Instructions: Closed book and notes. Answer all questions.

1. [8 marks]

What is the definition of $\{x\}$?

What is the definition of $n \bmod m$ for integer n and integer $m>0$?

What is the mediant of $3 / 5$ and $4 / 3$?

In Maple how would you compute the sum

$$
\sum_{d \backslash n} \phi(d) 2^{n / d}
$$

2. [3 marks] Simplify (you can use any equation from the book):

$$
\lfloor 2 x\rfloor+\left\lfloor 2 x+\frac{1}{3}\right\rfloor+\left\lfloor 2 x+\frac{2}{3}\right\rfloor .
$$

3. [9 marks] We know that if p is prime then $\phi(p)=p-1$. Is the converse true? That is, does $\phi(\mathrm{n})=\mathrm{n}-1$ imply that n is prime?

The function $\phi(n)$ is multiplicative. What does that mean?

Is $\phi(n)$ ever prime for $n \geq 1$? Carefully explain your answer.
ANSWER: If n has a prime factor p that is larger than 3 , then $n=p n^{\prime}$ and $\phi(n)=$ $\phi(p) \phi\left(n^{\prime}\right)=(p-1) \phi\left(n^{\prime}\right)$. Since $p-1$ is even and larger than 2 it is not prime and neither is $\phi(n)$. Thus if $\phi(n)$ is prime its only factors are 2 and 3. Since $\phi\left(3^{\mathrm{b}}\right)=3^{\mathrm{b}+1}-3^{\mathrm{b}}=2 \cdot 3^{\mathrm{b}}$ the exponent of 3 can be at most 1 . Similarly, since $\phi\left(2^{\mathrm{a}}\right)=2^{\mathrm{a}-1}$, the exponent of 2 can be at most 2 . An examination of the small cases reveals the final answer: The function $\phi(n)$ is prime if and only if $n \in\{3,4,6\}$.

