Instructions: Closed book and notes. Answer all questions.

1. [5 marks] Below is the Farey series \mathcal{F}_{6}. Show were to insert the missing numbers to get \mathcal{F}_{7}.

2. [5 marks] Give a simplified expression for the binomial coefficient

$$
\binom{-2}{k}=\frac{(-2)(-3) \cdots(-(k+1))}{(1)(2) \cdots(k)}=(-1)^{k}(k+1)
$$

3. [6 marks] In the set $\{66 \mathrm{j}$ mod $100: \mathfrak{j}=0,1, \ldots, 99\}$ how many times does the number 14 occur? What about the number 15 ?

ANSWER: Note that $d=2=\operatorname{gcd}(66,100)$. Since $14=7 d$, it occurs 2 times. On the other hand the number 15 is not divisible by d and thus it does not occur.
4. [9 marks] Let $\sigma(n)$ be the sum of the divisors of n. For example, $\sigma(6)=1+2+3+6=$ 12. Simplify (and explain why your simplification works)

$$
\sum_{d \backslash m} \mu(d) \sigma(m / d) .
$$

ANSWER: By the definition of σ,

$$
\sigma(\mathfrak{m})=\sum_{d \backslash m} \mathrm{~d}
$$

Now apply Möbius inversion to get

$$
m=\sum_{d \backslash m} \mu(d) \sigma(m / d)
$$

