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Abstract 

 
The ability to extract frequent pairs from a set of 

transactions is one of the fundamental building blocks 
of data mining. When the number of items in a given 
transaction is relatively small the problem is trivial. 
Even when dealing with millions of transactions it is 
still trivial if the number of unique items in the 
transaction set is small. The problem becomes much 
more challenging when we deal with millions of 
transactions, each containing hundreds of items that 
are part of a set of millions of potential items. 
Especially when we are looking for highly correlated 
results at extremely low support levels. 

For 25 years the Direct Hashing and Pruning Park 
Chen Yu (PCY) algorithm has been the principal 
technique used when there are billions of potential 
pairs that need to be counted. In this paper we propose 
a new approach that allows us to take full advantage 
of both multi-core and multi-CPU availability which 
works in cases where PCY fails, with excellent 
performance scaling that continues even when the 
number of processors, unique items and items per 
transaction are at their highest. 

We believe that our approach has much broader 
applicability in the field of co-occurrence counting, 
and can be used to generate much more interesting 
results when mining very large data sets. 
 

1. Introduction 
 

1.1 Overview Of The Problem 
 

An effective way to illustrate our counting problem 
is to consider a basket of products being purchased at a 
supermarket checkout counter. As they are scanned the 
products (items) are recorded in a unique transaction 
for that specific customer. Each supermarket stocks 
tens of thousands of unique items, each of which has a 
unique numeric SKU. Each supermarket chain 
generates thousands of these transactions per day for 
each busy store. 

These transactions can be mined to determine which 
pairs of items are likely to be purchased together both 
at that store, or any other store in the chain. Some 
pairings such as bread and butter happen so often that 
they are obvious. Others such as caviar and crackers 
occur much less frequently, but when they do occur 
they are highly correlated, making them much more 
interesting. It is these cases that we are trying to 
discover. 

Generating the pairs of items from a transaction is 
extremely fast. Doing so billions of times and counting 
those pairs takes only a few minutes for a typical 
processor if the same few thousand unique pairs are 
incremented millions of times. The reason why this 
problem sometimes takes days to solve is because it 
requires a huge amount of effort to access and update 
the counters once they no longer conveniently fit into 
memory. 

To illustrate the problems that arise, and to make the 
discussion very concrete, we selected the Webdocs data 
set from FIMI 04. This dataset is derived from real-
world data, and is reasonably representative of the sort 
of data that needs to be mined. We chose it primarily 
because many published papers on frequent item 
mining have used this data set, and we wanted our 
results to be comparable. 

Papers on efficiently mining frequent patterns such 
as [7], [8] and [9] imply that this dataset is no longer 
the challenge it was when it was first used. But in all 
cases that we looked at, the support level was set so 
high (7.5% or more) that it meant that very few pairs 
were actually generated. Webdocs contains 2.5 million 
transactions, 5.25 million unique items, and many items 
in the longest transaction. This is a lot of information. 

Mining with a 10% support level means we are only 
interested in those items that appear at least 250,000 
times in the data. Using this support level reveals that 
only 122 unique items are frequent enough to be used 
for counting pairs. (See Table 2). And none of the 
frequent pairs that can be generated from these 122 
items are even moderately correlated. (See Table 13). 

We are interested in doing much better. Webdocs is 
an ideal vehicle for demonstrating the algorithms and 



techniques that are needed to extract highly correlated 
information from this type of raw data. It has the 
following characteristics: 

 
Number of transactions  2,482,485 
Number of unique items   5,267,656 
Maximum items/transaction  281 

Table 1 - Webdocs Statistics 
 
Support Support 

% 
Surviving 

k=1 
250,000 10.0 122 

25,000 1.0  2,047 
2,500 0.1 9,919 

250 0.01 47,286 
25 0.001 223,282 

Table 2 – Surviving k=1 Candidates 
 
For example, as shown in Table 2, when the support 

level is set to 0.01%, we need to examine all items that 
appear at least 250 times in the data set. In this case the 
number of unique items that exceed this support level 
is 47,286. 

 
We set ourselves the task of using a support level of 

0.001%. This increases the number of surviving 
frequent items to 223,282. This support level allows us 
to discover the highly correlated pairs that are missed 
when the support level is set at a much higher level. It 
also guarantees that we will hit the performance 
bottlenecks we are interested in exploring.  

 
1.2 Our Contributions 
 

We have analyzed the underlying performance 
characteristics and performance bottlenecks associated 
with this problem and devised a pair of techniques that 
make it easy to discover highly correlated pairs that 
only occur a few times. Our techniques work even 
when PCY fails and Map-Reduce falters. Furthermore 
we are able to generate these results quickly with good 
scalability. We believe that these techniques have a 
wide applicability to the field of data mining. 

During this analysis we discovered that much of the 
information in the literature that talks about mining 
very large datasets does not adequately clarify the 
relationships between raw data size, support, relevance 
and the generated output. As stated earlier, none of the 
frequent pairs mined from this dataset at a 10% support 
level are even moderately correlated. 

Our techniques are completely scalable. They work 
equally well with single computers, multi-core 
computers and networked computers. They also deliver 

results in time frames that can be predicted with a 
reasonable degree of accuracy. 

 
1.2 Organization 
 

The rest of the paper is as follows: Section 2 
presents the preliminaries needed to work on the 
problem. Section 3 discusses the challenges faced by 
different techniques at very low support levels. Section 
4 presents our solutions including an efficient 
algorithm for multi-core mining at a support level of 
0.001%. Section 5 analyzes the results we obtained and 
attempts to draw useful conclusions. Section 6 
documents the equipment used to generate our results. 
Section 7 suggests future research directions. 

 

2 Preliminaries 
 

Problem definition: Given a support level s, 
determine all the interesting pairs that occur in at least s 
transactions. A given pair (i, j) is considered to be 
interesting if the support for that pair is a reasonable 
percentage of the support for either i or j. 
 
2.1 The Apriori Principle 

 
Each transaction of n items generates approximately 

n2/2 possible pairs. This means that for large data sets 
we can easily end up with hundreds of billions of pairs 
that need to be examined. Almost all of which are 
uninteresting. 

We can use the Apriori [4] principle to eliminate as 
many items as possible from the input data before 
starting to count pairs. Briefly put a pair will only be 
frequent if both its constituent items are also frequent. 
This allows us to eliminate all pairs where one or more 
of the constituent items are not frequent. 

If the support level is set too high very few items 
survive, and all the interesting ones are filtered out. If it 
is set too low too many pairs will be generated, making 
the problem unmanageable. Using our market basket 
analogy, we are interested in discovering relationships 
like caviar/crackers. To do so we have to mine the data 
at a support level that is no higher than the total number 
of times that caviar was purchased. In many real-world 
cases this is lower than 1%. 

 
2.2 High Confidence Pairs 

 
Our end objective is making it easy to find the high-

confidence pairs like caviar/crackers that only exist at 
low support levels. This means that we need to mine 
with a suitably low support level and then eliminate 



almost all of the results, rather than just generating 
those few results that we can probably guess if we are 
familiar with the information encoded in the data we 
are analyzing. 

Working with large datasets and low support levels 
produces enormous numbers of results. When we used 
a support level of 0.001% on Webdocs we computed 
(in Table 4) that we had to generate and count more 
than 24 billion pairs to discover that there are more 
than 950 million non-zero pairs; with more than 50 
million of those pairs being frequent. 
For our results to be usable we need to distinguish 
which of these 50 million pairs are interesting and 
eliminate the rest. Eliminating those results that have a 
confidence of less than 95% reduces this 50 million to 
about 90K highly correlated pairs. 
  
2.3 The Park Chen Yu (PCY) Algorithm 

 
PCY [1] is the most common method used to 

compute frequent pairs from very large datasets. It was 
first proposed in 1995, and is still the method of choice 
appearing in current textbooks [2].  

The item pairs are hashed to (counting) buckets 
that are each represented by a single counter (say of 32 
bits). A given counter serves several item-pairs, namely 
all those that hash to that particular bucket. In the end, 
such a counter will hold the sum of frequency counts of 
all the item pairs that hashed to this bucket. The set of 
all counters is assumed to fit in main memory.  

Once all the pairs have been processed, each 
counter is represented as a single bit that is true if the 
counter is higher than the specified support level. This 
shrinks the memory required to represent this 
information by a factor of 32. A subsequent pass 
through the data only counts those pairs whose hash bit 
is set. 

This algorithm works really well when most of the 
counters are still below the support level once all the 
pairs have been counted. For those cases where too 
many pairs hash to the same bucket causing a lot of 
false positives, this algorithm uses a second and 
possibly a third pass with a different hash function to 
possibly eliminate false positives. Each pass only 
reduces the amount of memory available for 
subsequent processing by 3% (one bit instead of a 32 
bit counter), so three passes still leave over 90% of the 
available memory for counting those pairs that have all 
three hash bits set. 

This algorithm fails when most of the counters 
exceed the support level no matter what hash functions 
are used. We argue that this is exactly case for 
Webdocs (see Section 3.5). 

 
2.4 The Google Map-Reduce Framework 
 

Map-Reduce [3] is a framework developed by 
Google for working on computing problems that can be 
solved by distributing subsets of that problem to a large 
number of clustered computers and then combining the 
results from these subsets. The number of computers 
(or nodes) in a cluster varies greatly, ranging from tens 
to tens of thousands. It can be readily applied to this 
type of problem because the individual transactions are 
independent of each other. 

There are two main steps required to solve a 
problem using the Map-Reduce framework. Map 
processes each take a subset of the data (in our case a 
unique subset of the transactions) and process that data 
outputting key-value (KV) pairs. In our case a given 
map process would take each individual transaction and 
generate all the potential KV pairs that can be 
constructed from that transaction. The key of each KV 
would be the item pair (such as bread/butter or 
beer/diapers) and the value would be a 1. 

Once the map processes have all finished, the Map-
Reduce framework groups all of these generated KVs 
and delivers them to a set of reduce processes that 
generate the final results. In this case the reduce 
processes sum all the output KVs that have the same 
key (bread/butter) and outputs a single KV as 
bread/butter:1234 (assuming that the key occurred 
1234 times). 

Map-Reduce uses a lot of hidden functionality. Data 
has to be stored and partitioned. The output from the 
map processes has to be grouped and delivered to the 
reduce processes. The entire process has to be managed 
to deliver all the results in a timely manner. 

Despite looking simple and attractive Map-Reduce 
does not work well for this problem because it 
unnecessarily generates hundreds of gigabytes of 
intermediary data.  

This said, our techniques can in some sense be 
considered as Map-Reduce approaches. However they 
do not create any significant amount of intermediary 
data. 

 
2.5 Optimizing Performance by Eliminating 
Bottlenecks 
 

Disk IO is well understood to be a problem for data 
mining algorithms. Sequential disk IO is extremely fast. 
It is often faster than random main memory access (cf. 
[13]). In some circumstances it can even be faster than 
writing randomly to memory. On the other hand a 
single random disk IO usually takes about 10 



milliseconds to complete, during which time the 
process often has to stall. During that same amount of 
time the computer’s CPU can perform one random disk 
IO it can perform about 10 million instructions, so 
minimizing random disk IO must be a very successful 
strategy no matter how expensive that strategy is in 
terms of cpu cycles. 

Disk IO happens for two reasons. The first is when 
the application explicitly reads or writes data. The 
other case is when the program’s memory usage 
exceeds the amount of real memory available on that 
computer causing it (or some other process) to be 
swapped out to disk to free up memory. 

Explicit reads and writes are easy to recognize and 
can often be minimized or eliminated by careful 
coding. The implicit reads and writes caused by paging 
are much harder to handle. They are almost always the 
difference between algorithms running at the expected 
speed or thousands of times slower than would 
otherwise be expected. 

Both of our counting techniques eliminate all 
explicit and implicit random disk IO associated with 
the counting process, making run times both scalable 
and predictable. 

Another performance issue is the effect of CPU 
caches on the way that a computation performs. Storing 
counters in a hash-tree structure (as documented in 
various text books including [12]) causes the program 
to jump around in memory as it follows the tree 
structure to reach the appropriate counter. It also 
causes new counters to be added to the tree at random 
intervals and on a random basis. This is not good for 
memory cache utilization. The difference between 
efficient and inefficient cache utilization is typically 
about one order of magnitude. Practical confirmation 
of this estimate can be found in [8] that shows a 
performance improvement by a factor of 5:1. 

 

3. The Challenge 
 

In order to eliminate the implicit random disk IO 
associated with counting we first need to know how 
much memory will be needed to store the required 
counters. Table 2 shows that when the support level is 
set to 0.01% for Webdocs, the number of unique items 
that exceed this support level is 47,286. Table 3 shows 
the number of potential pairs exceeds 1 billion; and the 
minimum amount of memory needed to count these 
pairs would be 2.25GB if we were to use exactly 4 
bytes per cell to count these pairs. When the support 
level is set to 0.001%, this increases the number of 
frequent items to 223,282 and the memory requirement 
to 50GB. 

 
3.2 Apriori Counting Optimizations 

 
The first and easiest way to reduce the memory 

requirement is to rely on the Apriori principle and 
perform an initial pass through the data to eliminate all 
items whose count fails to meet a predefined minimum 
support level. Comparing the different support levels 
against the bottom row of Table 3 where no Apriori 
reduction is used clearly demonstrates its effectiveness. 

After using Apriori to prune the k=1 candidates, a 
second inexpensive strategy is to renumber the 
surviving items such that the most frequent item is 
renumbered to 1, the next most frequent to 2 and so on. 
This makes it possible for the data to be written back to 
disk without the infrequent items. It also allows the 
counts to be stored in a much more compact two-
dimensional array. 

 
3.1 Counting in A Memory Resident Table 

 
In order to make the following discussion concrete, 

we need to document that the computers we used to 
produce the results each had 4 Xeon cores sharing 6GB 
of memory. This gave us three possible processing 
configurations: 4 separate processes per computer with 
each process using 1.5GB memory, 2 processes with 
each one using 3GB memory, and a single process 
using all available memory. In each of these cases the 
entire memory space could not be used for counters. 
Allowances had to be made for the operating system, 
disk buffering, program code and variables etc. 
Experimentally we were able to determine that this 
reduced the amount of memory we could use for 
storing counters to 1.25 GB per core. 

We calculated Table 3 so we could see how much 
memory is needed to count pairs in memory, assuming 
that we use Apriori to eliminate infrequent items, and 
then use 4 bytes of memory per counter for each 
possible k=2 frequent pairs.  The table assumes that the 
counters are stored in a triangular array of size [F1]

2/2, 
where [F1] is the number of surviving singletons.  

 
Support Support 

% 
Surviving 

k=1 
Possible 

 k=2 
GB  

250,000 10.0 122 7,442 ~0 
25,000 1.0  2,047 2,095,105 0.01 

2,500 0.1 9,919 49,193,281 0.79 
250 0.01 47,286 1,117,982,898 2.25 
25 0.001 223,282 24,927,425,762 50 

1  5,267,656 ~13.9*1012  
Table 3 – All Possible k=2 Candidates 
 



If we want to use all 4 cores simultaneously we need 
to limit memory use per process to be 1.25GB to avoid 
implicit disk paging. This means that we can count all 
the possible ~50 million pairs for the 0.1% support 
level in memory because that only needs 0.2GB. We 
can also see that this method fails with a support level 
of 0.01% because 1.12 billion possible pairs require 
2.25GB memory. It does work if we use only 2 
processes. We can also see that using 2 byte counters 
instead of 4 byte counters would have just allowed us 
to once again use all 4 cores. 

 
3.3 Counting in a Hash Tree 

 
A different strategy has often been used for 

counting. Rather than creating an in-memory table that 
has one counter for each potential pair, the other 
possibility is to only store and increment each unique 
pair that is generated from the data set. This will use 
less counters because some combinations will not exist 
in the input data. It requires using some sort of hash-
tree to store the results. This is the underling counting 
technique that has been used over the years by most 
data mining algorithms. It is very successful when the 
number of non-zero pairs that have to be counted will 
fit in memory. 

With this approach we have an unpredictable 
situation. We have a fixed amount of memory for 
storing results and no real knowledge of how many 
unique pairs will produce at least one hit. So we have a 
process that runs quickly in the beginning, gradually 
slows as the tree grows, and then suddenly runs tens of 
thousands of times slower or aborts once the amount of 
available memory is exceeded. 

The only thing we are certain of is that as the 
support count is lowered more unique pairs will need 
to be counted, and the chances of running out of 
memory increase. We also know that this technique 
will use the cache inefficiently because elements will 
be added to the tree at random. 

With this data set and a 1% support level we 
determined experimentally that we generate 112,394 
frequent unique pairs after applying the Apriori 
principle. Assuming that we use 16 bytes to store the 
pair (4 bytes per item) plus the counter (4 bytes) plus 
the required linkages (4 bytes), this gives us a memory 
requirement of 1.6 megabytes. For 0.01% this increases 
to approximately 7GB and for a 0.001% support level 
we need almost 16 gigabytes just to store our counters. 
We see that this method fails for a support level of 
0.01% when even 6GB of memory is available. 

These observations agree with the intuitive 
prediction that all the extra complexity will not help 

once the support level is sufficiently low and we are no 
longer working with a sparse set of non-zero pairs. 

 
Supt 

% 
Possible 

 k=2 
Generated 

Pairs 
Non Zero 

k=2 
Frequent 

k=2 
10.0 7,442 1.1*109 7,381 729 
1.0 2.1*106 14.2*109 2*106 112,394 
0.1 49.2*106 20.8*109 48.2*106 1.25*106 

0.01 1.1*109 23.4*109 437.8*106 8.37*106 

0.001 24.9*109 24.5*109 952.4*106 51.1*106 

Table 4 – Actual k=2 Frequent Pairs 
 

3.4 Counting Using Map-Reduce 
 
Map-Reduce offers a different way to count the 

generated pairs. It relies on a Map process outputting 
the generated pairs as a linear stream of KV pairs and 
then organizing that stream such that KV pairs that 
group together appear together to an associated Reduce 
process. 

Map-Reduce eliminates the need to store the 
generated pairs in memory, removing that restriction no 
matter how low we set the support level. Instead of 
using memory based counters we generate 
approximately 15 bytes per KV pair that are 
sequentially (and very quickly) written to a file system. 
These pairs then need to be sorted and reduced. 

When we are dealing with a support level of 10% 
we generate 16GB of KV data and this technique works 
nicely. Unfortunately, for a 0.001% support level we 
emit about 350GB of KV data. This is far too large a 
number. We start with only 1.25GB of raw data and are 
only going to produce a few kilobytes of relevant 
results. The intermediate disk space requirement (and 
its associated disk IO) is very excessive. 

 
3.5 Why the PCY Algorithm Can Fail with 
This Dataset at a 0.001% Support Level 

 
The PCY algorithm has problems once support 

levels are so low that the number of unique potential 
pairs that need to be counted causes many of the 
counters to exceed the specified support level. 

Also, observe that once someone uses the PCY idea, 
holding the exact counters of each item pair has to be 
done by using a hash-tree. Using a matrix of counts 
would not make sense, as it would defeat the purpose of 
the extra PCY filtering. Therefore, PCY suffers from 
the same problems as the other approaches using hash-
trees for keeping the item pair counts.  

Given our particular dataset it is apparent that for a 
support level of 0.001%, PCY has problems when we 
only have 1.25GB of memory. Assuming 4 bytes per 



counter, 1.25GB memory can store up to 312.5 million 
counters. According to Table 4 we have 952.4 million 
unique non-zero pairs to count in these 312.5 million 
counters, so every counter is very likely to be set by at 
least three different pairs. At least 51 million of these 
counters will exceed the support level because 51.1 
million unique pairs exceed this support level. 
Assuming the pairs, which PCY indicates have to be 
counted, are subsequently held in a hash tree, (and that 
each of these hash tree counters requires 16 bytes) we 
can see that this can fail even with multiple hash 
passes. 

We could guarantee that PCY works by using a 
single process that uses all 6GB of memory, but that 
does not change the underlying observation. 

 

4. Our Techniques 
 
From a performance viewpoint the problem we are 

trying to solve can best be summarized as: 
1. Generate results when the number of non-zero 
pairs that need to be counted will not fit in memory. 
2. Generate these results in a reasonable 
predictable time frame. 
3. Make effective use of available multi-CPU 
multi-core hardware to generate the results, and 
have the time taken to produce these results 
decrease in a near linear manner as more processors 
are added. 
We have developed two distinct techniques that will 

achieve these goals. One uses all available memory on 
a single computer to generate the results. The other 
efficiently shares that memory between multiple cores. 
Both share many common features. 
 
4.1 Pre-Processing Steps 
 

Webdocs is a 1.5GB file of 2.5 million transactions 
that contain our 5.25 million unique items. The first 
step is to count the data discovering the number of 
occurrences for each unique item. This pass only takes 
a couple of minutes, and uses relatively little memory 
to compute these occurrences. 

Once we have counted the occurrences it is easy to 
sort the items and substitute their frequency (FID) for 
their item numbers, such that the item with the most 
occurrences becomes FID 1, the next most frequent 
becomes FID 2 and so on. (Ties are broken arbitrarily). 
Infrequent items are eliminated at the same time. This 
process happens completely in memory and only takes 
a few seconds. 

Reading the file a second time and writing it out 
again with the substituted FIDs (trimming infrequent 

items and dropping empty transactions) takes only a 
couple of minutes. Our total pre-processing time is less 
than 10 minutes. 

Sections 4.2 and 4.4 illustrate our techniques. To 
make our explanations easier to understand we have 
chosen to document our techniques using square 
counting arrays (as opposed to triangular). 

 
4.2 Single Core 0.01% Support Using All 6 
Gigabytes of Memory 
 

Our computer has 6GB of memory. Some of that 
memory is needed for the operating system and for 
other tasks. Assuming that we use 32-bit numbers as 
counters it is safe to assume we have sufficient memory 
space available (5GB) to store approximately 1.25 
billion counters without needing to do any disk I/O. 
This means that we can safely create a two-dimensional 
square array whose side is 33,000. 

Counting now proceeds as follows. We generate all 
possible pairs for every row, which as we described 
contains only frequent items. For each generated pair 
we examine both FIDs. If both are less than 33,000 the 
pair is counted in our memory resident table (See 
Figure 6). Otherwise the pair is emitted as a KV pair 
with a value of 1. Once the process finishes, all the 
frequent pairs found in the memory table are emitted as 
KV pairs with their values being their counts rather 
than 1s. A final pass reads in all the emitted pairs, 
aggregates them “a la Map-Reduce”, and eliminates the 
infrequent ones. 

A support level of 0.1% produces 9,919 frequent 
k=1 FIDs. The potential pairs generated will fit in a 
square table of size 9,919 x 9,919. We have sufficient 
memory to accommodate a table that has a side of 
33,000. So for this support level the entire computation 
proceeds in memory making it extremely fast. And no 
further optimization is needed. 

 
k=1 items 47,286 

Total number of KV pairs 
generated from webdocs data 

23,382,204,891 

Pairs counted in memory 22,938,692,793 
Pairs emitted during the process 

because they could not be 
counted in memory 

443,512,098 

Frequent pairs emitted at the end 
of the calculation 

307,401,070 

Total pairs emitted by process 750,913,168 
Percentage pairs emitted because 

they did not fit in memory 
1.9% 

Table 5 – Pairs generated for 0.01% support level 
A support level of 0.01% produces 47,286 k=1 

FIDS. We once again count pairs that have both FIDS 



less than 33,000 in memory. This time we emit KV 
pairs when either FID is over 33,000. Because we are 
using frequency based item IDs most of the generated 
KV pairs are counted in memory. We only need to emit 
443 million instead of 23,382 billion KV pairs. This 
reduces the amount of data emitted from 350 gigabytes 
(which is the amount of data emitted by a simple Map-
Reduce) down to 6.5 gigabytes, allowing us to generate 
our results in under 20 minutes. 
  

Figure 6 – Distribution of pairs for 0.01% support. 
22.9 Billion KV-pairs are counted in the in-memory 
33,000×33,000 matrix of counts. 0.4 Billion KV-pairs 
are emitted.  
 
4.3 Single Core, 0.001% Support Using All 6 
Gigabytes of Memory 
 

The above technique does not work as well when 
we are mining with a 0.001% support level. In this case 
Table 7 shows that we are dealing with a square whose 
side is 223,282. 

 
k=1 items 223,282 

Total number of KV pairs 
generated from webdocs data 

24,481,791,476 

Pairs counted in memory 22,938,692,793 
Pairs emitted during the process 

because they could not be 
counted in memory 

1,543,098,683 

Frequent pairs emitted at the end 
of the calculation 

307,401,070 

Total pairs emitted by process 1,850,499,753 
Percentage pairs emitted because 

they did not fit in memory 
6.3% 

Table 7 – Pairs generated for 0.001% support level 

 

Figure 8 – Distribution of pairs for 0.001% support. 
22.9 Billion1 KV-pairs are counted in the in-memory 
33,000×33,000 matrix of counts. 1.5 Billion KV-pairs 
are emitted.  
 

Only emitting 6.3% of the KV pairs sounds good 
until one realizes that this still causes 1.5 billion pairs 
to be emitted occupying over 20 gigabytes of disk 
space. Although this is 18 times better than a simple 
Map-Reduce (which would generate over 360 
gigabytes of data), we can do much better. 
 
4.4 Multi Core 0.001% Support Using 100 
Cores Belonging to 25 CPUs 

 
Our second technique uses multiple processes to 

generate the results. In our illustrative example we use 
100 processes to handle a support level of 0.001%. 
Because each computer blade has 4 cores and 6 
gigabytes of memory we know that each process can 
safely use 1 gigabyte of memory without causing any 
disk IO. (The rest is reserved for the operating system, 
other variables and disk buffers). This means that each 
process can safely hold 256 million 32-bit counters in 
memory. We know that we are dealing with 223,282 
k=1 FIDs. This means that each process can fit into 
memory a range of 1,150 values for the first FID of the 
pair when combined with all the values for the second 
FID of the pair. This 1,150 rows represents 0.5% of the 
total number of rows. This means that we can generate 
all our results using 200 processes as shown in Table 9. 

 
                                                           
1This is the same number as for Figure 6, and it is not a coincidence. 
The frequency rank of items depends on the dataset, not the support 
level used. 



Rows �Columns 1 thru 230,000� Process 
1-1150 …..256 million counters….. 1 

1151-2300 …..256 million counters….. 2 
2301-3450 …..256 million counters….. 3 

 …..256 million counters….. … 
226551-227700 …..256 million counters….. 198 
222701-228850 …..256 million counters….. 199 
228851-230000 …..256 million counters….. 200 
Table 9 – Counting When 200 Cores Are Available 

 
We do not want to use FIDs with this technique 

because the process that handled the first few FID 
numbers (Process 1 in Table 9) would take a lot longer 
to complete. So we need to replace FID numbers with 
something more random. Rather than sorting the items 
by the number of hits we simply assigned 1 to the first 
frequent item, 2 to the next frequent item and so on. 
These sequential items (SID)s distributed the 
processing adequately as can be seen in Table 11. 

If we only have 100 cores available we have to 
create a script that processes two different sets of rows 
one after the other. Doing things this way ensures that 
the second set cannot start running until the first one 
completes, and therefore we won’t accidentally set up a 
situation where the computer has to page memory. 

 
Rows �Columns 1 thru 230,000� Process 

1-1150 …..256 million counters….. 1 
1151-2300 …..256 million counters….. 2 
2301-3450 …..256 million counters….. 3 

 …..256 million counters….. … 
226551-227700 …..256 million counters….. 3 
222701-228850 …..256 million counters….. 2 
228851-230000 …..256 million counters….. 1 
Table 10 – Counting When 100 Cores Are Available 

 
Passing through the entire Webdocs data set once 

with a Unix wc command takes about 60 seconds. 
Running our java program that looks at all the 
transactions, generates all the pairs, and counts the 
appropriate ones in memory takes an average of 4.5 
times as long, with the fastest process taking 211 
seconds and the slowest process taking 419 seconds. 
The final set of results from the final process completes 
less than 12 minutes after the mining starts. 

 
k=1 items 223,282 

Total pairs generated from 
webdocs data 

24,481,791,476 

Frequent Pairs 51,053,891 
Time taken by fastest pass 211 secs 
Time taken by slowest pass 419 secs 

Table 11 – Pairs generated for 0.001% support level 
 

Because of the way we are distributing the data we 
can be certain that everything will scale reasonably 
linearly. For example, using 25 cores belonging to 7 
blades, with each process making 4 passes takes 25 
minutes. Also, as expected, we didn’t see any 
significant differences in performance when we used 25 
cores on 25 different blades.  

 
Our processing techniques are completely scalable. 

They can already handle much larger problems than 
mining Webdocs. The key being that we know how 
much memory is available and we use this information 
to avoid swapping.  

 
4.5 Filtering Out Unreasonable Results 

 
The 1.25 million frequent pairs generated at a 

support level of 0.1% are too many to be useful. To 
resolve this problem we need to filter out all the pairs 
where the relationship appears to be accidental. Using 
confidence meets this need. It only requires a minor 
change to the code, and did not affect the amount of 
time required to generate results. 

Table 12 shows that using this technique reduced 
this 1.25 million to 1,511 (approx 1000:1) for the case 
where we assume that a frequent pair is interesting only 
if either one of its items appears 85% of the time in the 
pairs. 

 
Support Frequent 

Pairs 
25% 

Confident 
Pairs 

50% 
Confident 

Pairs 

80% 
Confident 

Pairs 

10% 729 0 0 0 
1% 112,394 3,265 1,351 353 

0.1% 1.25*106 11,457 3,732 1,680 
0.01% 8.37*106 26,032 13,110 8,949 

0.001% 51.1*106 304,658 173,788 118,854 

 
Support Frequent 

Pairs 
85% 

Confident 
Pairs 

90% 
Confident 

Pairs 

95% 
Confident 

Pairs 

10% 729 0 0 0 
1% 112,394 301 118 118 

0.1% 1.25*106 1,511 1,170 1,117 
0.01% 8.37*106 8,528 7,901 7,600 

0.001% 51.1*106 99,219 94,686 90,345 

Table 12 – Confident Pairs 
 



5. Interpretation of The Experimental Results 
 
5.1 Support Produces Too Much Noise 

 
It is hard to say what is a reasonable support level 

before the results have been produced. It depends on 
the data being analyzed and the information we are 
attempting to glean from that data. With our techniques 
it is possible to produce results really quickly. This 
makes it feasible to mine for very low support levels. 
Once we have our frequent pairs we can then obtain the 
numbers of pairs for multiple confidence levels with a 
few seconds worth of processing. As can be seen in 
Table 12 above, there are only 304,658 pairs that have 
even a 25% confidence level.  

When we use what we think is a reasonable support 
level of 0.1% for this data set we generated 1.25 
million frequent pairs. This was reduced to 1,511 pairs 
once we limited our results to those pairs with a 
confidence level of at least 85%. 

This type of filtering ensures that the reported 
results are valuable.  It is equally essential when 
mining for longer sets of frequent items. We 
recommend this use of confidence (or better still h-
confidence [11]) at a moderate level (70-90%) for this 
purpose. We understand that doing so will dramatically 
change the way we view some of the existing data 
mining code. But we also believe that this is necessary 
if we want to evaluate how well these algorithms 
produce meaningful results. 

 
5.2 Using Map-Reduce Efficiently Is Not 
Always Recommendable 

 
Map-Reduce is not a magic solution to all multi-

core problems. We have demonstrated that with a bit of 
thought we could reduce the amount of data emitted by 
the Map processes by a factor of 20-30. We also 
showed that by carefully choosing the exact way the 
memory is used we can almost totally eliminate the 
Reduce step. 

It also turns out that language libraries can cause 
lots implicit disk IO as well as burning lots of extra cpu 
cycles, and that is something that needs more attention 
when using Map-Reduce for simple computations on 
large data sets. It is easy to lose the performance gains 
that Map-Reduce can deliver by simply making a 
wrong choice in programming language when that 
language causes unexpected paging. 

 

 
 
5.4 Size Is Meaningless Without Support 

 
This research makes it clear that the absolute size of 

the data set being evaluated is not a fair representation 
of the effort required to mine that data set. For 
example, the size of the Webdocs data set is 
approximately 1.25 gigabytes, but most of that size is 
noise at high support levels. 

It is more accurate to state that it is 250 megabytes 
when the support level is 10% and 600 megabytes 
when the support level is 5%. We suggest that using the 
effective size of the data set (obtained after stripping 
out all the k=1 infrequent items) is a much better 
measure when comparing results. This number is still 
inaccurate because the number of potential candidates 
generated depends on the square of the number of items 
appearing in each transaction, but it is nonetheless a 
step forward by making it easier to compare results 
among different datasets. 

 
5.5 Other Interesting Observations 

 
One of the supposed weak points of the Apriori 

algorithm is that it requires multiple passes through the 
data. The timings generated by this paper show that 
when mining for low support levels this is irrelevant. 
The time to pass sequentially through the data is 
insignificant when compared with the time required to 
generate and count the candidates. 

It would appear that when the Webdocs dataset is 
mined at 10% or higher support levels none of the k=2 
pairs have even a 25% confidence level. This suggests 
that mining this particular dataset at this particular 
support level is at best an academic exercise.  

 

6. Equipment And Software Platform Used 
 
6.1 Hardware and Operating System 

 
Summarizing, the results presented in this paper 

were generated using a 25 blades of a 42 blade IBM 
cluster, where each blade has 6 gigabytes memory and 
a quad core Intel Xeon processor rated at 2.33 
gigahertz. Each blade has 4 megabytes of L2 cache that 
is shared by all 4 cores. To control memory usage we 
explicitly limited the amount of memory available to 
our computations, causing these programs to crash 
rather than page if we used too much memory. We used 
Linux as our operating system. This allowed us to use 
top and vmstat so that we could carefully monitor 



memory usage to ensure that everything worked 
properly. 

 
6.2 Choice of Programming Language 

 
Early attempts at coding our algorithms failed to 

produce the expected results. We were using Python as 
our programming language and discovered that we 
were measuring that language’s inability to efficiently 
store values in a large linear static array, not the 
performance of our algorithms. In fact almost the 
whole elapsed time was spent on the single Python 
instruction that referenced the correct counter. We 
attempted to use different libraries to minimize this 
overhead but were eventually forced to give up because 
the results were still orders of magnitude slower than 
our expectations. 

We also experimented with both Disco [5] and 
Hadoop [6], but once again had performance and 
reliability problems. We eventually abandoned both 
these options in favor of a simple multi-process 
manager that we wrote ourselves. Normally this would 
have been a poor decision, but because none of our 
processes took more than a few minutes to complete 
handling restarts was unnecessary. And because we 
severely limited the size of the intermediate outputs we 
didn’t need any of the excellent file management that 
these tools offer.  

We eventually recoded our algorithms using a 
mixture of Jbase (a commercial product ideally suited 
to handle the scripting and reporting we needed) and 
Java for the computationally intensive tasks. In this 
environment our code behaved as predicted. In fact the 
Java run time performance significantly exceeded our 
expectations, delivering results that were within an 
order of magnitude of well-written C code. 

 

7. Future Research Directions 
 
The same techniques outlined in this paper can be 

used for finding longer sets of associated items. Doing 
so requires solving additional challenges. One problem 
not addressed in this paper is the ability to quickly 
generate all the potential candidates when dealing with 
longer chains of frequent items. This is addressed in 
our paper [10], which demonstrates a technique to 
quickly perform this task. The algorithm outlined in 
that paper is designed so that it can run in parallel on 
multiple cores with little or no degradation. 

The other major problem mining data at these low 
support levels is getting rid of the noise caused by 
frequent items generating uninteresting results. Using 
confidence greatly reduced the number of pairs 

generated. We believe that using h-confidence [11] will 
do an excellent job of removing the noise when k>2 
without losing any interesting results. 

We confidently expect that we will be able to 
combine the techniques developed in this paper with 
these two additions, and that we will be able to 
demonstrate that by doing so we can mine very large 
datasets and extract useful information much more 
efficiently than current techniques. 

We also believe that our counting techniques can be 
used to improve performance whenever PCY fails or 
any Map-Reduce solution generates so many recurring 
output pairs that they overwhelm the hardware 
available to the Map-Reduce mechanism. We look 
forward to using them to address other currently 
intractable problems. 
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