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The Overall Plan

1. Basic definitions.

2. Winkler’s conjecture and recent connectivity result.

3. Symmetric Venn diagrams, the GKS result

4. Simple symmetric Venn diagrams, computer searches



Venn diagram examples; famous and otherwise (n = 1).

n = number of curves = 1



Venn diagram examples; famous and otherwise (n = 2).

From the “NewStatesman.com” July 2012.
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Venn diagram examples; famous and otherwise (n = 3, 4).
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Venn diagram examples; famous and otherwise (n = 3, 4).



An irreducible Venn diagram (n = 5)



What is a Venn diagram?

I Made from simple closed curves
C1,C2, . . . ,Cn.

I Only finitely many intersections.

I Each such intersection is
transverse (no “kissing”). Simple
if no 3 curves thru a point.

I Let Xi denote the interior or the
exterior of the curve Ci and
consider the 2n intersections
X1 ∩ X2 ∩ · · · ∩ Xn.

I Euler diagram if each such
intersection is connected.

I Venn diagram if Euler and no
intersection is empty.

I Independent family if no
intersection is empty.
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What is a Venn diagram?

I Made from simple closed curves
C1,C2, . . . ,Cn.

I Only finitely many intersections.

I Each such intersection is
transverse (no “kissing”). Simple
if no 3 curves thru a point.

I Let Xi denote the interior or the
exterior of the curve Ci and
consider the 2n intersections
X1 ∩ X2 ∩ · · · ∩ Xn.

I Euler diagram if each such
intersection is connected.

I Venn diagram if Euler and no
intersection is empty.

I Independent family if no
intersection is empty.

Neither Venn nor Euler



Winkler’s conjecture

I An n-Venn diagram is reducible if there is some curve whose
removal leaves an (n − 1)-Venn diagram.

I An n-Venn diagram is extendible if the addition of some curve
results in an (n + 1)-Venn diagram.

I Not every Venn diagram is reducible. Every reducible diagram
is extendible.

I Conjecture: Every simple n-Venn diagram is extendible to a
simple (n + 1)-Venn diagram.

I Reference: Peter Winkler, Venn diagrams: Some observations
and an open problem, Congressus Numerantium, 45 (1984)
267–274.

I The conjecture is true if the simplicity condition is removed
(Chilakamarri, Hamburger, and Pippert (1996)).

I The conjecture is true if n ≤ 5. Determined by Bultena; there
are 20 non-isomorphic (spherical) diagrams to check.
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Winkler’s conjecture



Venn diagrams and their duals

Venn diagram Venn graph Venn dual
Equivalent to Winkler’s conjecture: The dual of every simple Venn
diagram is Hamiltonian
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Basic facts

I If v is the number of vertices (intersection points) then⌈
2n − 2

n − 1

⌉
≤ v ≤ 2n − 2

Open: Venn diagrams meeting the lower bound for n > 8.

I The dual is a spanning planar subgraph of the hypercube. If
the Venn diagram is simple, then the dual is maximal (every
face is a quadrilateral).

I There is a natural directed dual graph.

I A Venn diagram is drawable with all curves convex if and only
if the directed dual has only one source and one sink
(Bultena, Grünbaum, R., 1999).

I If a Venn diagram is convexly drawable, then v ≥
( n
n/2

)
.

I Venn diagrams exist for all n.



Minimum vertex Venn diagrams



Basic facts, cont.

I Every Venn dual is 3-connected, every Venn graph is
3-connected. (Chilakamarri, Hamburger, Pippert, 1996)

I Every simple Venn graph is 4-connected. (Pruesse, R., 2015,
arXiv).

I As a consequence, by a theorem of Tutte, every Venn diagram
(graph) is Hamiltonian.

I Proof applies more generally to any collection of simple closed
curves in general position if no curve has two edges on the
same face (a key property of Venn diagrams).

?

?



Our result Winkler conjecture



Tutte’s Theorem for Winkler’s conjecture?

Problem: Venn diagram duals are only 3-connected in general,
because Venn diagrams have 3-faces. In fact

Theorem
For n ≥ 3, any n-Venn diagram has at least 8 3-faces.



A 3-connected non-Hamilton collection of curves

Iwamoto & Touissant (1994) Finding Hamiltonian circuits in
arrangements of Jordan curves is NP-complete.



What about non-simple Venn diagrams?

They are only 2-connected in general:

Examples of a general family on prime numbers of curves.



Open problems

I Is every non-simple Venn graph Hamiltonian?

I Does every Venn diagram dual have a perfect matching?

I Is every monotone Venn diagram extendible? Recall:
Monotone = drawable with all curves convex.



Symmetric Venn Diagrams

Theorem
Symmetric n-Venn diagrams exist if and only if n is prime.

Proof.
Necessity: (D. W. Henderson, Venn diagrams for more than four
classes, American Mathematical Monthly, 70 (1963) 424–426).

n |
(
n

k

)
for all 0 < k < n.

Sufficiency: (Jerrold Griggs, Charles E. Killian and Carla D.
Savage, Venn Diagrams and Symmetric Chain Decompositions in
the Boolean Lattice, Electronic Journal of Combinatorics, Volume
11 (no. 1), #R2, (2004)). (The GKS construction).



Small symmetric Venn diagrams

(a) (b) (c)

(a) n = 2 Only one diagram.
(b) n = 3 Only one simple diagram.
(c) n = 3 And one non-simple diagram.



5 ellipses, by Grünbaum



First symmetric 7-Venn (Edwards/Grünbaum)



A non-convex 7-Venn diagram, by Grünbaum



“Victoria”, rendered as a link



A ”half-simple” 11-Venn diagram (rendered by Wagon)



NAMS cover (R., Savage, Wagon)

Symmetric Venn diagrams 
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Symmetric chain decompositions give Venn diagrams
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Symmetric chain decompositions give Venn diagrams



Symmetric chain decompositions give Venn diagrams
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The Greene-Kleitman rule

Parentheses matching with 0 = ( and 1 = ).
1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1
1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 0
1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0
1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0
1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0
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Choosing necklace representatives

I Break the bitstring into blocks of 1s followed by 0s and list
their sizes as a sequence, the block code.

I E.g., 111000 1100 10 10000 10 has block code (6,4,2,5,2).

I Rotate block code to its unique lex minimum and act on the
bitstring similarly. E.g., (2,5,2,6,4) is lex minimum and gives
10 10000 10 111000 1100.

I Apply Greene-Kleitman, ignoring the initial 1 and final 0.

I Key observation: block code is invariant under
Greene-Kleitman!
1 0 . 1 0 . 0 0 0 1 0 . 1 1 1 0 0 0 . 1 1 0 0



GKS 11-Venn (rendering by Weston)



GKS 11-Venn (rendering by Weston)



Simplify, simplify!
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1/7-th of a Venn diagram
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1/7-th of a Venn diagram
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1/11-th of a Venn diagram (truncated)

The chains
Half-simple Venn diagrams: Number of vertices is > (2n − 2)/2.
Killian,R,Savage,Weston (2004)



1/11-th of a Venn diagram (truncated)

The opposing trees
Half-simple Venn diagrams: Number of vertices is > (2n − 2)/2.
Killian,R,Savage,Weston (2004)



1/11-th of a Venn diagram (truncated)

Quadrangulating edges
Half-simple Venn diagrams: Number of vertices is > (2n − 2)/2.
Killian,R,Savage,Weston (2004)



1/11-th of a Venn diagram (truncated)

More can be added by hand
Half-simple Venn diagrams: Number of vertices is > (2n − 2)/2.
Killian,R,Savage,Weston (2004)



History
I Henderson (1963) observed that if there is a symmetric

n-Venn diagram, then n must be a prime number.
I From [GR75] regarding symmetric 7-Venn diagrams: “The

present author’s search for such a diagram has been
unsuccessful ... at present it seems that no such diagram
exists.”

I In [GR92b] Branko draws two symmetric 7-Venn diagrams,
one of which is non-convex and the other from (non-convex)
pentagons. Around the same time symmetric 7-Venn
diagrams are also found by Edwards.

I From [GR92b]: “Conjecture 3: For every positive prime n
there exists symmetric Venn diagrams with n sets.”

I Hamburger (2002) found a non-simple 11-Venn diagram.
I Griggs, Killian and Savage (2004) proved the existence of

non-simple symmetric n-Venn diagrams whenever n is prime.
I Khalegh Mamakani and R. (2014) find a symmetric simple

11-Venn diagram and then a 13-Venn diagram (published in
Discrete and Computational Geometry).
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The 6 polar symmetric convex Venn diagrams (Edwards)

Adelaide Hamilton Manawatu

Palmerston North Massey Victoria



The 17 remaining symmetric convex 7-Venn diagrams

From Cao, Mamakani, and R. (2010), first presented at Fun with Algorithms Conference.



A non-convex symmetric 7-Venn diagram, by Grünbaum



Another non-convex symmetric 7-Venn diagram

Open: How many
simple non-convex
7-Venn diagrams? Or
non-simple but convex?
Or non-simple and
non-convex?



Searching for simple symmetric Venn diagrams
Again we restrict ourselves to monotone=convex diagrams.



Representing Monotone Venn diagrams

I One fifth of Grünbaum’s 5 ellipses:

I 31 2 3 24
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I In total the diagram is represented by
143232 143232 143232 143232 143232.

I The representation is not unique (e.g., swap 1 and 4 above to
get 413232).

I Call this a crossing sequence.



Crosscut symmetry

Crosscut: Curve segment that sequentially crosses all other curves
once.
Crosscut symmetry: Reflective symmetry across the crosscut
(except top and bottom).
Strategy: Limit the search to diagrams that have crosscut
symmetry.



Crosscut symmetry

Curve intersections are palindromic (except C1). E.g., the
intersections with C5 are

L5,1 = [C4,C6,C3,C6,C4,C1,C4,C6,C3,C6,C4]

The crossing sequence:

1, 3, 2, 5, 4︸ ︷︷ ︸
ρ

, 3, 2, 3, 4︸ ︷︷ ︸
α

, 6, 5, 4, 3, 2︸ ︷︷ ︸
δ

, 5, 4, 3, 4︸ ︷︷ ︸
αr+



Crosscut symmetry theorem

Theorem
A simple monotone rotationally symmetric n-Venn diagram is
crosscut symmetric if and only if it can be represented by a
crossing sequence of the form ρ, α, δ, αr+ where

I ρ is 1, 3, 2, 5, 4, . . . , n − 2, n − 3.

I δ is n − 1, n − 2, . . . , 3, 2.

I α and αr+ are two sequences of length (2n−1 − (n − 1)2)/n
such that αr+ is obtained by reversing α and adding 1 to each
element; that is, αr+[i ] = α[|α| − i + 1].

Below is the α sequence for Newroz.

[323434543234345434545654565676543254346545

676787656543457654658765457656876546576567]



The first simple 11-Venn diagram “Newroz”



The first simple 11-Venn diagram “Newroz”



Blow-up



Polar and Crosscut symmetry?

Theorem
Unless n ∈ {2, 3, 5, 7} there is no symmetric Venn diagram with
both polar and crosscut symmetry.

Proof summary:

I Consider a cluster in such a Venn diagram.

I Let Rk be the number of k-regions to the left of the crosscut.

I Rk = (
(n−1

k

)
+ (−1)k+1)/n.

I By the symmetries, each m = (n − 1)/2 region (these lie
along the “equator”) is incident to at least one (m− 1)-point.

I Thus Rm ≤ Rm−1 + 1, and so m can’t be too large



Our 15 minutes of fame

I Write-up in New Scientist Magazine: teaser; longer; gallery.

I In Wired UK.

I And on Physics Central.

I Appears in the AMS Math in the Media magazine (August
2012), and is the image of the month there.

I Commented on here: Gizmodo.

I Getting some attention on reddit.

I A very well written blog entry: Cartesian Product.

I On tumblr.

I It generated some comments on slashdot.

I We were the August 20 entry in the Math Munch.

I Comments in Farsi.

I Comments in Dutch.

I On Pirate Science.

http://www.newscientist.com/article/mg21528774.800-logic-blooms-with-new-11set-venn-diagram.html
http://www.newscientist.com/article/dn22159-logic-blooms-with-new-11set-venn-diagram.html
http://www.newscientist.com/gallery/venn
http://www.wired.co.uk/news/archive/2012-08/10/11-set-venn-diagram
http://www.physicscentral.com/buzz/blog/index.cfm?postid=7864232096564861513
http://www.ams.org/news/math-in-the-media/mathdigest-md-201208-toc#201209-venn
http://www.ams.org/news/math-in-the-media/math-in-the-media


Another symmetric 7-Venn diagram with crosscut
symmetry

Note the smaller structures with crosscut symmetry. Here
αH = 3, 2, 4, 3.



Iterated crosscuts in general

Note: labels are all off by 1.



Iterated crosscuts in general

ρ, α, δ, αr+ occurs again!



Using αH as a “seed”.

And restricting the search to consider only iterated crosscuts,
yields an 11-Venn diagram.

αE =

ρ2︷︸︸︷
3, 2,

δ2︷︸︸︷
4, 3,

ρ3︷ ︸︸ ︷
5, 4, 3, 2,

α3︷ ︸︸ ︷
4, 3, 5, 4,

δ3︷ ︸︸ ︷
6, 5, 4, 3,

αr+
3︷ ︸︸ ︷

5, 4, 6, 5,

ρ4︷ ︸︸ ︷
7, 6, 5, 4, 3, 2,

α4︷ ︸︸ ︷
3, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 6, 5, 6, 5, 4, 5, 4, 7, 6, 5, 4, 6, 5, 7, 6,

δ4︷ ︸︸ ︷
8, 7, 6, 5, 4, 3,

αr+
4︷ ︸︸ ︷

7, 8, 6, 7, 5, 6, 7, 8, 5, 6, 5, 6, 7, 6, 7, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4.



An iterated crosscut 11-Venn diagram (not Newroz)



Sequence for 11, size 4: αE =

3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 3, 2, 3, 4,

3, 4, 5, 4, 5, 6, 5, 4, 3, 6, 5, 6, 5, 4, 5, 4, 7, 6, 5, 4, 6, 5, 7, 6, 8, 7, 6, 5,

4, 3, 7, 8, 6, 7, 5, 6, 7, 8, 5, 6, 5, 6, 7, 6, 7, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4,

Sequence for 13, size 304: αT =

3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 3, 2, 3, 4,

3, 4, 5, 4, 5, 6, 5, 4, 3, 6, 5, 6, 5, 4, 5, 4, 7, 6, 5, 4, 6, 5, 7, 6, 8, 7, 6, 5,

4, 3, 7, 8, 6, 7, 5, 6, 7, 8, 5, 6, 5, 6, 7, 6, 7, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4,

9, 8, 7, 6, 5, 4, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 5, 4, 6, 5, 4, 5, 6, 7, 6,

5, 4, 5, 6, 5, 6, 7, 6, 5, 6, 7, 6, 7, 8, 7, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6,

5, 7, 6, 8, 7, 8, 7, 6, 5, 4, 5, 6, 7, 6, 5, 4, 7, 6, 8, 7, 6, 5, 7, 6, 5, 8, 7, 6,

9, 8, 7, 6, 5, 4, 8, 7, 8, 7, 6, 7, 6, 5, 9, 8, 7, 6, 8, 7, 6, 5, 9, 8, 7, 6, 10, 9,

8, 7, 6, 5, 4, 3, 7, 8, 9, 10, 6, 7, 8, 9, 7, 8, 9, 10, 6, 7, 8, 7, 8, 9, 8, 9, 5, 6,

7, 8, 9, 10, 7, 8, 9, 6, 7, 8, 6, 7, 8, 9, 7, 8, 5, 6, 7, 8, 7, 6, 5, 6, 7, 8, 9, 8,

9, 7, 8, 6, 7, 5, 6, 7, 8, 6, 7, 5, 6, 4, 5, 6, 7, 8, 9, 8, 7, 8, 7, 6, 7, 8, 7, 6,

7, 6, 5, 6, 7, 8, 7, 6, 5, 6, 7, 5, 6, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4.



A simple symmetric 13-Venn diagram!



Open problems

I Find a simple symmetric diagram for n = 17.

I Find a general construction of symmetric diagrams.

I Determine the number of simple non-monotone Venn
diagrams for n ≥ 6. There are 39020 monotone ones
(Mamakani, Myrvold, R., IWOCA, 2011) and 375 of these
have a non-trivial isometry.

I Infinite families of diagrams with large isometry groups. Such
families exist for 2, 4 and 8.



The End

Thanks for coming.
Any questions?
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