$\rm CSC~428/528~Midterm$	Name:					
February 21, 2014	Student Number:					
Total of 40 marks. Closed books and notes; no calculators.						
1. [2 marks] What famous computer scientist had their first paper in MAD magazine?						
ANSWER:						

2. [3 marks] How many *n*-input 2-output boolean functions are there?

ANSWER: _____

3. [3 marks] Write $\langle x, y, z \rangle$ in CNF and in DNF.

ANSWER: CNF: , DNF:

4. [3 marks] What is our favorite way of isolating the rightmost 1 bit in a binary number x?

ANSWER: _____

5.	(a) V	Vhat i	is the	2-adic	representation	of $-1/3?$
	(b) V	Vhat	is the	2-adic	representation	of $+2/3?$

- (a) [1 marks] ANSWER: _____
- (b) [2 marks] ANSWER: _____
- 6. [3 marks] Let $x = (0000110101111000)_2$. What is ρx , λx , and νx ?

ANSWER: $\rho x =$, $\lambda x =$, $\nu x =$.

7. [3 marks] A directed graph is Eulerian if and only if _____?

Give a bitstring that represents a De Bruijn cycle for a 3-bit window: ______.

- 8. [3 marks] Convert the boolean chain on the left into a normal boolean chain. Is the function computed by the original chain (i.e., the value of x_4) normal?
 - $\begin{array}{ccc} x_1 & & \hat{x}_1 \\ x_2 & & \hat{x}_2 \\ \\ x_3 = \bar{x}_1 \equiv x_2 & \hat{x}_3 = \\ \\ x_4 = \bar{x}_3 \wedge x_3 & \hat{x}_4 = \end{array}$
- 9. [3 marks] Define: An implicant is *prime* if and only if

ANSWER: _

10. [2 marks] What is the value of **#3FF000000000000** if it is interpreted as a IEEE 754 floating point number?

ANSWER: _____

11. [3 marks] Express the threshold function $[x_1 + 2x_2 + 3x_3 \ge 3]$ as a majority function.

ANSWER: _____

12. [3 marks] Fill in the implication below:

Theorem (Horn). The Boolean function $f(x_1, \ldots, x_n)$ is expressible as a conjunction of Horn clauses if and only if

 $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1$ implies _____.

for all Boolean values x_j and y_j .

13. [6 marks] The following graph arose from applying the book's algorithm to a 2SAT problem (aka Krom clause satisfaction problem).

(a) How do we know that there is a satisfying assignment?

ANSWER: _____

(b) What is the big-O time complexity of the underlying algorithm if there are n variables and m clauses? Explain briefly.

ANSWER: _____

(c) What is a satisfying assignment (give it as a binary string)?

ANSWER: abcdef = _____.

