
Finding Similar Items



Similar Items
Problem.
• Search for pairs of items that appear together a large 

fraction of the times that either appears, even if neither 
item appears in very many baskets.
– Such items are considered "similar"

Modeling
• Each item is a set: the set of baskets in which it appears. 

– Thus, the problem becomes: Find similar sets!
– But, we need a definition for how similar two sets are.



The Jaccard Measure of Similarity
• The similarity of sets S and T is the ratio of the 

sizes of the intersection and union of S and T.
– Sim (C1,C2) = |S∩T|/|S∪T| = Jaccard similarity.

• Disjoint sets have a similarity of 0, and the similarity of a 
set with itself is 1. 

• Another example: similarity of sets {1, 2, 3} and {1, 3, 4, 5} 
is 
– 2/5.



Applications - Collaborative Filtering
• Products are similar if they are bought by many of the 

same customers.
– E.g., movies of the same genre are typically rented by 

similar sets of Netflix customers.
– A customer can be pitched an item that is a similar to an 

item that he/she already bought.
Dual view
• Represent a customer, e.g., of Netflix, by the set of movies 

they rented.
– Similar customers have a relatively large fraction of their 

choices in common.
– A customer can be pitched an item that a similar customer 

bought, but that they did not buy.



Applications: Similar Documents (1)
• Given a body of documents, e.g., Web pages, find pairs of 

docs that have a lot of text in common, e.g.:
– Mirror sites, or approximate mirrors.
– Plagiarism, including large quotations.
– Repetitions of news articles at news sites.

• How do you represent a document so it is easy to 
compare with others?
– Special cases are easy, e.g., identical documents, or one 

document contained verbatim in another.
– General case, where many small pieces of one doc appear 

out of order in another, is hard.



Applications: Similar Documents (1)
• Represent doc by its set of shingles (or k -grams).
• A k-shingle (or k-gram) for a document is a sequence of k 

characters that appears in the document.

Example. 
• k=2; doc = abcab.  
• Set of 2-shingles = {ab, bc, ca}.

• At that point, doc problem becomes finding similar sets.
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Minhashing
• Suppose that the elements of each set are chosen from a 

"universal" set of n elements e0, el,...,en-1. 
• Pick a random permutation of the n elements. 
• Then the minhash value of a set S is the first element, in 

the permuted order, that is a member of S.

Example 
• Suppose the universal set is {1, 2, 3, 4, 5} and the 

permuted order we choose is (3,5,4,2,1). 
– Then, the hash value of set {2, 3, 5} is 3. 
– Set {1, 2, 5} hashes to 5. 
– For another example, {1,2} hashes to 2, because 2 appears 

before 1 in the permuted order.



Minhash signatures
• We compute signatures for the sets by picking a list of m

permutations of all the possible elements.
– Typically, m would be about 100. 

• The signature of a set S is the list of the minhash values of 
S, for each of the m permutations, in order.

Example 
• Universal set is {1,2,3,4,5}, m = 3, and the permutations 

are:
– π1= (1,2,3,4,5),
– π2= (5,4,3,2,1), 
– π3= (3,5,1,4,2). 

• Signature of S = {2,3,4} is 
– (2,4,3).



Minhashing and Jaccard Distance
Surprising relationship

If we choose a permutation at random, the probability that 
it will produce the same minhash values for two sets is the 
same as the Jaccard similarity of those sets.

• Thus, if we have the signatures of two sets S and T, we 
can estimate the Jaccard similarity of S and T by the 
fraction of corresponding minhash values for the two sets 
that agree.

Example
• Universal set is {1,2,3,4,5}, m = 3, and the permutations 

are: π1= (1,2,3,4,5), π2= (5,4,3,2,1), π3= (3,5,1,4,2). 
• Signature of S = {2,3,4} is (2,4,3).
• Signature of T = {1,2,3} is (1,3,3). Conclusion?



Implementing Minhashing
• Generating a permutation of all the universe of objects is 

infeasible. 
• Rather, simulate the choice of a random permutation by 

picking a random hash function h. 
– We pretend that the permutation that h represents places 

element e in position h(e). 
– Of course, several elements might wind up in the same 

position. 
• As long as number of buckets is large, we can break ties as we 

like, and the simulated permutations will be sufficiently random
that the relationship between signatures and similarity still 
holds.



Algorithm for minhashing
• To compute the minhash value for a set S = {a1, a2,. . . ,an}

using a hash function h, we can execute:

V =infinity;
FOR i := 1 TO n DO

IF h(ai) < V THEN V = h(ai);

• As a result, V will be set to the hash value of the element 
of S that has the smallest hash value.



Algorithm for set signature
• If we have m hash functions h1, h2, . .. , hm, then we can 

compute m minhash values in parallel, as we process 
each member of S.

FOR j := 1 TO m DO
Vj := infinity;

FOR i := 1 TO n DO
FOR j := 1 TO m DO

IF hj(ai) < Vj THEN Vj = hj(ai)



Example

S = {1,3,4}
T = {2,3,5}

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1
g(1) = 3

h(2) = 2
g(2) = 0

h(3) = 3
g(3) = 2

h(4) = 4
g(4) = 4

h(5) = 0
g(5) = 1

sig(S) = 1,3
sig(T) = 5,2



Locality-Sensitive Hashing of 
Signatures

• Goal: Create buckets containing mostly similar items 
(sets). 
– Then, compare only items within the same bucket.

• Think of the signatures of the various sets as a matrix 
M, with a column for each set's signature and a row for 
each hash function.

• Big idea: hash columns of signature matrix M several 
times.

• Arrange that (only) similar columns are likely to hash to 
the same bucket.

• Candidate pairs are those that hash at least once to the 
same bucket.



Partition Into Bands

Matrix M

r rows
per band

b bands



Partition Into Bands
• For each band, 

hash its portion of 
each column to a 
hash table with k
buckets.

• Candidate column 
pairs are those 
that hash to the 
same bucket for at 
least one band.

Matrix M

r rows b bands

Buckets



Analysis
• Probability that the signatures agree on one row is 

s (Jaccard similarity)
• Probability that they agree on all r rows of a given band is 

s^r. 
• Probability that they do not agree on all the rows of a band is 

1 - s^r
• Probability that for none of the b bands do they agree in all 

rows of that band is 
(1 - s^r)^b

• Probability that the signatures will agree in all rows of at least 
one band is 

1 - (1 - s^r)^b
• This function is the probability that the signatures will be 

compared for similarity.



Example
• Suppose 100,000 columns.
• Signatures of 100 integers.
• Therefore, signatures take 40Mb.
• But 5,000,000,000 pairs of signatures take a while to 

compare.
• Choose 20 bands of 5 integers/band.



Suppose C1, C2 are 80% Similar
• Probability C1, C2 agree on one particular band: 

– (0.8)5 = 0.328.

• Probability C1, C2 do not agree on any of the 20 bands: 
– (1-0.328)20 = .00035 .
– i.e., we miss about 1/3000th of the 80%-similar column 

pairs.

• The chance that we do find this pair of signatures together 
in at least one bucket is 1 - 0.00035,or 0.99965.



Suppose C1, C2 Only 40% Similar
• Probability C1, C2 agree on one particular band: 

– (0.4)5 = 0.01 .

• Probability C1, C2 do not agree on any of the 20 bands: 
– (1-0.01)^20  ≈ .80 
– i.e., we miss a lot...

• The chance that we do find this pair of signatures together 
in at least one bucket is 1 - 0.80,or 0.20 (i.e. only 20%).



Analysis of LSH – What We Want

Similarity s of two columns

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t



What One Row Gives You

Similarity s of two columns

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity



What b Bands of r Rows Gives 
You

Similarity s of two columns

Probability
of sharing
a bucket

t

s r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r 



LSH Summary
• Tune to get almost all pairs with similar signatures, 

but eliminate most pairs that do not have similar 
signatures.

• Check in main memory that candidate pairs really do 
have similar signatures.

• Optional: In another pass through data, check that 
the remaining candidate pairs really are similar 
columns .
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