
Mining Frequent Highly-Correlated Item-Pairs at Very Low Support Levels

Ian Sandler, Alex Thomo,
University of Victoria, British Columbia, Canada

iansandl@cs.uvic.ca thomo@cs.uvic.ca

Abstract

The ability to extract frequent pairs from a set of

transactions is one of the fundamental building blocks
of data mining. When the number of items in a given
transaction is relatively small the problem is trivial.
Even when dealing with millions of transactions it is
still trivial if the number of unique items in the
transaction set is small. The problem becomes much
more challenging when we deal with millions of
transactions, each containing hundreds of items that
are part of a set of millions of potential items.
Especially when we are looking for highly correlated
results at extremely low support levels.

For 25 years the Direct Hashing and Pruning Park
Chen Yu (PCY) algorithm has been the principal
technique used when there are billions of potential
pairs that need to be counted. In this paper we propose
a new approach that allows us to take full advantage
of both multi-core and multi-CPU availability which
works in cases where PCY fails, with excellent
performance scaling that continues even when the
number of processors, unique items and items per
transaction are at their highest.

We believe that our approach has much broader
applicability in the field of co-occurrence counting,
and can be used to generate much more interesting
results when mining very large data sets.

1. Introduction

1.1 Overview Of The Problem

An effective way to illustrate our counting problem
is to consider a basket of products being purchased at a
supermarket checkout counter. As they are scanned the
products (items) are recorded in a unique transaction
for that specific customer. Each supermarket stocks
tens of thousands of unique items, each of which has a
unique numeric SKU. Each supermarket chain
generates thousands of these transactions per day for
each busy store.

These transactions can be mined to determine which
pairs of items are likely to be purchased together both
at that store, or any other store in the chain. Some
pairings such as bread and butter happen so often that
they are obvious. Others such as caviar and crackers
occur much less frequently, but when they do occur
they are highly correlated, making them much more
interesting. It is these cases that we are trying to
discover.

Generating the pairs of items from a transaction is
extremely fast. Doing so billions of times and counting
those pairs takes only a few minutes for a typical
processor if the same few thousand unique pairs are
incremented millions of times. The reason why this
problem sometimes takes days to solve is because it
requires a huge amount of effort to access and update
the counters once they no longer conveniently fit into
memory.

To illustrate the problems that arise, and to make the
discussion very concrete, we selected the Webdocs data
set from FIMI 04. This dataset is derived from real-
world data, and is reasonably representative of the sort
of data that needs to be mined. We chose it primarily
because many published papers on frequent item
mining have used this data set, and we wanted our
results to be comparable.

Papers on efficiently mining frequent patterns such
as [7], [8] and [9] imply that this dataset is no longer
the challenge it was when it was first used. But in all
cases that we looked at, the support level was set so
high (7.5% or more) that it meant that very few pairs
were actually generated. Webdocs contains 2.5 million
transactions, 5.25 million unique items, and many items
in the longest transaction. This is a lot of information.

Mining with a 10% support level means we are only
interested in those items that appear at least 250,000
times in the data. Using this support level reveals that
only 122 unique items are frequent enough to be used
for counting pairs. (See Table 2). And none of the
frequent pairs that can be generated from these 122
items are even moderately correlated. (See Table 13).

We are interested in doing much better. Webdocs is
an ideal vehicle for demonstrating the algorithms and

techniques that are needed to extract highly correlated
information from this type of raw data. It has the
following characteristics:

Number of transactions 2,482,485
Number of unique items 5,267,656
Maximum items/transaction 281

Table 1 - Webdocs Statistics

Support Support

%
Surviving

k=1
250,000 10.0 122

25,000 1.0 2,047
2,500 0.1 9,919

250 0.01 47,286
25 0.001 223,282

Table 2 – Surviving k=1 Candidates

For example, as shown in Table 2, when the support

level is set to 0.01%, we need to examine all items that
appear at least 250 times in the data set. In this case the
number of unique items that exceed this support level
is 47,286.

We set ourselves the task of using a support level of

0.001%. This increases the number of surviving
frequent items to 223,282. This support level allows us
to discover the highly correlated pairs that are missed
when the support level is set at a much higher level. It
also guarantees that we will hit the performance
bottlenecks we are interested in exploring.

1.2 Our Contributions

We have analyzed the underlying performance
characteristics and performance bottlenecks associated
with this problem and devised a pair of techniques that
make it easy to discover highly correlated pairs that
only occur a few times. Our techniques work even
when PCY fails and Map-Reduce falters. Furthermore
we are able to generate these results quickly with good
scalability. We believe that these techniques have a
wide applicability to the field of data mining.

During this analysis we discovered that much of the
information in the literature that talks about mining
very large datasets does not adequately clarify the
relationships between raw data size, support, relevance
and the generated output. As stated earlier, none of the
frequent pairs mined from this dataset at a 10% support
level are even moderately correlated.

Our techniques are completely scalable. They work
equally well with single computers, multi-core
computers and networked computers. They also deliver

results in time frames that can be predicted with a
reasonable degree of accuracy.

1.2 Organization

The rest of the paper is as follows: Section 2
presents the preliminaries needed to work on the
problem. Section 3 discusses the challenges faced by
different techniques at very low support levels. Section
4 presents our solutions including an efficient
algorithm for multi-core mining at a support level of
0.001%. Section 5 analyzes the results we obtained and
attempts to draw useful conclusions. Section 6
documents the equipment used to generate our results.
Section 7 suggests future research directions.

2 Preliminaries

Problem definition: Given a support level s,
determine all the interesting pairs that occur in at least s
transactions. A given pair (i, j) is considered to be
interesting if the support for that pair is a reasonable
percentage of the support for either i or j.

2.1 The Apriori Principle

Each transaction of n items generates approximately

n2/2 possible pairs. This means that for large data sets
we can easily end up with hundreds of billions of pairs
that need to be examined. Almost all of which are
uninteresting.

We can use the Apriori [4] principle to eliminate as
many items as possible from the input data before
starting to count pairs. Briefly put a pair will only be
frequent if both its constituent items are also frequent.
This allows us to eliminate all pairs where one or more
of the constituent items are not frequent.

If the support level is set too high very few items
survive, and all the interesting ones are filtered out. If it
is set too low too many pairs will be generated, making
the problem unmanageable. Using our market basket
analogy, we are interested in discovering relationships
like caviar/crackers. To do so we have to mine the data
at a support level that is no higher than the total number
of times that caviar was purchased. In many real-world
cases this is lower than 1%.

2.2 High Confidence Pairs

Our end objective is making it easy to find the high-

confidence pairs like caviar/crackers that only exist at
low support levels. This means that we need to mine
with a suitably low support level and then eliminate

almost all of the results, rather than just generating
those few results that we can probably guess if we are
familiar with the information encoded in the data we
are analyzing.

Working with large datasets and low support levels
produces enormous numbers of results. When we used
a support level of 0.001% on Webdocs we computed
(in Table 4) that we had to generate and count more
than 24 billion pairs to discover that there are more
than 950 million non-zero pairs; with more than 50
million of those pairs being frequent.
For our results to be usable we need to distinguish
which of these 50 million pairs are interesting and
eliminate the rest. Eliminating those results that have a
confidence of less than 95% reduces this 50 million to
about 90K highly correlated pairs.

2.3 The Park Chen Yu (PCY) Algorithm

PCY [1] is the most common method used to

compute frequent pairs from very large datasets. It was
first proposed in 1995, and is still the method of choice
appearing in current textbooks [2].

The item pairs are hashed to (counting) buckets
that are each represented by a single counter (say of 32
bits). A given counter serves several item-pairs, namely
all those that hash to that particular bucket. In the end,
such a counter will hold the sum of frequency counts of
all the item pairs that hashed to this bucket. The set of
all counters is assumed to fit in main memory.

Once all the pairs have been processed, each
counter is represented as a single bit that is true if the
counter is higher than the specified support level. This
shrinks the memory required to represent this
information by a factor of 32. A subsequent pass
through the data only counts those pairs whose hash bit
is set.

This algorithm works really well when most of the
counters are still below the support level once all the
pairs have been counted. For those cases where too
many pairs hash to the same bucket causing a lot of
false positives, this algorithm uses a second and
possibly a third pass with a different hash function to
possibly eliminate false positives. Each pass only
reduces the amount of memory available for
subsequent processing by 3% (one bit instead of a 32
bit counter), so three passes still leave over 90% of the
available memory for counting those pairs that have all
three hash bits set.

This algorithm fails when most of the counters
exceed the support level no matter what hash functions
are used. We argue that this is exactly case for
Webdocs (see Section 3.5).

2.4 The Google Map-Reduce Framework

Map-Reduce [3] is a framework developed by
Google for working on computing problems that can be
solved by distributing subsets of that problem to a large
number of clustered computers and then combining the
results from these subsets. The number of computers
(or nodes) in a cluster varies greatly, ranging from tens
to tens of thousands. It can be readily applied to this
type of problem because the individual transactions are
independent of each other.

There are two main steps required to solve a
problem using the Map-Reduce framework. Map
processes each take a subset of the data (in our case a
unique subset of the transactions) and process that data
outputting key-value (KV) pairs. In our case a given
map process would take each individual transaction and
generate all the potential KV pairs that can be
constructed from that transaction. The key of each KV
would be the item pair (such as bread/butter or
beer/diapers) and the value would be a 1.

Once the map processes have all finished, the Map-
Reduce framework groups all of these generated KVs
and delivers them to a set of reduce processes that
generate the final results. In this case the reduce
processes sum all the output KVs that have the same
key (bread/butter) and outputs a single KV as
bread/butter:1234 (assuming that the key occurred
1234 times).

Map-Reduce uses a lot of hidden functionality. Data
has to be stored and partitioned. The output from the
map processes has to be grouped and delivered to the
reduce processes. The entire process has to be managed
to deliver all the results in a timely manner.

Despite looking simple and attractive Map-Reduce
does not work well for this problem because it
unnecessarily generates hundreds of gigabytes of
intermediary data.

This said, our techniques can in some sense be
considered as Map-Reduce approaches. However they
do not create any significant amount of intermediary
data.

2.5 Optimizing Performance by Eliminating
Bottlenecks

Disk IO is well understood to be a problem for data
mining algorithms. Sequential disk IO is extremely fast.
It is often faster than random main memory access (cf.
[13]). In some circumstances it can even be faster than
writing randomly to memory. On the other hand a
single random disk IO usually takes about 10

milliseconds to complete, during which time the
process often has to stall. During that same amount of
time the computer’s CPU can perform one random disk
IO it can perform about 10 million instructions, so
minimizing random disk IO must be a very successful
strategy no matter how expensive that strategy is in
terms of cpu cycles.

Disk IO happens for two reasons. The first is when
the application explicitly reads or writes data. The
other case is when the program’s memory usage
exceeds the amount of real memory available on that
computer causing it (or some other process) to be
swapped out to disk to free up memory.

Explicit reads and writes are easy to recognize and
can often be minimized or eliminated by careful
coding. The implicit reads and writes caused by paging
are much harder to handle. They are almost always the
difference between algorithms running at the expected
speed or thousands of times slower than would
otherwise be expected.

Both of our counting techniques eliminate all
explicit and implicit random disk IO associated with
the counting process, making run times both scalable
and predictable.

Another performance issue is the effect of CPU
caches on the way that a computation performs. Storing
counters in a hash-tree structure (as documented in
various text books including [12]) causes the program
to jump around in memory as it follows the tree
structure to reach the appropriate counter. It also
causes new counters to be added to the tree at random
intervals and on a random basis. This is not good for
memory cache utilization. The difference between
efficient and inefficient cache utilization is typically
about one order of magnitude. Practical confirmation
of this estimate can be found in [8] that shows a
performance improvement by a factor of 5:1.

3. The Challenge

In order to eliminate the implicit random disk IO
associated with counting we first need to know how
much memory will be needed to store the required
counters. Table 2 shows that when the support level is
set to 0.01% for Webdocs, the number of unique items
that exceed this support level is 47,286. Table 3 shows
the number of potential pairs exceeds 1 billion; and the
minimum amount of memory needed to count these
pairs would be 2.25GB if we were to use exactly 4
bytes per cell to count these pairs. When the support
level is set to 0.001%, this increases the number of
frequent items to 223,282 and the memory requirement
to 50GB.

3.2 Apriori Counting Optimizations

The first and easiest way to reduce the memory

requirement is to rely on the Apriori principle and
perform an initial pass through the data to eliminate all
items whose count fails to meet a predefined minimum
support level. Comparing the different support levels
against the bottom row of Table 3 where no Apriori
reduction is used clearly demonstrates its effectiveness.

After using Apriori to prune the k=1 candidates, a
second inexpensive strategy is to renumber the
surviving items such that the most frequent item is
renumbered to 1, the next most frequent to 2 and so on.
This makes it possible for the data to be written back to
disk without the infrequent items. It also allows the
counts to be stored in a much more compact two-
dimensional array.

3.1 Counting in A Memory Resident Table

In order to make the following discussion concrete,

we need to document that the computers we used to
produce the results each had 4 Xeon cores sharing 6GB
of memory. This gave us three possible processing
configurations: 4 separate processes per computer with
each process using 1.5GB memory, 2 processes with
each one using 3GB memory, and a single process
using all available memory. In each of these cases the
entire memory space could not be used for counters.
Allowances had to be made for the operating system,
disk buffering, program code and variables etc.
Experimentally we were able to determine that this
reduced the amount of memory we could use for
storing counters to 1.25 GB per core.

We calculated Table 3 so we could see how much
memory is needed to count pairs in memory, assuming
that we use Apriori to eliminate infrequent items, and
then use 4 bytes of memory per counter for each
possible k=2 frequent pairs. The table assumes that the
counters are stored in a triangular array of size [F1]

2/2,
where [F1] is the number of surviving singletons.

Support Support

%
Surviving

k=1
Possible

 k=2
GB

250,000 10.0 122 7,442 ~0
25,000 1.0 2,047 2,095,105 0.01

2,500 0.1 9,919 49,193,281 0.79
250 0.01 47,286 1,117,982,898 2.25
25 0.001 223,282 24,927,425,762 50

1 5,267,656 ~13.9*1012
Table 3 – All Possible k=2 Candidates

If we want to use all 4 cores simultaneously we need
to limit memory use per process to be 1.25GB to avoid
implicit disk paging. This means that we can count all
the possible ~50 million pairs for the 0.1% support
level in memory because that only needs 0.2GB. We
can also see that this method fails with a support level
of 0.01% because 1.12 billion possible pairs require
2.25GB memory. It does work if we use only 2
processes. We can also see that using 2 byte counters
instead of 4 byte counters would have just allowed us
to once again use all 4 cores.

3.3 Counting in a Hash Tree

A different strategy has often been used for

counting. Rather than creating an in-memory table that
has one counter for each potential pair, the other
possibility is to only store and increment each unique
pair that is generated from the data set. This will use
less counters because some combinations will not exist
in the input data. It requires using some sort of hash-
tree to store the results. This is the underling counting
technique that has been used over the years by most
data mining algorithms. It is very successful when the
number of non-zero pairs that have to be counted will
fit in memory.

With this approach we have an unpredictable
situation. We have a fixed amount of memory for
storing results and no real knowledge of how many
unique pairs will produce at least one hit. So we have a
process that runs quickly in the beginning, gradually
slows as the tree grows, and then suddenly runs tens of
thousands of times slower or aborts once the amount of
available memory is exceeded.

The only thing we are certain of is that as the
support count is lowered more unique pairs will need
to be counted, and the chances of running out of
memory increase. We also know that this technique
will use the cache inefficiently because elements will
be added to the tree at random.

With this data set and a 1% support level we
determined experimentally that we generate 112,394
frequent unique pairs after applying the Apriori
principle. Assuming that we use 16 bytes to store the
pair (4 bytes per item) plus the counter (4 bytes) plus
the required linkages (4 bytes), this gives us a memory
requirement of 1.6 megabytes. For 0.01% this increases
to approximately 7GB and for a 0.001% support level
we need almost 16 gigabytes just to store our counters.
We see that this method fails for a support level of
0.01% when even 6GB of memory is available.

These observations agree with the intuitive
prediction that all the extra complexity will not help

once the support level is sufficiently low and we are no
longer working with a sparse set of non-zero pairs.

Supt

%
Possible

 k=2
Generated

Pairs
Non Zero

k=2
Frequent

k=2
10.0 7,442 1.1*109 7,381 729
1.0 2.1*106 14.2*109 2*106 112,394
0.1 49.2*106 20.8*109 48.2*106 1.25*106

0.01 1.1*109 23.4*109 437.8*106 8.37*106

0.001 24.9*109 24.5*109 952.4*106 51.1*106

Table 4 – Actual k=2 Frequent Pairs

3.4 Counting Using Map-Reduce

Map-Reduce offers a different way to count the

generated pairs. It relies on a Map process outputting
the generated pairs as a linear stream of KV pairs and
then organizing that stream such that KV pairs that
group together appear together to an associated Reduce
process.

Map-Reduce eliminates the need to store the
generated pairs in memory, removing that restriction no
matter how low we set the support level. Instead of
using memory based counters we generate
approximately 15 bytes per KV pair that are
sequentially (and very quickly) written to a file system.
These pairs then need to be sorted and reduced.

When we are dealing with a support level of 10%
we generate 16GB of KV data and this technique works
nicely. Unfortunately, for a 0.001% support level we
emit about 350GB of KV data. This is far too large a
number. We start with only 1.25GB of raw data and are
only going to produce a few kilobytes of relevant
results. The intermediate disk space requirement (and
its associated disk IO) is very excessive.

3.5 Why the PCY Algorithm Can Fail with
This Dataset at a 0.001% Support Level

The PCY algorithm has problems once support

levels are so low that the number of unique potential
pairs that need to be counted causes many of the
counters to exceed the specified support level.

Also, observe that once someone uses the PCY idea,
holding the exact counters of each item pair has to be
done by using a hash-tree. Using a matrix of counts
would not make sense, as it would defeat the purpose of
the extra PCY filtering. Therefore, PCY suffers from
the same problems as the other approaches using hash-
trees for keeping the item pair counts.

Given our particular dataset it is apparent that for a
support level of 0.001%, PCY has problems when we
only have 1.25GB of memory. Assuming 4 bytes per

counter, 1.25GB memory can store up to 312.5 million
counters. According to Table 4 we have 952.4 million
unique non-zero pairs to count in these 312.5 million
counters, so every counter is very likely to be set by at
least three different pairs. At least 51 million of these
counters will exceed the support level because 51.1
million unique pairs exceed this support level.
Assuming the pairs, which PCY indicates have to be
counted, are subsequently held in a hash tree, (and that
each of these hash tree counters requires 16 bytes) we
can see that this can fail even with multiple hash
passes.

We could guarantee that PCY works by using a
single process that uses all 6GB of memory, but that
does not change the underlying observation.

4. Our Techniques

From a performance viewpoint the problem we are

trying to solve can best be summarized as:
1. Generate results when the number of non-zero
pairs that need to be counted will not fit in memory.
2. Generate these results in a reasonable
predictable time frame.
3. Make effective use of available multi-CPU
multi-core hardware to generate the results, and
have the time taken to produce these results
decrease in a near linear manner as more processors
are added.
We have developed two distinct techniques that will

achieve these goals. One uses all available memory on
a single computer to generate the results. The other
efficiently shares that memory between multiple cores.
Both share many common features.

4.1 Pre-Processing Steps

Webdocs is a 1.5GB file of 2.5 million transactions
that contain our 5.25 million unique items. The first
step is to count the data discovering the number of
occurrences for each unique item. This pass only takes
a couple of minutes, and uses relatively little memory
to compute these occurrences.

Once we have counted the occurrences it is easy to
sort the items and substitute their frequency (FID) for
their item numbers, such that the item with the most
occurrences becomes FID 1, the next most frequent
becomes FID 2 and so on. (Ties are broken arbitrarily).
Infrequent items are eliminated at the same time. This
process happens completely in memory and only takes
a few seconds.

Reading the file a second time and writing it out
again with the substituted FIDs (trimming infrequent

items and dropping empty transactions) takes only a
couple of minutes. Our total pre-processing time is less
than 10 minutes.

Sections 4.2 and 4.4 illustrate our techniques. To
make our explanations easier to understand we have
chosen to document our techniques using square
counting arrays (as opposed to triangular).

4.2 Single Core 0.01% Support Using All 6
Gigabytes of Memory

Our computer has 6GB of memory. Some of that
memory is needed for the operating system and for
other tasks. Assuming that we use 32-bit numbers as
counters it is safe to assume we have sufficient memory
space available (5GB) to store approximately 1.25
billion counters without needing to do any disk I/O.
This means that we can safely create a two-dimensional
square array whose side is 33,000.

Counting now proceeds as follows. We generate all
possible pairs for every row, which as we described
contains only frequent items. For each generated pair
we examine both FIDs. If both are less than 33,000 the
pair is counted in our memory resident table (See
Figure 6). Otherwise the pair is emitted as a KV pair
with a value of 1. Once the process finishes, all the
frequent pairs found in the memory table are emitted as
KV pairs with their values being their counts rather
than 1s. A final pass reads in all the emitted pairs,
aggregates them “a la Map-Reduce”, and eliminates the
infrequent ones.

A support level of 0.1% produces 9,919 frequent
k=1 FIDs. The potential pairs generated will fit in a
square table of size 9,919 x 9,919. We have sufficient
memory to accommodate a table that has a side of
33,000. So for this support level the entire computation
proceeds in memory making it extremely fast. And no
further optimization is needed.

k=1 items 47,286

Total number of KV pairs
generated from webdocs data

23,382,204,891

Pairs counted in memory 22,938,692,793
Pairs emitted during the process

because they could not be
counted in memory

443,512,098

Frequent pairs emitted at the end
of the calculation

307,401,070

Total pairs emitted by process 750,913,168
Percentage pairs emitted because

they did not fit in memory
1.9%

Table 5 – Pairs generated for 0.01% support level
A support level of 0.01% produces 47,286 k=1

FIDS. We once again count pairs that have both FIDS

less than 33,000 in memory. This time we emit KV
pairs when either FID is over 33,000. Because we are
using frequency based item IDs most of the generated
KV pairs are counted in memory. We only need to emit
443 million instead of 23,382 billion KV pairs. This
reduces the amount of data emitted from 350 gigabytes
(which is the amount of data emitted by a simple Map-
Reduce) down to 6.5 gigabytes, allowing us to generate
our results in under 20 minutes.

Figure 6 – Distribution of pairs for 0.01% support.
22.9 Billion KV-pairs are counted in the in-memory
33,000×33,000 matrix of counts. 0.4 Billion KV-pairs
are emitted.

4.3 Single Core, 0.001% Support Using All 6
Gigabytes of Memory

The above technique does not work as well when
we are mining with a 0.001% support level. In this case
Table 7 shows that we are dealing with a square whose
side is 223,282.

k=1 items 223,282

Total number of KV pairs
generated from webdocs data

24,481,791,476

Pairs counted in memory 22,938,692,793
Pairs emitted during the process

because they could not be
counted in memory

1,543,098,683

Frequent pairs emitted at the end
of the calculation

307,401,070

Total pairs emitted by process 1,850,499,753
Percentage pairs emitted because

they did not fit in memory
6.3%

Table 7 – Pairs generated for 0.001% support level

Figure 8 – Distribution of pairs for 0.001% support.
22.9 Billion1 KV-pairs are counted in the in-memory
33,000×33,000 matrix of counts. 1.5 Billion KV-pairs
are emitted.

Only emitting 6.3% of the KV pairs sounds good
until one realizes that this still causes 1.5 billion pairs
to be emitted occupying over 20 gigabytes of disk
space. Although this is 18 times better than a simple
Map-Reduce (which would generate over 360
gigabytes of data), we can do much better.

4.4 Multi Core 0.001% Support Using 100
Cores Belonging to 25 CPUs

Our second technique uses multiple processes to

generate the results. In our illustrative example we use
100 processes to handle a support level of 0.001%.
Because each computer blade has 4 cores and 6
gigabytes of memory we know that each process can
safely use 1 gigabyte of memory without causing any
disk IO. (The rest is reserved for the operating system,
other variables and disk buffers). This means that each
process can safely hold 256 million 32-bit counters in
memory. We know that we are dealing with 223,282
k=1 FIDs. This means that each process can fit into
memory a range of 1,150 values for the first FID of the
pair when combined with all the values for the second
FID of the pair. This 1,150 rows represents 0.5% of the
total number of rows. This means that we can generate
all our results using 200 processes as shown in Table 9.

1This is the same number as for Figure 6, and it is not a coincidence.
The frequency rank of items depends on the dataset, not the support
level used.

Rows �Columns 1 thru 230,000� Process
1-1150 …..256 million counters….. 1

1151-2300 …..256 million counters….. 2
2301-3450 …..256 million counters….. 3

 …..256 million counters….. …
226551-227700 …..256 million counters….. 198
222701-228850 …..256 million counters….. 199
228851-230000 …..256 million counters….. 200
Table 9 – Counting When 200 Cores Are Available

We do not want to use FIDs with this technique

because the process that handled the first few FID
numbers (Process 1 in Table 9) would take a lot longer
to complete. So we need to replace FID numbers with
something more random. Rather than sorting the items
by the number of hits we simply assigned 1 to the first
frequent item, 2 to the next frequent item and so on.
These sequential items (SID)s distributed the
processing adequately as can be seen in Table 11.

If we only have 100 cores available we have to
create a script that processes two different sets of rows
one after the other. Doing things this way ensures that
the second set cannot start running until the first one
completes, and therefore we won’t accidentally set up a
situation where the computer has to page memory.

Rows �Columns 1 thru 230,000� Process

1-1150 …..256 million counters….. 1
1151-2300 …..256 million counters….. 2
2301-3450 …..256 million counters….. 3

 …..256 million counters….. …
226551-227700 …..256 million counters….. 3
222701-228850 …..256 million counters….. 2
228851-230000 …..256 million counters….. 1
Table 10 – Counting When 100 Cores Are Available

Passing through the entire Webdocs data set once

with a Unix wc command takes about 60 seconds.
Running our java program that looks at all the
transactions, generates all the pairs, and counts the
appropriate ones in memory takes an average of 4.5
times as long, with the fastest process taking 211
seconds and the slowest process taking 419 seconds.
The final set of results from the final process completes
less than 12 minutes after the mining starts.

k=1 items 223,282

Total pairs generated from
webdocs data

24,481,791,476

Frequent Pairs 51,053,891
Time taken by fastest pass 211 secs
Time taken by slowest pass 419 secs

Table 11 – Pairs generated for 0.001% support level

Because of the way we are distributing the data we
can be certain that everything will scale reasonably
linearly. For example, using 25 cores belonging to 7
blades, with each process making 4 passes takes 25
minutes. Also, as expected, we didn’t see any
significant differences in performance when we used 25
cores on 25 different blades.

Our processing techniques are completely scalable.

They can already handle much larger problems than
mining Webdocs. The key being that we know how
much memory is available and we use this information
to avoid swapping.

4.5 Filtering Out Unreasonable Results

The 1.25 million frequent pairs generated at a

support level of 0.1% are too many to be useful. To
resolve this problem we need to filter out all the pairs
where the relationship appears to be accidental. Using
confidence meets this need. It only requires a minor
change to the code, and did not affect the amount of
time required to generate results.

Table 12 shows that using this technique reduced
this 1.25 million to 1,511 (approx 1000:1) for the case
where we assume that a frequent pair is interesting only
if either one of its items appears 85% of the time in the
pairs.

Support Frequent

Pairs
25%

Confident
Pairs

50%
Confident

Pairs

80%
Confident

Pairs

10% 729 0 0 0
1% 112,394 3,265 1,351 353

0.1% 1.25*106 11,457 3,732 1,680
0.01% 8.37*106 26,032 13,110 8,949

0.001% 51.1*106 304,658 173,788 118,854

Support Frequent

Pairs
85%

Confident
Pairs

90%
Confident

Pairs

95%
Confident

Pairs

10% 729 0 0 0
1% 112,394 301 118 118

0.1% 1.25*106 1,511 1,170 1,117
0.01% 8.37*106 8,528 7,901 7,600

0.001% 51.1*106 99,219 94,686 90,345

Table 12 – Confident Pairs

5. Interpretation of The Experimental Results

5.1 Support Produces Too Much Noise

It is hard to say what is a reasonable support level

before the results have been produced. It depends on
the data being analyzed and the information we are
attempting to glean from that data. With our techniques
it is possible to produce results really quickly. This
makes it feasible to mine for very low support levels.
Once we have our frequent pairs we can then obtain the
numbers of pairs for multiple confidence levels with a
few seconds worth of processing. As can be seen in
Table 12 above, there are only 304,658 pairs that have
even a 25% confidence level.

When we use what we think is a reasonable support
level of 0.1% for this data set we generated 1.25
million frequent pairs. This was reduced to 1,511 pairs
once we limited our results to those pairs with a
confidence level of at least 85%.

This type of filtering ensures that the reported
results are valuable. It is equally essential when
mining for longer sets of frequent items. We
recommend this use of confidence (or better still h-
confidence [11]) at a moderate level (70-90%) for this
purpose. We understand that doing so will dramatically
change the way we view some of the existing data
mining code. But we also believe that this is necessary
if we want to evaluate how well these algorithms
produce meaningful results.

5.2 Using Map-Reduce Efficiently Is Not
Always Recommendable

Map-Reduce is not a magic solution to all multi-

core problems. We have demonstrated that with a bit of
thought we could reduce the amount of data emitted by
the Map processes by a factor of 20-30. We also
showed that by carefully choosing the exact way the
memory is used we can almost totally eliminate the
Reduce step.

It also turns out that language libraries can cause
lots implicit disk IO as well as burning lots of extra cpu
cycles, and that is something that needs more attention
when using Map-Reduce for simple computations on
large data sets. It is easy to lose the performance gains
that Map-Reduce can deliver by simply making a
wrong choice in programming language when that
language causes unexpected paging.

5.4 Size Is Meaningless Without Support

This research makes it clear that the absolute size of

the data set being evaluated is not a fair representation
of the effort required to mine that data set. For
example, the size of the Webdocs data set is
approximately 1.25 gigabytes, but most of that size is
noise at high support levels.

It is more accurate to state that it is 250 megabytes
when the support level is 10% and 600 megabytes
when the support level is 5%. We suggest that using the
effective size of the data set (obtained after stripping
out all the k=1 infrequent items) is a much better
measure when comparing results. This number is still
inaccurate because the number of potential candidates
generated depends on the square of the number of items
appearing in each transaction, but it is nonetheless a
step forward by making it easier to compare results
among different datasets.

5.5 Other Interesting Observations

One of the supposed weak points of the Apriori

algorithm is that it requires multiple passes through the
data. The timings generated by this paper show that
when mining for low support levels this is irrelevant.
The time to pass sequentially through the data is
insignificant when compared with the time required to
generate and count the candidates.

It would appear that when the Webdocs dataset is
mined at 10% or higher support levels none of the k=2
pairs have even a 25% confidence level. This suggests
that mining this particular dataset at this particular
support level is at best an academic exercise.

6. Equipment And Software Platform Used

6.1 Hardware and Operating System

Summarizing, the results presented in this paper

were generated using a 25 blades of a 42 blade IBM
cluster, where each blade has 6 gigabytes memory and
a quad core Intel Xeon processor rated at 2.33
gigahertz. Each blade has 4 megabytes of L2 cache that
is shared by all 4 cores. To control memory usage we
explicitly limited the amount of memory available to
our computations, causing these programs to crash
rather than page if we used too much memory. We used
Linux as our operating system. This allowed us to use
top and vmstat so that we could carefully monitor

memory usage to ensure that everything worked
properly.

6.2 Choice of Programming Language

Early attempts at coding our algorithms failed to

produce the expected results. We were using Python as
our programming language and discovered that we
were measuring that language’s inability to efficiently
store values in a large linear static array, not the
performance of our algorithms. In fact almost the
whole elapsed time was spent on the single Python
instruction that referenced the correct counter. We
attempted to use different libraries to minimize this
overhead but were eventually forced to give up because
the results were still orders of magnitude slower than
our expectations.

We also experimented with both Disco [5] and
Hadoop [6], but once again had performance and
reliability problems. We eventually abandoned both
these options in favor of a simple multi-process
manager that we wrote ourselves. Normally this would
have been a poor decision, but because none of our
processes took more than a few minutes to complete
handling restarts was unnecessary. And because we
severely limited the size of the intermediate outputs we
didn’t need any of the excellent file management that
these tools offer.

We eventually recoded our algorithms using a
mixture of Jbase (a commercial product ideally suited
to handle the scripting and reporting we needed) and
Java for the computationally intensive tasks. In this
environment our code behaved as predicted. In fact the
Java run time performance significantly exceeded our
expectations, delivering results that were within an
order of magnitude of well-written C code.

7. Future Research Directions

The same techniques outlined in this paper can be

used for finding longer sets of associated items. Doing
so requires solving additional challenges. One problem
not addressed in this paper is the ability to quickly
generate all the potential candidates when dealing with
longer chains of frequent items. This is addressed in
our paper [10], which demonstrates a technique to
quickly perform this task. The algorithm outlined in
that paper is designed so that it can run in parallel on
multiple cores with little or no degradation.

The other major problem mining data at these low
support levels is getting rid of the noise caused by
frequent items generating uninteresting results. Using
confidence greatly reduced the number of pairs

generated. We believe that using h-confidence [11] will
do an excellent job of removing the noise when k>2
without losing any interesting results.

We confidently expect that we will be able to
combine the techniques developed in this paper with
these two additions, and that we will be able to
demonstrate that by doing so we can mine very large
datasets and extract useful information much more
efficiently than current techniques.

We also believe that our counting techniques can be
used to improve performance whenever PCY fails or
any Map-Reduce solution generates so many recurring
output pairs that they overwhelm the hardware
available to the Map-Reduce mechanism. We look
forward to using them to address other currently
intractable problems.

8. References

[1] Jong Soo Park, Ming-Syan Chen, Philip S. Yu: An Effective
Hash Based Algorithm for Mining Association Rules. SIGMOD
Conference 1995: 175-186

[2] Molina G. H., Ullman D. J, Widom J. Database Systems: The
Complete Book. 2nd Ed. Prentice Hall. 2009, Pages 1105-1109

[3] Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data
Processing on Large Clusters. OSDI 2004: 137-150

[4] Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining
Association Rules between Sets of Items in Large Databases.
SIGMOD Conference 1993: 207-216

[5] Disco. http://discoproject.org/

[6] Hadoop. http://hadoop.apache.org/

[7] Gregory Buehrer, Srinivasan Parthasarathy, Amol Ghoting: Out-
of-core frequent pattern mining on a commodity PC. KDD 2006: 86-
95

[8] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy,
Daehyun Kim, Anthony D. Nguyen, Yen-Kuang Chen, Pradeep
Dubey: Cache-conscious Frequent Pattern Mining on a Modern
Processor. VLDB 2005: 577-588

[9] Gregory Buehrer, Srinivasan Parthasarathy, Shirish Tatikonda,
Tahsin M. Kurç, Joel H. Saltz: Toward terabyte pattern mining: an
architecture-conscious solution. PPOPP 2007: 2-12

[10] Sean Chester, Ian Sandler, Alex Thomo: Scalable APRIORI-
Based Frequent Pattern Discovery. CSE (1) 2009: 48-55

[11] Hui Xiong, Pang-Ning Tan, Vipin Kumar: Hyperclique pattern
discovery. Data Min. Knowl. Discov. 13(2): 219-242 (2006)

[12] Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction
to Data Mining Addison-Wesley 2005

[13] Adam Jacobs: The pathologies of big data. Commun. ACM
52(8): 36-44 (2009)

