1. [1 mark] What famous computer scientist had the following dedication in their first book?

This series of books is affectionately dedicated to the Type 650 computer once installed at Case Institute of Technology, in remembrance of many pleasant evenings.

ANSWER: DEK
2. [3 marks] How many normal n-input 2-output boolean functions are there?

ANSWER: $\underline{2^{2^{n}-1}}$
3. [3 marks] What is a good way (i.e., using just a few machine instructions) to determine whether an unsigned positive integer x is a power of 4 ?

ANSWER: $x \&-x \& \mu_{0}=x\left(\right.$ recall $\left.\mu_{0}=\cdots 01010101\right)$
4. [2 marks] Write $\langle x, y, z\rangle$ in CNF and in DNF.

$$
\langle x, y, z\rangle=\underbrace{}_{\mathrm{CNF}}=\underbrace{}_{\mathrm{DNF}}
$$

5. [4 marks] The following graph arises in determining the solution to a Krom clause satisfiability problem. Circle the strongly connected components. Specify a satisfying assignment for v, w, x, y, z.

6. [3 marks] What is the core of the following set of Horn clauses?

$$
\{a \wedge d \Rightarrow b, a \wedge c \Rightarrow d, \Rightarrow a\} \quad \text { core }=\underline{\{a\}}
$$

7. [5 marks] Is 01101001 the truth table of a symmetric function? Draw the (very simple) circuit diagram for this function.
ANSWER: Yes, it is a symmetric function, namely $S_{1,3}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus x_{2} \oplus x_{3}$.
8. [5 marks] Formulate graph coloring as a SAT problem. Recall that in graph coloring each vertex of the graph gets a color and vertices that are incident on an edge must get different colors. Assume that there are d colors and that the vertices of the graph are $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the set of edges is E. Use variables $x_{i j}$, which signify that vertex v_{i} gets color j, for $1 \leq i \leq n$ and $1 \leq j \leq d$. Your task is to specify the clauses that make up the SAT expression that is true if and only if the graph $G=(V, E)$ is colorable with d colors. How many clauses are there in total as a function of n, d, and $m=|E|$?
ANSWER:
Vertex clauses: $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i d}$ for $i=1,2, \ldots, n$.
Edge clauses: for each $\left(v_{i}, v_{j}\right) \in E$ add clauses $\bar{x}_{i k} \vee \bar{x}_{j k}$ for $k=1,2, \ldots, d$.
9. [6 marks] In the diagram below, a darkened vertex indicates that a boolean function f is 1 on the given input values, otherwise it is 0 .

- Is the function f monontone? Explain.

ANSWER: Yes it is monotone; changing a 0 to a 1 at a darkened vertex always gives a darkened vertex.

- Give the shortest DNF for $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. ANSWER: $x_{2} \vee\left(x_{3} \wedge x_{4}\right)$.
- In general, what is the largest number clauses that are ever required in the shortest DNF expression for an n-variable monotone boolean function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$? (E.g., looking at the diagram above, what is it for $n=4$?)

ANSWER: The largest number is the middle binomial coefficient $\binom{n}{\lfloor n / 2\rfloor}$. Need to know Sperner's lemma to have a true proof of this.

