy to generate the correct successor $\operatorname{succ}\left(T_{R}\right)$ (See Chapter 3.2) of T_{R}. Since L_{T} is fixed and unchanged, the resulting rooted tree T^{\prime} by connecting L_{T} and R_{T} is the correct successor of T_{r} : since $\operatorname{succ}\left(R_{T}\right) \prec R_{T}$ implies that Proposition 5.2 .1 is satisfied for the resulting rooted tree; secondly, if there is a free tree F so that the rooted version of F is lexicographically smaller than T_{r} and bigger than T_{r}^{\prime}, then we have that $\operatorname{succ}\left(T_{R}\right)$ is not the correct successor of T_{R}.
\{Case 2\}. If the right subtree T_{R} is the lexicographically smallest one of its size and its height, then it must be in one of two forms shown in Figure 5.9, and GenRT will stop at line $\{\mathrm{W} 11\}$ since the algorithm is trying to reduce the height of R_{T}.

01234167	01234123
01233317	01233312
01233217	01233212
01233167	01233123
01233166	01233122
01233161	01233121
01232517	01232312
01232217	01232212
01232167	01232123
01232161	01232121
01231561	01231231
01222221	01222221
01222217	01222212
01222211	01222211
01222166	01222122
01222161	01222121
01222111	01222111
01221551	01221221
01221517	01221212
01221511	01221211
01214161	01212121
01214111	01212111
01111111	01111111
parent array	level sequence

Figure 5.8: Output of our free tree recursive algorithm for $N=8$.

Figure 5.9: Two forms of the lexicographically smallest R_{T}.

Now, all recursive calls issued by Gen $R T$ will exit, and program returns to the line in GenLT where Gen $R T$ is called. Gen $L T$ will resume its execution by generating the successor of the current L_{T}.

To generate correct successor of the current $L_{T}, G e n L T$ will do the following:
\{Case 2.1\}. If L_{T} is not the lexicographically smallest of its size and its height, the Copying Strategy in GenLT inherited from Gen will correctly generate the successor $\operatorname{succ}\left(L_{T}\right)$ of L_{T}. Then GenRT will be called to generate a new right subtree R for $\operatorname{succ}\left(L_{T}\right)$ and R will be the lexicographically biggest for the fixed left subtree $\operatorname{succ}\left(L_{T}\right)$. Clearly the free tree formed by $\operatorname{succ}\left(L_{T}\right)$ and R is the correct successor of the current free tree T. By Proposition 5.2.8, we will generate unicentral free trees first if there are enough nodes (this is implemented in subroutine expand() in algorithm GenFree: we first let $g=0$ to generate unicentral free trees; then let $g=1$ to generate bicentral free trees) and then generate bicentral free trees. By Lemma 5.2.4, we can generate at least one R_{T} for the current L_{T} without violating Proposition 5.2.1.
\{Case 2.1.1\}. To generate the lexicographically biggest right subtree for unicentral free tree F, we simply use the Copying Strategy in Gen $R T$ to copy the current $L_{F}=\operatorname{succ}\left(L_{T}\right)$ repeatedly. This will generate lexicographically biggest R_{F} without violating the Proposition 5.2.1. The resulting free tree F is the correct successor of T.
\{Case 2.1.2\}. To generate the lexicographically biggest right subtree for bicentral free tree F with a fixed left subtree $L_{F}=\operatorname{succ}\left(L_{T}\right)$, we need to consider two cases: if
$\left|L_{F}\right| \geq\left|R_{F}\right|$, then we just copy (partially) the subtree L_{F} to be R_{F} without violating Proposition 5.2.1; if $\left|L_{F}\right|<\left|R_{F}\right|$, then we need to find the successor of L_{F} of size $\left|R_{F}\right|$. If the left subtree L_{F} satisfies the conditions in Lemma 5.2.3, then we can build a lexicographically biggest R_{F} for bicentral F with the fixed L_{F} by Lemma 5.2.5.
\{Case 2.2\}. If L_{T} is the lexicographically smallest of its size and its height, then L_{T} is either a chain or a chain plus some nodes added as children of the root of the L_{T}.

If L_{T} is a chain, Gen $L T$ will apply Modification L2 to reduce the height of L_{T}. Proposition 5.2.7 shows that GenLT will generate the correct successor $\operatorname{succ}\left(L_{T}\right)$ of L_{T} of size $N-h+2$ and height $h-2$. $\operatorname{succ}\left(L_{T}\right)$ has the biggest possible size of its height by Proposition 5.2.2, and it is the lexicographically biggest in its size and height by Proposition 5.2.3. After $G e n R T$ generates a new right subtree R (also the lexicographically biggest of its height and its size as stated in Proposition 5.2.2), the resulting rooted tree obtained by combining $\operatorname{succ}\left(L_{T}\right)$ and R together is the correct successor of the current T_{r}.

If L_{T} is a chain with some nodes attached to the root of L_{T}, we can apply Modification L1 to generate the correct successor of L_{T} by Proposition 5.2.6.

5.4 Complexity Analysis

By examining the algorithm, we know that between each consecutive pair of recursive calls GenFree() there is only constant amount of work. There is only one while-loop in the algorithm. But for each loop executed, one recursive call will be made. So, we need only to count the number of the calls to GenFree() to estimate the time complexity of the algorithm. The results of an experimental test of the algorithm are shown in Table 5.1

Table 5.1 suggests that there exists a bound, $b=5$, of average number of calls per tree generated, which would imply that the algorithm is CAT.

n	trees	calls	calls/trees	n	trees	calls	calls/trees
4	2	7	3.500	14	3159	8974	2.841
5	3	15	3.750	15	7741	20725	2.677
6	6	25	4.167	16	19320	49021	2.537
7	11	47	3.917	17	48629	117298	2.412
8	23	92	4.000	18	123867	285547	2.305
9	47	181	3.771	19	317955	703119	2.211
10	106	383	3.613	20	823065	1754073	2.131
11	235	803	3.403	21	2144505	4420303	2.061
12	551	1772	3.216	22	5623756	11253413	2.001
13	1301	3920	3.011	23	14828074	28895101	1.949

Table 5.1: Average number of recursive calls for generating free trees

Let us first take a look at the computation tree \mathcal{F}_{n} of our algorithm(see Figure 5.10).

By the algorithm in Figure 5.7, we observe that the recursive call GenFree() always occurs after an assignment of $\operatorname{par}[p]$. This assignment represents the current status of the partially constructed free tree. We thus use the partially constructed free trees, represented by the parent arrays $\operatorname{par}[1 . . p]$ for $1 \leq p \leq n$, to be the nodes in the computation tree \mathcal{F}_{n} in Figure 5.10. We further divide these recursive calls into two classes:
$\{\mathrm{C} 1\}$ the calls which will lead to valid free trees (in their rooted versions) at level n,
$\{\mathrm{C} 2\}$ the calls which will not lead to any valid free trees at level n.
The calls in $\{\mathrm{C} 2\}$ are wasted, they occur when $p>n$ and $f=0$ (node p will get reassigned in the next call) at line $\{$ F1-F2 $\}$.

The execution of the algorithm GenFree() is just a preorder traversal of the computation tree. To obtain a child of a node, we need only add a new node to a proper position in the currently half-built free tree. The nodes resulted from recursive calls in $\{\mathrm{C} 2\}$ is represented by a symbol \otimes.

Observe that there are some single-branched paths in the computation tree. And furthermore, some of these paths occur in the middle of the paths from the root of

Figure 5.10: The computation tree \mathcal{F}_{n} of our recursive free tree generation algorithm. \mathcal{F}_{n} to its leaves. This makes it difficult to use Path Elimination Techniques(PET) [8] to eliminate those single-branched paths as we did for rooted trees (see also section $3.3,3.4)$.

Let us investigate closely those paths from leaves up to the root in the computation tree. For leaves x and y at level n in \mathcal{F}_{n}, let $d(x, y)$ be the distance to their youngest common ancestor in the computation tree. Let $\operatorname{succ}(T)$ be the successor of the free tree T in relex order. Let $\operatorname{succ}(T)=\mathcal{E}$ when T is the lexicographically smallest, and $d(T, \mathcal{E})=n$. Let ε_{n} be the total number of wasted calls (\otimes in computation tree \mathcal{F}_{n}). Then clearly, we have

$$
\begin{equation*}
\left|\mathcal{F}_{n}\right|=\varepsilon_{n}+\sum_{T \in \mathbf{F}_{n}} d(T, \operatorname{succ}(T)) \tag{5.1}
\end{equation*}
$$

where \mathbf{F}_{n} is the set of all unlabeled free trees, and $\left|\mathcal{F}_{n}\right|$ is the number of nodes in \mathcal{F}_{n}.

We now partition the set \mathbf{F}_{n} of free trees into three disjoint subsets: $G 1 \oplus G 2 \oplus G 3$.

Figure 5.11: Free trees in $G 2$ and $G 3$.

Let $\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle$ be the canonic level sequence of the rooted version T_{r} of a free tree $T \in \mathbf{F}_{n}$, then
$T \in G 2$ if and only if there is a $h \geq 1$ and a $k \geq 0$, such that

$$
e_{i}= \begin{cases}1 & \text { for } n-k<i \leq n \\ i-(n-k-h) & \text { for } n-k-h<i \leq n-k \text { and } T \text { is unicentral } \\ 1 & \text { only for } i=2 \text { if } 1 \leq i \leq n-k-h\end{cases}
$$

$T \in G 3$ if and only if there is a $h \geq 1$, and a $k \geq 0$, such that

$$
e_{i}= \begin{cases}1 & \text { for } n-k<i \leq n \\ i-(n-k-h+1) & \text { for } n-k-h+1<i \leq n-k \text { and } T \text { is bicentral } \\ 1 & \text { only for } i=2 \text { if } 1 \leq i \leq n-k-h\end{cases}
$$

$T \in G 1$ if and only if $T \notin G 2$, and $T \notin G 3$.

The free trees in $G 2$ and $G 3$ are illustrated in Figure 5.11.
We now have that
Lemma 5.4.1

$$
d(T, \operatorname{succ}(T))= \begin{cases}1+k_{T} & \text { for } T \in G 1 \\ h_{T}+k_{T}+1 & \text { for } T \in G 2 \\ h_{T}+k_{T} & \text { for } T \in G 3\end{cases}
$$

where k_{T} is the number of leaves in T adjacent to canonic center of T, i.e., the number of leaves at level 1, and h_{T} is the height of the canonic representative, which is a rooted tree, of T.

Proof:For any free tree T in $G 1$, we only need to remove the k_{T} leaves attached to the canonic center of T, and then remove one more (which will be lifted up one level to get the successor of T later), which comes up to $1+k_{T}$. For any free tree T in $G 2$ or $G 3$, we have to remove k_{T} leaves attached the canonic center as well as those nodes on the path from root to node $n-k_{T}$ in the right subtree, plus one more (as in case G1), in order to get the successor of T. This gives $h_{T}+k_{T}$ for bicentral case, and $h_{T}+k_{T}+1$ for unicentral case.

Now,

$$
\begin{aligned}
\sum_{T \in \mathbf{F}_{n}} d(T, \operatorname{succ}(T)) & =\sum_{T \in G 1} d(T, \operatorname{succ}(T))+\sum_{T \in G 2} d(T, \operatorname{succ}(T))+\sum_{T \in G 3} d(T, \operatorname{succ}(T)) \\
& =\sum_{T \in \mathbf{F}_{n}}\left(k_{T}+1\right)+\sum_{T \in G 2} h_{T}+\sum_{T \in G 3}\left(h_{T}-1\right)
\end{aligned}
$$

Let $\alpha_{n}=\sum_{T \in \mathbf{F}_{n}}\left(k_{T}+1\right)$, and $\beta_{n}=\sum_{T \in G 2} h_{T}$, and $\gamma_{n}=\sum_{T \in G 3}\left(h_{T}-1\right)$. So,

$$
\sum_{T \in \mathbf{F}_{n}} d(T, \operatorname{succ}(T))=\alpha_{n}+\beta_{n}+\gamma_{n}
$$

Let $f_{n, k}$ denote the number of unlabeled free trees of size n with exactly k leaves attached to their canonic centers. By the definition of canonic representation of the free tree, in Chapter 1, we know that $f_{n, k} \leq f_{n-k}$. Clearly, $\alpha_{n}=\sum_{T \in \mathbf{F}_{n}}\left(k_{T}+1\right)=$ $\sum_{k=0}^{n-1}(k+1) f_{n, k} \leq \sum_{k=0}^{n-1}(k+1) f_{n-k}$.

Asymptotically from [18], we have

$$
\begin{equation*}
\alpha_{n} \leq \sum_{k=0}^{n-1}(k+1) f_{n-k} \leq 4 f_{n} \tag{5.2}
\end{equation*}
$$

We will then prove that β_{n} and γ_{n} are also $O\left(f_{n}\right)$.
A fundamental tool in our analysis is the following results from [13] and [12].
ThEOREM 5.4.1 [13, 12] Let r_{n} be the number of unlabeled rooted tree of size n, and f_{n} be the unlabeled free tree of size n, we have

$$
\begin{align*}
& r_{n} \sim \frac{C_{1} \rho^{-n}}{n^{3 / 2}} \tag{5.3}\\
& f_{n} \sim \frac{C_{2} \rho^{-n}}{n^{5 / 2}} \tag{5.4}
\end{align*}
$$

where $C_{1} \approx 0.4399, C_{2} \approx 0.5349$ and $\rho \approx 0.3383$.

Let S_{n}^{h} be the number of unlabeled rooted trees of size n and height at most h. It was shown [18] that

$$
\begin{equation*}
S_{n}^{h} \leq \rho^{-n}\left(1+\frac{C_{2}}{h^{2}}\right)^{-n} \leq C_{3} r_{n} n^{3 / 2} \exp \left(-\delta n / h^{2}\right) \tag{5.5}
\end{equation*}
$$

for some constant $C_{2}>0, C_{3}>0, \delta>0$ and $1 \leq h<n$.
Let r_{n}^{h} be the number of rooted trees of size n with height exactly h. Then, $r_{n}^{h}=S_{n}^{h}-S_{n}^{h-1}$. Observe that the number of free tree T in $G 2$ with height h_{T} is the number of rooted trees of height $h_{T}-1$ and of size $n-h_{T}-k_{T}-1$ where k_{T} is the number of leaves attached to the canonic center of T. So, the size of $G 2$ is equal to the number of rooted trees of height $h_{T}-1$ with $n-h_{T}-k_{T}-1$ nodes, where $1 \leq h_{T} \leq n / 2$ and $0 \leq k_{T} \leq n-2 h_{T}-1$, i.e., $|G 2|=\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} r_{n-h-k-1}^{h-1}$.

Lemma 5.4.2

$$
\begin{equation*}
\beta_{n}=O\left(f_{n}\right) . \tag{5.6}
\end{equation*}
$$

Proof:

$$
\begin{align*}
\beta_{n} & =\sum_{T \in G 2} h_{T} \\
& =\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} h r_{n-h-k-1}^{h-1} \\
& =\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} h\left(S_{n-h-k-1}^{h-1}-S_{n-h-k-1}^{h-2}\right) \\
& \leq \sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} h S_{n-h-k-1}^{h-1} \\
& \leq \sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} C_{3} h r_{n-h-k-1}(n-h-k-1)^{3 / 2} e^{-\delta(n-h-k-1) /(h-1)^{2}} \tag{5.5}\\
& \sim \sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} h C_{1} C_{3} \rho^{-(n-h-k-1)} e^{-\delta(n-h-k-1) /(h-1)^{2}} \tag{5.3}
\end{align*}
$$

Now divide by f_{n} to get

$$
\begin{aligned}
& \frac{\beta_{n}}{f_{n}} \leq \frac{\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} h C_{1} C_{3} \rho^{-(n-h-k-1)} e^{-\delta(n-h-k-1) /(h-1)^{2}}}{f_{n}} \\
& \sim \frac{\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} h C_{1} C_{3} \rho^{-(n-h-k-1)} e^{-\delta(n-h-k-1) /(h-1)^{2}}}{C_{2} n^{-5 / 2} \rho^{-n}} \\
& =\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} \frac{h C_{1} C_{3} e^{-\delta(n-h-k-1) /(h-1)^{2}}}{C_{2} n^{-5 / 2} \rho^{-h-k-1}}
\end{aligned}
$$

From Lemma 5.4.3, we have $(h+k+1)+\delta(n-h-k-1) /(h-1)^{2} \geq C_{4} n^{C_{5}}$ for some constant $C_{4}>0, C_{5}>0$ when $1<h \leq n / 2$ and $0 \leq k \leq n-2 h-1$. Hence, we have

$$
\begin{aligned}
\frac{\beta_{n}}{f_{n}} & \leq \sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h-1} \frac{C_{1} C_{3} n^{7 / 2}}{C_{2} e^{C_{4} n^{C_{5}}}} \\
& \leq \frac{C_{1} C_{3} n^{11 / 2}}{C_{2} e^{C_{4} n^{C_{5}}}} \longrightarrow 0 \text { when } n \longrightarrow \infty
\end{aligned}
$$

Lemma 5.4.3

$$
(h+k+1)+\delta(n-h-k-1) /(h-1)^{2} \geq C_{4} n^{C_{5}}
$$

for some constants $C_{4}>0, C_{5}>0$ where n, h, k, δ as in Lemma 5.4.2.

Proof:Let $\phi(h, k)=(h+k+1)+\delta(n-h-k-1) /(h-1)^{2}$. For $1 \leq h<\sqrt{\delta}+1$, $\phi(h, k)$ will decrease when k is increased. So, $k=n-2 h-1$ will minimize the value of function $\phi(h, k)$, and $\phi(h, k) \geq(n-h)+\delta h /(h-1)^{2}$. Since h is bounded by $\sqrt{\delta}+1$, there exists a constant d_{1} such that $\phi(h, k) \geq n+d_{1}$.

For $\sqrt{\delta}+1 \leq h \leq n / 2, \phi(h, k)$ will not decrease when k is increasing. So $k=0$ will minimize the value of $\phi(h, k)$, and $\phi(h, k) \geq(h+1)+\delta(n-h-1) /(h-1)^{2} \geq C_{4} n^{C_{5}}$ for some constants $C_{4}>0$ and $C_{5}>0$ since the value of the function ϕ will reach its lowest point when $h=O\left(n^{C_{5}}\right)$ for some constant $C_{5}>0$.

Lemma 5.4.4

$$
\begin{equation*}
\gamma_{n}=O\left(\sum_{h=1}^{n / 2} \sum_{k=0}^{n-2 h}(h-1) S_{n-h-k}^{h-1}\right)=O\left(f_{n}\right) . \tag{5.7}
\end{equation*}
$$

Proof:We can use a similar arguement as in Lemma 5.4.2 to prove this lemma since the constant 1 in equation 5.6 does not matter.

Lemma 5.4.5

$$
\begin{equation*}
\varepsilon_{n}=O\left(f_{n}\right) \tag{5.8}
\end{equation*}
$$

n	trees	WROM	Time/trees	New Alg	Time/trees
16	19320	0.35	0.0000181	0.394	0.0000204
17	48629	0.88	0.0000181	0.91	0.0000187
18	123867	2.2	0.0000178	2.08	0.0000168
19	317955	5.64	0.0000177	4.89	0.0000154
20	823065	14.3	0.0000174	11.8	0.0000143
21	2144505	36.9	0.0000172	28.9	0.0000135
22	5623765	95.9	0.0000171	72.3	0.0000128
23	14828074	261.1	0.0000176	186.8	0.0000126

Table 5.2: The running time (in seconds) comparison of our algorithm with the WROMalgorithm.

Proof:
$\varepsilon_{n}<f_{n}$ since node \otimes always has a right sibling x that is not a \otimes node. And such case happens only when the program switches from generating left subtree L to generating the right subtree R, so it occurs at most once in the generation of a leaf node(a free tree).

From equations (5.1), (5.2), (5.6), (5.7), (5.8), we have
Theorem 5.4.2 $\left|\mathcal{F}_{n}\right|=O\left(f_{n}\right)$ which implies that the algorithm in Figure 5.7 is CAT.

We implement the algorithm (see appendix) in Pascal. The algorithm(even though recursive algorithm usually requires extra time) turned out to be faster (see Table 5.4) compared to the WROM algorithm(both algorithm are CAT).

5.5 Generating Free Trees with Diameter Restrictions

This algorithm can also be easily modified to generate free trees with diameter constraints.

To generate free trees with diameter at most U, you may let $u b=(U+1) / 2$, and call

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$h \leq 4$	1	1	1	2	3	5	8	12	18	26	37	51	71	95	128
$h \leq 5$	1	1	1	2	3	6	10	19	32	58	95	161	258	417	647

Table 5.3: The number of free trees with height restrictions

$$
\operatorname{GenFree}(3,0,0, u b, n-u b+1,0,0) .
$$

To generate free trees with diameter at least L, you may set a global variable to check the parameter p in the call $\operatorname{GenFree}(p, s, c L, h, l, n, f, g)$. Stop the program when $p \leq(L+3) / 2$ and $s \neq 0$.

Properly combining the above two will produce the free trees with diameter exactly d.

Clearly, these simple modification will not affect the CAT property of the original algorithm since we only add constant amount of work into each recursive call.

5.6 Generating Free Trees with Bounded Degree

Similarly, the algorithm can be modified to generate free trees with bounded degree d by replacing each recursive call $\operatorname{GenFree}(p, s, c L, h, l, n, f, g)$ with

```
chi[par[p]] := chi[par[p]] + 1;
if par[p] = root then k := d else k := d-1;
if chi[par[p]] <= k then GenFree(p,s,cL,h,l,n,f,g);
chi[par[p]] := chi[par[p]] - 1;
```

where $\operatorname{chi}[p]$ is the number of children of node p, $\operatorname{par}[p]$ is the parent node of p.
To make the modified algorithm CAT, we can also implement an array called $j u m p[]$ as for rooted tree algorithm which maintains the current number of children of each nodes.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$m=3$	1	1	1	2	2	4	6	11	18	37	66	135	265	552	1132
$m=4$	1	1	1	2	3	5	9	18	35	75	159	355	802	1858	4347
$m=5$	1	1	1	2	3	6	10	21	42	94	204	473	1098	2633	6353

Table 5.4: The number of Cayley m-free trees with n nodes

Chapter 6

Conclusions

In this thesis, we presented two recursive algorithms for generating unlabeled rooted trees and free trees. Both algorithms are proved to be CAT. These recursive algorithms are very simple and flexible compared to those old algorithms. They can be simply modified to generate trees under parenthood constraints (or degree constraints), or height restrictions.

Bibliography

[1] R.C. Read, How to grow trees, in Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970.
[2] S. Zaks, Lexicographic generation of ordered trees, Theoretic Computer Science, 10 (1980), pp63-82.
[3] S. Zaks, D. Richards, Generating trees and other combinatorial objects lexicographically, SIAM J. Comp. 8. 73 (1979).
[4] R.W. Robinson, F. Harary, and A.T. Balaban, The Number of Chiral and Achiral Alkanes and Monosubstitued Alkanes, Tetrahedron, Vol. 32, pp.355-361, Pergamon Press, 1976.
[5] T. Beyer and S.M. Hedetniemi, Constant Time Generation of Rooted Trees, SIAM J. Computing, 9 (1980) 706-712.
[6] D.E. Knuth, Fundamental Algorithms, The Art of Computer Programming, 1968, Addison-Wesley.
[7] F. Ruskey, Generating t-ary trees lexicographically, SIAM Journal of Computing, 7 (1978), pp424-439.
[8] F. Ruskey, Combinatorial Generation, in preparation, 1996.
[9] F. Ruskey and T. Hu, Generating binary trees lexicographically, SIAM J. Computing, 6 (1977), pp745-758.
[10] F. Ruskey and A. Proskurowski, Generating binary trees by transpositions, Journal of Algorithms 11 (1990) pp 68-84.
[11] E. Kubicka, An Efficient Method of Examining All Trees, unpublished manuscript, 1991.
[12] R. Otter, The number of Trees, Annals of Mathematics, Vol. 49, No. 3, July, 1948.
[13] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math., 68 (1937), pp. 145-254.
[14] E. Kubicka and G. Kubicki, Constant Time Algorithm for Generating Binary Rooted Trees, Congressus Numerantium, 90 (1992) 57-64.
[15] J. Pallo, Lexicographic generation of binary unordered trees, Pattern Recognition Letters, 10 (1989) 217-221.
[16] H.I. Scions, Placing Trees in Lexicographic Order, Machine Intelligence, 3 (1969) 43-60.
[17] H.S. Wilf, Combinatorial Algorithms: An Update, SIAM, CBMS 55, 1989.
[18] R.A. Wright, B. Richmond, A. Odlyzko, and B.D. McKay, Constant Time Generation of Free Trees, SIAM J. Computing, 15 (1986) 540-548.
[19] A. V. Kozina, Coding and generation of nonisomorphic trees, Cybernetics (Kibernetica), vol. 15 (5), 1975 (1979), pg. 645-651 (38-43).
[20] A. Cayley, Collected Mathematical Papers, Cambridge, 1889-1897; 3, 242; 9, 202, 427; 11, 365; 13, 26.
[21] T. Beyer and F. Ruskey, Constant Average Time Generation of Subtrees of Bounded Size, unpublished manuscript, May, 1989.
[22] J. Fill and E.M. Reingold, Solutions Manual for Combinatorial Algorithms: Theory and Practice, Prentice-Hall, 1977.
[23] T. Hikita, Listing and Counting Subtrees or Equal Size of a Binary Tree, Information Processing Letters, 17 (1983) 225-229.
[24] J. Liu, Lexicographic generation of rooted trees and trees, Kexue Tongbao, Vol. 28 No. 4 pp448-451, 1983.
[25] V. Vajnovszki, Constant time generation of binary unordered trees,Bulletin of the European Association for Theoretical Computer Science, Number 57 (1995), pp221-229.
[26] G. Tinhofer and H. Schreck, Linear time tree codes, Computing, 33, pp211-225, 1984.
[27] T.C. Hu and F. Ruskey, Circular cuts in a network, Mathematics of Operations Research, 5 (1980) pp422-434.
[28] A. Meir and J.W. Moon, On Subtrees of Certain Families of Rooted Trees, Ars Combinatoria, 16-B (1983) pp305-318.
[29] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Second Edition, Academic Press, 1978.
[30] F. Ruskey, Listing and Counting Subtrees of a Tree, SIAM J. Computing, 10 (1981) pp141-150.
[31] L.K. Swift, T.Johnson, and P.E. Livadas, Parallel Creation of Linear Octrees from Quadtree Slices, Parallel Processing Letters, World Scientific Publishing Company, 1994.
[32] Sabra S. Anderson, Graph Theory and Finite Combinatorics, p34, Markham Publishing Company, 1970.
[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algorithms, The MIT Press, 1992.
[34] Etherington, Non-associative powers and a functional equation, Mathematical Gazette, 21 (1937) pp36-39.
[35] Wedderburn, The functional equation $g\left(x^{2}\right)=2 \alpha x+g^{2}(x)$, Annals of Mathematics, 24 (1922) pp121-140.
[36] Louis Comtet, Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, Holland, 1974.

Appendix A

Wright,Richmond,Odlyzko and

McKay's Free Tree Program

The following Pascal program is translated from original authors' algorithm.

```
procedure nexttree;
var
    fixit, needr, needc, needh2 : boolean;
    oldp,oldq,oldwq,delta : integer;
begin
    fixit := false;
    if (c=n+1) or (p=h2) and ((L[h1]=L[h2]+1) and (n-h2>r-h1)
        or (L[h1]=L[h2]) and (n-h2+1<r-h1)) then begin
        if L[r]>3 then begin
            p:= r; q:= W[r];
            if h1=r then h1:=h1-1;
                        fixit := true;
        end else begin
            p:=r; r:=r-1; q:=2;
        end;
    end;
```

```
needr:= false; needc:= false; needh2:= false;
if p<=h1 then h1:= p-1;
if p<=r then needr:= true else
    if p<=h2 then needh2:= true else
        if (L[h2]=L[h1]-1) and (n-h2=r-h1) then begin
            if p<=c then needc:= true; end
    else c:= MAX;
oldp:=p; delta:=q-p; oldq:= L[q]; oldwq:=W[q]; p:=MAX;
for i:=oldp to n do begin
    L[i]:=L[i+delta];
    if L[i]=2 then W[i]:=1 else
    begin
        p:=i;
        if L[i]=oldq then q:= oldwq else
                q:= W[i+delta] - delta;
        W[i]:= q;
    end;
    if (needr) and (L[i]=2) then begin
        needr:=false; needh2:=true; r:= i-1;
    end;
    if (needh2) and (L[i]<=L[i-1]) and (i>r+1) then begin
        needh2:=false; h2:=i-1;
        if (L[h2] = L[h1]-1) and (n-h2 = r-h1) then needc:= true
        else c:= MAX;
    end;
    if needc then begin
        if L[i]<>L[h1-h2+i]-1 then begin
            needc:=false; c:= i;
        end else
            c:= i+1;
```

end;
end;

Appendix B

Implementation of $J u m p[]$

The following code is our PASCAL implementation of the array Jump [] and Chi [], as mentioned in section 2.2 , to generate canonic trees in which each node has at most k children.

```
procedure Gen( p, s, cL : integer);
var
    entry : integer; { first good pos in jump [] }
    temp : integer;
begin
    numgen := 1 + numgen;
    if (p > n) then PrintIt
    else begin
        if cL = 0 then begin {<---- first tree}
            par[p] := p-1;
        end else
            if par[p-cL] < s
                then par[p] := par[s]
                else par[p] := cL + par[p-cL];
        chi[par[p]] := chi[par[p]] + 1;
        temp := rChi[par[p]]; rChi[par[p]] := p;
        if chi[par[p]] <= k then begin
            if chi[par[p]] < k then jump[p]:= par[p]
```

```
else jump[p] := jump[par[p]];
        Gen( p+1, s, cL );
        end;
        chi[par[p]] := chi[par[p]] - 1;
        rChi[par[p]] := temp;
    jump[p] := jump[par[p]];
    entry := jump[p];
    while entry >= 1 do begin
        par[p]:= entry;
        chi[entry] := chi[entry] + 1;
        temp := rChi[par[p]]; rChi[par[p]] := p;
        if (chi[entry] >= k) then jump[p] := jump[entry];
        Gen( p+1, temp, p-temp );
        chi[entry] := chi[entry] - 1;
        rChi[par[p]]:= temp;
        entry:= jump[entry];
        jump[p] := entry;
        end;
    end;
end {of Gen};
```


Appendix C

Pascal code for recursive

generation of free trees

```
program genTree( input, output);
const MaxSize = 50; { max size of the tree }
var
    N : integer; { number of nodes in a tree }
    par : array [1.. MaxSize] of integer; { parent position of i }
    num : integer; { total number of trees }
    ub : integer; {upper bound }
procedure PrintIt;
var i : integer;
begin
    num := num+1;
    write( '[',num:3,']' );
    for i:=1 to N do write(par[i]:3); writeln;
end {of PrintRight};
procedure Gen( p, s, cL,h,l, n, f,g : integer); forward;
```

```
procedure expand(p, h, n, N: integer);
begin
    if N - p >= h then Gen(p+1,2,p-1,h,n,N,1,0);
    if ((p-1)*2 >=N) or ((p-h-1=1) and (par [p]>2)) or
        ((p-h-1>=2) and ((par [h+2]>2) or (par [h+3]>2))) then
        Gen(p+1, 2, p-2,h,n,N,1,1);
```

end;
procedure Gen(p, s, cL,h,l, n, f,g : integer);
begin
if ($\mathrm{p}>\mathrm{n}$) then begin
if ($f=0$) then expand $(p-1, h, n, N)$ else PrintIt; end
else begin
if ($\mathrm{cL}=0$) and $(\mathrm{p}<=\mathrm{ub}+2)$ then $\operatorname{par}[\mathrm{p}]:=\mathrm{p}-1$ else
if $\operatorname{par}[p-c L]$ < s then $\operatorname{par}[p]:=\operatorname{par}[p-c L]$
else begin
$\operatorname{par}[p]:=c L+\operatorname{par}[p-c L] ;$
if ($\mathrm{g}=1$) then
if $((1-1) * 2<n)$
and ($\mathrm{p}-\mathrm{cL}<=1$) and (
$((p-c L+1<1)$ and $(\operatorname{par}[p-c L+1]=2)$
and $(p-c L+2<=1)$ and $(\operatorname{par}[p-c L+2]=2)) \quad\{$ case 1$\}$
or $((p-c L+1=1)$ and $(\operatorname{par}[p-c L+1]=2)) \quad\{$ case 2$\}$
or $(p-c L+1>1))$ then begin \{case 3$\}$
$\mathrm{s}:=\operatorname{par}[\mathrm{p}] ; \mathrm{cL}:=\mathrm{p}-\mathrm{s} ;$
$\operatorname{par}[p]:=\operatorname{par}[\operatorname{par}[p]] ;$
end else if ($\operatorname{par}[p-c L]=2$) then $\operatorname{par}[p]:=1$;
end;
Gen ($\mathrm{p}+1, \mathrm{~s}, \mathrm{cL}, \mathrm{h}, \mathrm{l}, \mathrm{n}, \mathrm{f}, \mathrm{g}$) ;
while (par $[p]>2)$ and $((f=0)$ or $(p>l+h-g))$ do begin
if ($\mathrm{s}=0$) then $\mathrm{h}:=\mathrm{p}-2$;

```
                    s := par[p]; par[p] := par[s];
                    if (f=0) then Gen(p+1,s,p-s,h,0,N-h+1,f,g)
                    else Gen(p+1,s,p-s,h,l,n,f,g);
        end;
        if (f = 0) then expand(p-1,h,p-1,N);
    end;
end {of Gen};
begin {----------------- main -----------------------
    write('Input N ='); readln(N);
    ub :=N div 2;
    par[1] := 0; par[2] := 1;
    Gen( 3, 0, 0,ub,0,(N+3)div 2,0,0);
    writeln('total = ',num:3);
end.
        main ---------------------
```


VITA

Surname: Li Given Names: Gang
Place of Birth: Kuitun, Xingjiang, ChinaEducational Institutions Attended:
University of Victoria 1994 to 1996
University of Calgary 1992 to 1994
People's University of China 1986 to 1990Degrees Awarded:
B.Sc. Poeple's University of China 1990
M.Sc. University of Calgary 1994
Honours and Awards:
University of Victoria Fellowship 1994-96Publications:

PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis to users of the University of Victoria Library, and to make single copies only for such users or in response to a request from the Library of any other university, or similar institution, on its behalf or for one of its users. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by me or a member of the University designated by me. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Title of Thesis/Dissertation:
Generation of Rooted Trees and Free Trees

Author
Gang Li
March 1, 1996

