Instructions: Closed book and notes. Answer all questions.

1. [5 marks]
(a) Simplify: $\lfloor n / 2\rfloor+\lceil n / 2\rceil=$ \qquad .
(b) Simplify: $-\lfloor-x\rfloor=$ \qquad ?
2. [5 marks] Recall that $J_{2}(n)$ is the Josephus function studied in Chapter 1.
(a) What is $\mathrm{J}_{2}(32+16+4+2)$?
(b) Characterize those values of n for which $J_{2}(n)=n$.
3. [5 marks] Below we are interchanging the order of three sums.

$$
\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq j} \sum_{1 \leq l \leq k} f(j, k, l)=\sum_{?_{1} \leq l \leq ?_{2}} \sum_{?_{3} \leq k \leq ?_{4}} \sum_{?_{5} \leq j \leq ?_{6}} f(j, k, l)
$$

What are $?_{1}, ?_{2}, ?_{3}, ?_{4}, ?_{5}, ?_{6}$. Justify your answer by writing out some equalities involving the $\llbracket \mathrm{P} \rrbracket$ notation.
4. [10 marks]
(a) What is Δx^{3} ? ANSWER: \qquad
(b) What function v, if any, satisfies $\Delta v(x)=5^{x}$? ANSWER:
(c) Below is equation (2.55) from the book.

$$
\sum u \Delta v=u v-\sum E v \Delta u .
$$

Use this once to get a "simpler" (it will still involve a summation) expression for

$$
\sum_{k=1}^{n} k^{3} 5^{k}=
$$

5. [5 marks] Solve the recurrence relation $D(0)=1$ and for $n>0$,

$$
D(n)=\frac{n+2}{n} D(n-1)+1
$$

You can use whatever method you want. I suggest that you compute a few small values of $D(n)$ first.

