CSC 428/528 Midterm

February 21, 2014

Name:
Student Number: \qquad
Total of 40 marks. Closed books and notes; no calculators.

1. [2 marks] What famous computer scientist had their first paper in MAD magazine?

ANSWER: \qquad
2. [3 marks] How many n-input 2-output boolean functions are there?

ANSWER: \qquad
3. [3 marks] Write $\langle x, y, z\rangle$ in CNF and in DNF.

ANSWER: CNF: , DNF:
4. [3 marks] What is our favorite way of isolating the rightmost 1 bit in a binary number x ?

ANSWER: \qquad
5. (a) What is the 2 -adic representation of $-1 / 3$?
(b) What is the 2 -adic representation of $+2 / 3$?
(a) [1 marks] ANSWER: \qquad
(b) [2 marks] ANSWER: \qquad
6. [3 marks] Let $x=(0000110101111000)_{2}$. What is $\rho x, \lambda x$, and νx ?

ANSWER: $\rho x=$ \qquad , $\lambda x=$ \qquad , $\underline{\nu x=}$ \qquad .
7. [3 marks] A directed graph is Eulerian if and only if \qquad ?

Give a bitstring that represents a De Bruijn cycle for a 3-bit window: \qquad .
8. [3 marks] Convert the boolean chain on the left into a normal boolean chain. Is the function computed by the original chain (i.e., the value of x_{4}) normal?

x_{1}	\hat{x}_{1}
x_{2}	\hat{x}_{2}
$x_{3}=\bar{x}_{1} \equiv x_{2}$	$\hat{x}_{3}=$
$x_{4}=\bar{x}_{3} \wedge x_{3}$	$\hat{x}_{4}=$

9. [3 marks] Define: An implicant is prime if and only if

ANSWER: \qquad
10. [2 marks] What is the value of \#3FF0000000000000 if it is interpreted as a IEEE 754 floating point number?

ANSWER: \qquad
11. [3 marks] Express the threshold function $\llbracket x_{1}+2 x_{2}+3 x_{3} \geq 3 \rrbracket$ as a majority function.

ANSWER: \qquad
12. [3 marks] Fill in the implication below:

Theorem (Horn). The Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is expressible as a conjunction of Horn clauses if and only if

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)=1 \quad \text { implies }
$$

\qquad
for all Boolean values x_{j} and y_{j}.
13. [6 marks] The following graph arose from applying the book's algorithm to a 2SAT problem (aka Krom clause satisfaction problem).
(a) How do we know that there is a satisfying assignment?

ANSWER: \qquad
(b) What is the big-O time complexity of the underlying algorithm if there are n variables and m clauses? Explain briefly.

ANSWER: \qquad
(c) What is a satisfying assignment (give it as a binary string)?

ANSWER: $a b c d e f=$ \qquad .

