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Abstract—The weighted bipartite b-matching problem (WBM) plays a significant role in many real-world applications, including
resource allocation, scheduling, Internet advertising, and E-commerce. WBM has been widely studied and efficient matching
algorithms are well known. In this work, we study a novel variant of WBM, called conflict-aware WBM (CA-WBM), where conflict
constraints are present between vertices of the bipartite graph. In CA-WBM, if two vertices (on the same side) are in conflict, they may
not be included in the matching result simultaneously. We present a generalized formulation of CA-WBM in the context of E-commerce,
where diverse matching results are often desired (e.g., movies of different genres and merchants selling products of different
categories). While WBM is efficiently solvable in polynomial-time, we show that CA-WBM is NP-hard. We propose approximate and
randomized algorithms to solve CA-WBM and show that they achieve close to optimal solutions via comprehensive experiments using
synthetic datasets. We derive a theoretical bound on the approximation ratio of a greedy algorithm for CA-WBM and show that it is
scalable on a large-scale real-world dataset.
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1 INTRODUCTION

W EIGHTED bipartite b-matching (WBM) is one of the
fundamental and widely studied problems in com-

binatorial optimization. Given a weighted bipartite graph
G = (U, V,E) with weights W : E → R+, where U , V
and E represent left vertices, right vertices and edges, the
weighted bipartite b-matching problem (WBM) is to find a
subgraph M ⊆ G such that every vertex i in M is incident to
at most b(i) edges (degree constraints). The overall weight
of M is given by w(M) =

∑
e∈M w(e). Depending on

the purpose, WBM tries to maximize or minimize w(M).
Without loss of generality, we focus on the maximization
version of WBM in this paper.

In the current age of information, due to its expres-
sive power, WBM and its variants find important appli-
cations in many areas, such as resource allocation [1], [2],
scheduling [3], Internet advertising [4] and recommender
systems [5]. Consider a problem of recommending items
(e.g., books) to readers as an example. Typically, the rec-
ommender system should satisfy three requirements: (1) de-
gree constraints on the number of recommendations books
are part of within the maximum availability, (2) degree
constraints on the number of recommendations readers
receive before they become overwhelmed, and (3) recom-
mendation of books should be based on reader preferences.
This problem can be naturally modeled by WBM, where
the left-side nodes and right-side nodes of the bipartite
graph denote readers and books, respectively, and each edge
weight represents the preference of a book to a reader.
Note that edge weights can be learned beforehand using
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collaborative filtering algorithms [6], [7], [8]. The goal is
to find a subgraph such that the total weight (preference)
of the matched edges in the subgraph is maximized, while
satisfying all degree constraints.

An implicit assumption of WBM is that any two nodes
on the same side do not interfere with each other, even if
they share similar features. For example, a recommender
system running WBM can recommend several books of the
same subject to a reader, as long as the subject is his/her
favorite and the availability constraints of the books are not
violated. This, however, does not generate desired results
in some real-world scenarios. For book recommendation,
a reader may not want all recommended books from the
same subject but instead may prefer books of diverse sub-
jects so that more interesting topics can be discovered. The
recommender system should allow a reader to constrain the
number of books from the same subject. In other words,
books from the same subject are in “conflict” with each
other when being recommended to a reader, and the number
of such conflicts should be below the reader’s tolerance
threshold. Hence, the interference issue would inevitably
lead to a new challenge in WBM when generating the
matching result. This conflict challenge has not been fully
studied and thus is the focus of this work.

In fact, interference issues are prevalent and can pose
a significant effect on practical applications, especially in
the booming market of E-commerce. Typically, E-commerce
companies (like eBay or Terapeak1) have access to a massive
buyer-seller bipartite graph, which contains all transactional
data. Each edge and its weight represent the monetary
aggregate between a buyer and seller. In order to analyze the

1. Terapeak is an E-commerce company, helping sellers on
eBay or Amazon to measure and boost their sales performance.
http://www.terapeak.ca/
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purchase behavior and match buyers to sellers, companies
often need to identify a highly profitable subgraph, where
most profitable transactions take place. While this problem
can be modeled by WBM, it is worth pointing out that
some matching results may be redundant and not desired
due to buyers (or sellers) with very similar profiles. For
example, it is not desirable to have two buyers in the same
household2 simultaneously matched to a seller who sells
large household items such as TVs and washers. As another
example, a seller may want their buyers to be geographically
distributed in different cities to promote their product in a
broader area. Hence, with a limited number of choices, the
seller needs to limit the number of buyers from the same
city.

In this article, we introduce a new generalization of
WBM, Conflict-Aware Weighted Bipartite b-Matching (CA-
WBM), that can address the conflict challenges mentioned
above. For ease of understanding, we describe CA-WBM in
the context of E-commerce. In this scenario, the input bipar-
tite graph is composed of buyer vertices, seller vertices, and
edges between buyers and sellers. From the point of view
of an E-commerce company, an edge typically associates a
profit weight for each pair of a buyer and a seller. Then
the goal is to maximize the total profit from all potential
transactions between buyers and sellers.

In the simplest form of CA-WBM, we assume that each
buyer and seller has a specific “capacity”. That is, a buyer
cannot be matched to more sellers than his capacity, and a
seller cannot be matched more buyers than he has budget
(capacity) for. The matching result should maximize the
total profitability (sum of recommendation weights), while
respecting the capacity constraints of the buyers and sellers.
It is easy to see that this is an instance of WBM. Next, we
enrich the model in a natural way by allowing the system
to accommodate various matching strategies in terms of
conflict constraints. To capture these constraints, we assume
the buyers (sellers) could be “in conflict” with other buyers
(sellers).

We also study an online version of CA-WBM (online
CA-WBM), where the buyers arrive in an online fashion
and the corresponding edges are revealed when each buyer
arrives. Specifically, online CA-WBM is relevant to Inter-
net advertising [4], including online adwords [9], [10] and
display advertising [11], [12]. Nevertheless, these problems
do not consider conflict between entities (e.g., adwords).
Therefore, online CA-WBM will be valuable in providing
a more flexible service to Internet advertising. For example,
if a bidder expects his/her products to be exposed to a wide
range of adwords, he/she can set conflict constraint based
on similarities between adwords.

In this work, we propose a graph-theoretic model for
CA-WBM and show that CA-WBM is NP-hard. We present
efficient approximate algorithms to solve CA-WBM, which
achieve close to optimal solutions in comprehensive ex-
periments with synthetic and real-world datasets. More
specifically, our contributions are as follows:

1) We initiate the study of natural extensions of classic
weighted bipartite b-matching (WBM). The question

2. Such information could be identified in data, e.g., based on buyers’
mailing address and home phone number.

we address is how to maximize the total weight when
matching vertices are under both degree and conflict
constraints (CA-WBM).

2) We present a general formulation of CA-WBM that
directly models both the degree constraint on each
vertex and conflict relationship between two vertices
on the same side. We model it using semidefinite pro-
gramming (SDP) and integer linear programming (ILP).
To the best of our knowledge, this explicit modelling is
completely new.

3) We prove that CA-WBM is NP-hard and we present
greedy and linear programming (LP) based algorithms
that are scalable and close to optimal. We also provide
a randomized algorithm that solves the online version
of CA-WBM.

4) We provide an extensive experimental evaluation on
synthetic and real-world datasets validating our claims
of scalability and optimality.

The remainder of this paper is organized as follows.
We formally define CA-WBM in Section 2 and prove its
NP-hardness in Section 3. In Section 4, we design different
algorithms to solve CA-WBM using SDP and ILP. We also
propose a greedy algorithm and prove its performance
bound. In Section 5, we study an online version of CA-WBM
and propose a randomized algorithm to solve the online
problem. We bound the competitive ratio of the randomized
algorithm. We present experimental evaluation in Section 6.
Related work is introduced in Section 7. We conclude the
paper in Section 8.

2 CONFLICT-AWARE WEIGHTED BIPARTITE
b-MATCHING (CA-WBM)
To facilitate understanding of CA-WBM, we start by first
studying the simpler, weighted bipartite b-matching (WBM)
problem without considering the conflict between buyers
(sellers). To describe the problem formally, we model the
buyer-seller network as a undirected, bipartite graph G =
〈(B,S), E,W 〉, where B = {b1, b2, . . . , bm} denotes the list
of buyers, S = {s1, s2, . . . , sn} the list of sellers, E ⊆ B×S
the set of edges, and W : E → R+ the weights of the edges.

Fig. 1. WBM. The numbers are degree constraints.

For convenience, we slightly overload the notation and
use an mn-dimensional vector to denote E = [eij ], with
eij = 1 indicating that there is an edge between buyer i and
seller j and eij = 0 otherwise. Similarly, we use a vector
to denote W = [wij ]. If eij = 0, then wij = 0. When the
subscripts are hard to read, as in the next section, we also
use W (i, j) to denote wij .

The weight of the edge between a buyer i ∈ B and a
seller j ∈ S, wij , reflects the profitability value if the buyer
is matched to the seller. In practice, we may pre-process
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the bipartite graph based on various business models. For
instance, we may order the buyers or sellers based on money
spent and earned, recency of buys and sells, etc. In addition,
we may constrain the edges from a buyer to a ranked range
of sellers, so that the buyer is not matched to sellers well
outside of her “tier”. One possible such scenario is that we
may need to match top buyers to top sellers, middle-tier
buyers to middle-tier sellers, and so on, as this maximizes
the chance of making both the buyers and sellers happy.

It is often desirable that only a certain number of buyers
is matched to a seller, since a seller may be overwhelmed
otherwise or because a seller needs to pay for the match.
Similarly, it is not reasonable to match a buyer to a large
number of sellers as the buyer might be annoyed later by
many unsolicited requests. To avoid the problem, a good
matching system should allow us to constrain the number
of matches associated with individual buyers and sellers. In
other words, we need to put degree constraints D : B∪S →
N in the bipartite graph (Figure 1). We represent D with a
(m+ n)-dimensional column vector D = [D(i)]T .

We denote by X = [xij ]
T the mn-dimensional column

vector of 0-1 variables, with xij = 1 indicating buyer i is
matched to seller j and xij = 0 otherwise. Then the degree-
constrained matching problem is to find the set of matches such
that the total profit is maximized under the degree constraints, i.e.,

max
X

WX

s.t. AX(i) ≤ D(i),∀i, 1 ≤ i ≤ m+ n

xij ∈ {0, 1},∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(1)

where matrix A is an (m+ n)×mn matrix defined by

[e11, . . . , e1n]
[e21, . . . , e2n]

. . . [em1, . . . , emn]
[e11, 0, . . . , 0] . . . [em1, 0, . . . , 0]

. . .
. . .

. . .
[0, . . . , 0, e1n] . . . [0, . . . , 0, emn]


.

︸ ︷︷ ︸
(m+n)×mn

(2)

The degree constraints are given by AX(i) ≤ D(i), where
AX(i) denotes the i-th element in (vector) AX and D(i) the
i-th element in D.

It has been shown that the WBM problem (as a bipartite
maximum weight b-matching problem) could be reduced to
the transportation problem in operations research [13], [14],
and as such we can obtain an LP formulation that can be
solved efficiently by modern solvers. Furthermore, note that
matrix A is the incidence matrix of the buyer-seller bipartite
graph, which can be proven to be totally unimodular [15],
[16]. As [14], [17] show, the polyhedron P = {X : AX ≤ D}
is integral, and there is a polynomial time algorithm which
finds an integral optimal solution.

In order to capture the conflict constraint, we now
consider a natural extension of the model above. In the
following, we focus on integrating the conflict between
buyers. Note that the formulation and proposed algorithms
(with little modification) also apply to the case where we
simultaneously consider the conflict on both buyer and
seller sides. We omit the latter to avoid repeated depiction.

In some scenarios, sellers will prefer a diverse list of
buyers that avoids certain redundancies. For example, a
seller might prefer that their list does not include more than
one buyer from each household. Advertising a given mer-
chandise to more than one potential buyer in a household is,
in most cases, unnecessary. Formally, we say that two buyers
are in conflict with each other if matching them to the same seller is
not desirable. We will represent the presence of such conflicts
between two buyers using conflict edges (Figure 2).

We call this problem conflict-aware constrained match-
ing (CA-WBM). The goal is to compute a maximum profit
subgraph satisfying the degree constraints with the additional
requirement that the number of conflict edges within a list of
buyers matched to any particular seller is smaller than a threshold.

Fig. 2. CA-WBM. The numbers are degree constraints and the red edges
represent conflicts.

To describe CA-WBM more precisely, the input to CA-
WBM consists of the following information:

1) An undirected, weighted graph G =
〈(B,S), E ∪ C,W 〉 with E ⊆ B × S, C ⊆ B × B
and weights W : E → R+;

2) Degree constraints D : B ∪ S → N;
3) A conflict threshold t.

The goal in CA-WBM is to compute a maximum weight
subgraph G′ of G, G′ = ((B,S), E′ ∪ C ′,W ), that satisfies
the following two constraints:

1) For any i in B ∪ S, dG′(i) ≤ D(i).
2) For any k in S, |{(i, j)|(i, k), (j, k) ∈ E′, (i, j) ∈ C ′}| ≤

t.
Here, dG′(i) denotes the degree of vertex i in the sub-

graph G′.
It is easy to see that WBM is a special case of CA-WBM.

We next show that the constraints in CA-WBM pose a great
challenge and significantly increase the complexity of the
matching problem.

3 NP-HARDNESS RESULT FOR CA-WBM
In this section, we provide strong evidence that CA-WBM
is highly unlikely to have an efficient (i.e, polynomial time)
algorithm by showing that it is NP-hard.

Theorem 1. CA-WBM is NP-hard.

Proof. We give a polynomial-time reduction from the
NP-hard problem REVENUE MAXIMIZATION IN INTERVAL
SCHEDULING [18], [19], [20].

REVENUE MAXIMIZATION IN INTERVAL SCHEDULING
(RMIS)

Instance: A set M = {m1,m2, . . . ,mt} of t machines
and a set J = {j1, j2, . . . , jn} of n jobs. For each job j in J ,
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we are given three parameters: (1) S(j), the set of machines
on which j can be processed (2) R(j,−), the set of possible
revenues obtained when job j is processed on different
machines (3) I(j), the time interval during which job j
must be processed.

Goal: Find a feasible schedule of a subset of jobs on
the machines that maximizes the total revenue of the jobs
scheduled.

We now describe a reduction from RMIS to CA-WBM.
Given an instance I of the revenue maximization problem,
construct a graph G(I), which is an instance of CA-WBM.
Define G(I) = 〈(J,M), E ∪ C,W 〉 with E ⊆ J × M ,
C ⊆ J × J and weights W : E → R+ as follows.

• E = {(jk,ml)|ml ∈ S(jk)}.
• C = {(jk, jl)|I(jk) ∩ I(jl) 6= ∅}.
• W (jk,ml) = R(jk,ml).
• D(jk) = 1 for all k and D(ml) = n for all l.
• t = 0.
We now explain the reduction above. There is an edge

between job jk and machine ml if ml belongs to S(jk), the
set of machines in which job jk can be processed. There is a
conflict edge between job jk and job jl if their time intervals
for processing overlap. The weight on an edge (jk,ml)
represents the revenue obtained if job jk is processed on
machine ml. Since each job can be assigned to at most one
machine, their degree constraints are set to 1. There is no
constraint on the number of jobs assigned to any machine
and hence their degree constraint is set to n. Finally, there
must be no conflict between two jobs assigned to same
machine. Therefore, t is set to 0.

It can be easily seen that an optimal solution for G(I),
an instance of CA-WBM yields an optimal solution for I, an
instance of RMIS. In other words, a maximum weight sub-
graph of G(I) satisfying the degree constraints and conflict
constraints as described above exactly corresponds to a rev-
enue maximizing schedule in I . Furthermore, we observe
that the reduction above is a polynomial-time reduction.
Therefore we conclude that CA-WBM is NP-hard.

4 ALGORITHMS FOR SOLVING CA-WBM
4.1 A SDP Algorithm for CA-WBM
In the previous section, we showed that CA-WBM is NP-
hard. In this and following sections, we will design efficient
algorithms for CA-WBM that provide high-quality solu-
tions that are close to optimal.

Our first algorithm for CA-WBM is based on a semidef-
inite programming approach. To understand the motivation
for this approach, recall that we described a IP formulation
in Section 2. Using the terminology from Section 2 and 3,
the conflict constraint can be described as follows:∑

(jk,jl)∈C

xkixli ≤ t ∀ i ∈ S (3)

That is, the conflict constraint is quadratic. We use a
single t for illustration purpose. In practice, different sellers
can have different values of t. We will now show how to
formulate CA-WBM as a semidefinite program. Define a

mn × mn symmetric matrix Y = XXT where X is as in
Section 2. The CA-WBM problem can be described as

max Trace(WY)
s.t. Trace(Db

iY) ≤ D(i),∀ i ∈ B

Trace(Ds
iY) ≤ D(i),∀ i ∈ S

Trace(CiY) ≤ t,∀ i ∈ S

Y = XXT � 0

(4)

where W,Db
i ,Ds

i and Ci are suitably defined mn × mn
symmetric matrices described below.

1) W is a diagonal matrix with diagonal weights wij .
2) Db

i is diagonal matrix with a 1 for row indexed by (i, j)
if (i, j) ∈ E and 0 otherwise.

3) Ds
i is diagonal matrix with a 1 for row indexed by (k, i)

if (k, i) ∈ E and 0 otherwise.
4) Finally, Ci is a matrix with entries 1/2 and 0. An entry

indexed by row (j, i) and column (k, i) is equal to 1/2
if (j, i), (k, i) ∈ E and (j, k) ∈ C . It is 0 otherwise.

Our SDP based algorithm for CA-WBM is as follows:
1) Solve the semidefinite program relaxation to obtain op-

timal solution Y. From now on, we refer to Trace(WY)
as the SDP optimal.

2) Using the Cholesky decomposition [21] of Y, obtain the
vectors xij corresponding to Y.

3) Use a two-step rounding procedure, random projec-
tion [22] followed by threshold rounding, to obtain 0, 1
values for xij . The result after this step is referred to as
the SDP with rounding.

In step (1) of our SDP algorithm, the SDP described
above is solved using a generic SDP solver. The output
of step (1) is a semidefinite matrix Y. In step (2) of our
algorithm, we use a well-known fact that any semidefinite
matrix Y can be written as Y = VVT where V is a mn×mn
lower triangular matrix. This decompostion is known as
Cholesky decomposition of Y [21]. The columns of V give
us a vector solution for the variables xij . Thus, the output
of step (2) of our algorithm are mn vectors, one for each
xij . These vectors correspond to the optimal solution of the
SDP. In the last step of our algorithm, we convert the vectors
xij to integral {0, 1} values using a two-step rounding
procedure. In the first step, we convert xij ’s to fractional
values by a random projection [22]. That is, we pick a
random vector x of dimension mn by picking each of its
coordinates from the normal distribution N(0, 1) and define
each xi,j as the length of its projection on to x. Finally, we
sort xij and round each non-zero value to 1 provided doing
so does not violate the degree constraints or the conflict
constraints. Otherwise, we set it to 0.

4.2 ILP Formulation of CA-WBM

Solving the SDP formulation requires large physical mem-
ory to store the mn × mn matrix Y. In practice (e.g., the
eBay purchase graph of a certain category), large values for
m (the number of buyers) and n (the number of sellers)
inevitably restrict the applicability of the SDP approach.
This limitation, however, can be alleviated if we could
model CA-WBM as an integer linear programming (ILP)
problem.
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In order to achieve this goal, we introduce a new 0-1
variable zi,(j,k) to formulate Inequality 3 as a linear con-
straint. For each seller i, zi,(k,l) equals 1 if and only if there
is a conflict edge between two buyers k and l, and both
edge eki and eli are recommended in the graph. Using the
terminology from Sections 2 and 3, this constraint can be
described as follows:

1− xki − xli + zi,(k,l) ≥ 0, ∀ i ∈ S, ∀(k, l) ∈ Ci (5)
xki + xli − 2zi,(k,l) ≥ 0, ∀ i ∈ S, ∀(k, l) ∈ Ci (6)∑
(k,l)∈Ci

zi,(k,l) ≤ t, ∀ i ∈ S (7)

In constraints (5), (6) and (7), Ci is defined as follows:
Ci = {(k, l) ∈ C|(k, i) ∈ E ∧ (l, i) ∈ E}. That is, Ci

represents the set of conflicts within the set of buyers linked
to seller i.

The linear conflict constraints can be easily incorporated
into Problem 1. Let c denote the total number of conflict
constraints with respect to all sellers in the graph. Then
we can obtain a linear programming formulation, where
X = [xij ]

T is a (mn + c)-dimensional column vector of 0-1
variables. In addition, matrix A and vectors W and D can
be changed accordingly.

By eliminating the need to store large dimensional ma-
trices, now we can use an ILP solver to tackle CA-WBM
problems of larger sizes. Since obtaining an integer solution
in CA-WBM is NP-hard, in order to further improve effi-
ciency, we use a rounding procedure after solving the linear
program relaxation. Our LP based algorithm for CA-WBM
is as follows:

1) Solve the linear program relaxation to obtain optimal
solution X .

2) Sort the first mn elements of X from largest to smallest.
We round each non-zero value to 1 provided doing so
does not violate the degree constraints or the conflict
constraints. Otherwise, we set it to 0. The result after
this step is referred to as the LP relaxation with rounding.

4.3 A Greedy Algorithm for CA-WBM
In this section, we describe and study the performance of
a simple greedy algorithm for this problem. This algorithm
has the advantage that it is highly scalable and provides
good quality solutions in practice.

The greedy algorithm, denoted as GREEDY, for CA-
WBM is as follows:

1) Sort all the edges in E by weights from largest to
smallest.

2) To construct the maximum weight subgraph G′, con-
sider every edge in the sorted list. Add this edge to G′

if doing so does not violate any degree constraint or
conflict constraint.

3) Continue until we reach the end of the sorted list.
We will now prove a theoretical guarantee on the perfor-

mance of GREEDY.

Theorem 2. Let d = maxv∈B |{(v, v′)|(v, v′) ∈ C}|. Algo-
rithm GREEDY is a (2 + d)- approximation algorithm.

Proof. We use the concept of a k-extendible system to provide
performance guarantees of a greedy algorithm. Mestre intro-
duced the notion of a k-extendible system in his study of the

performance of the greedy technique as an approximation
algorithm [23].

Definition 1 (k-Extendible System [23]). Let U be a finite
set and F , F ⊆ 2U , be a collection of subsets of U . Set system
(U,F) is called a k-extendible system if it satisfies the following
properties:

1) Downward-closure: If A ⊆ B and B ∈ F , then A ∈ F .
2) Exchange: Let A,B ∈ F with A ⊆ B, and let x ∈ U −B

be such that A ∪ {x} ∈ F . Then there exists Y ⊆ B − A,
|Y | ≤ k, such that (B − Y )∪ {x} ∈ F . In other words, let
us start with any choice of two sets A and B such that B is
an extension of A. Suppose that there is an element x such
that the set A with x added to it also belongs to F . Then
we will be able to find a subset Y inside B of size at most
k such that if we remove the elements of Y from B and add
the element x to the resulting set, it will also belong to the
collection F .

Informally, Mestre showed that if the set of all feasible
solutions forms a k-extendible system, algorithm GREEDY
gives a k-approximation algorithm. That is, on any instance,
the solution output by GREEDY differs from the optimal
solution by a multiplicative factor of at most k. We now
state his result more formally.

Theorem 3 (Mestre [23]). Let (U,F ) be a k-extendible system
for some k. Let W : U → IR+ be a positive weight function
on U . The greedy algorithm gives a k-approximation algorithm
for the optimization problem that asks to determine max

F∈F
W (F )

where W (F ) =
∑
s∈F

W (s) for any F ∈ F .

To apply this result to our problem, we will check that
the set of all feasible solutions to CA-WBM forms a (2 +
d)-extendible system. For the CA-WBM problem, U = E
and F be the set of all subgraphs of G satisfying the degree
and conflict constraints. Then it is easy to see that (U,F) is
downward closed. That is, removing an edge from a feasible
solution H will always result in be a feasible solution as this
will not cause any violation of constraints.

For the exchange property, consider the case when a
new edge e = (u, v), u ∈ B and v ∈ S, is added to a
feasible solution H . We make two observations: (1) Adding
e could result in violation of degree constraint at u and
v. However, this can be rectified by removing two other
edges, one incident on u and other incident on v; (2) Adding
e could result in a violation of the conflict constraint at
v. Rectifying this could require removing at most d edges
where d = maxv∈B |{(v, v′)|(v, v′) ∈ C}|. Therefore, we
obtain a (2 + d)-extendible system.

We remark that this analysis is worst-case. In practice,
GREEDY shows far superior performance, as demonstrated
in our later test with real-world datasets.

5 ONLINE CA-WBM AND A RANDOMIZED ALGO-
RITHM

In real-world scenarios, we may not know all buyers/sellers
in advance. In online business, the set of sellers is relatively
stable compared to the set of buyers. As such, we mainly
focus on one typical problem where new buyers join the
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system as time goes. Other variations of the problem, e.g.,
both new buyers and new sellers joining the system, could
be studied with the idea presented in this section, but their
analysis remains challenging.

In the online version of CA-WBM, an algorithm for
the problem only knows the set S when it starts, and the
sequence of vertices b1, b2, ..., bm arrives online one by one.
When a vertex bi ∈ B arrives, all edges incident to bi, as
well as their weights, and conflict edges associated with
other buyer vertices which arrived earlier, are revealed. The
algorithm should immediately make recommendation to bi
and cannot change the recommendation at a later time.

Ting and Xiang [24] proposed a near optimal random-
ized algorithm for online bipartite maximum weighted b-
matching. According to their definition, while each fixed
vertex can be matched to at most b arrival vertices, each
arrival vertex can be matched to only one fixed vertex. We
extend their algorithm and analysis by incorporating the
conflict constraint and allowing the degree constraint of
each arrival vertex to be larger than 1.

5.1 Assumptions and Settings

5.1.1 Seller Vertex

Denote the degree constraint of a seller s by D(s) and we
assume D(s) ≥ 1. To ease the analysis, we make D(s)
copies of each seller vertex s and form them as a group.
An example is shown in Figure 3. In addition, recall that
in CA-WBM, the number of conflict edges within a list of
buyers matched to any particular seller is smaller than a
threshold t.

Fig. 3. An example: copies of a seller node s1. (b1, ..., b6) are adjacent
buyer nodes of s1. Assume that the degree constraint of s1 is 6 and the
conflict threshold t is 0. Each copy of s1 can be matched to only one
buyer node. The 6 copies as a whole cannot be matched to any conflict
pair of buyers.

5.1.2 Buyer Vertex

Let D(b) denote the degree constraint of a buyer vertex b.
In the following, we first study the special case where each
buyer can be matched to only one seller, i.e., the degree
constraint of each buyer vertex is 1. Later, we will extend
our result to the general case where the degree constraint of
each buyer is more than one (D(b) > 1).

5.1.3 Edge Weight

In addition to the set S, we assume that the maximum
weight of edges (wmax) can be estimated and is known to
the algorithm. In the buyer to seller matching, this is a
reasonable assumption since the system can estimate the
maximum amount of money based on transaction records
from buyers and sellers.

5.2 The Randomized Algorithm for D(b) = 1

In this special case, the degree constraint of each buyer
vertex is 1. Inspired by the algorithm in [24], we propose
a randomized algorithm for online CA-WBM, Randomized-
CA-WBM, that takes the constraint on conflicts into account.

Algorithm 1: Randomized-CA-WBM
Input: A seller set S, the maximum edge weight wmax

Output: Generate buyer to seller recommendation (the
matched edge) on the fly

1 Let g = dln(1 +wmax)e, choose an integer k uniformly
from {0, 1, 2, ..., g − 1};

2 Set τ = ek ;
3 while a new vertex b ∈ B arrives do
4 T = {ŝ | ŝ is a copy vertex of s, which is a seller

incident to b in S and w((s, b)) ≥ τ};
5 if T = ∅ then
6 leave b unmatched forever;

7 else
8 match b to an arbitrary vertex in T , if doing so

does not violate its conflict constraint (When
T 6= ∅, a vertex b may not be matched to any
vertex due to the conflict constraint.)

The performance of an online algorithm is often anal-
ysed with competitive analysis, proposed by Sleator and
Tarjan [25]. In our weight maximization problem, let A
denote a randomized online algorithm, let σ denote the
arrival sequence, and let E[w(A(σ)] be the expected solu-
tion output by A when processing the arrival sequence σ.
Let w(OPT (σ)) denote the output of the optimal offline
algorithm OPT when processing σ. We say that a random-
ized online algorithm A is R-competitive, if the ratio of
E[w(A(σ)] to w(OPT (σ)) is at least 1/R,

E[w(A(σ)]

w(OPT (σ))
≥ 1

R

for all arrival sequences σ. The smallest such R is called
the competitive ratio of A. To evaluate Randomized-CA-
WBM, we compare its performance to that of the optimal
offline algorithm. Theorem 4 gives the upper bound of the
competitive ratio of Randomized-CA-WBM.

Theorem 4. Randomized-CA-WBM achieves a competitive
ratio of (α+1)edln(1+wmax)e, where α = max(d1−1, d2), and
d1 = maxs∈S D(s) and d2 = maxv∈B |{(v, v′)|(v, v′) ∈ C}|.

In order to prove Theorem 4, we extend and adapt the
analysis in [24] so that it applies to Algorithm 1. Let M
denote the set of edges output by Randomized-CA-WBM
for the graph G = 〈(S,B), E ∪ C,W 〉 with any arrival
sequence on B, and let S(M) = {s ∈ S | ∃ b s.t.(s, b) ∈
M} be the set of seller ends of the edges in M . Let
w(M) =

∑
(s,b)∈M w((s, b)) be the total weight of edges

in M , where w((s, b)) is the weight of the edge (s, b). For
any i ≥ 0, let M≥ei be the result if the threshold τ is ei.
Then the expectation of w(M) for any arrival sequence is
E[w(M)] =

∑
0≤i≤g−1 w(M≥ei)

1
g .
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Denote O as the optimal maximum weight subgraph of
G. Let O[ei,ei+1) = {x ∈ O|w(x) ∈ [ei, ei+1)} be the set of
edges in O, with each edge’s weight w(x) ∈ [ei, ei+1).

Lemma 1. ∀i ∈ {0, 1, ..., g−1}, |S(O[ei,ei+1))−S(M≥ei)| ≤
α |S(M≥ei)|, where α = max(d1 − 1, d2), and d1 =
maxs∈S D(s) and d2 = maxv∈B |{(v, v′)|(v, v′) ∈ C}|.

Proof. Consider a copy vertex ŝ of any seller s, and ŝ ∈
S(O[ei,ei+1)) − S(M≥ei). Note that ŝ ∈ S(O[ei,ei+1)) but
ŝ 6∈ S(M≥ei). The refusal of matching ŝ to a valid buyer
vertex b (since w((ŝ, b)) ≥ ei) in the result output by
Randomized-CA-WBM suggests two possible cases,

1) b is matched to another ŝ′ ∈ S(M≥ei)
2) b is unmatched due to the conflict constraint

For every vertex ŝ ∈ S(O[ei,ei+1))− S(M≥ei) of the first
case, each of them can be mapped to a unique vertex ŝ′ ∈
S(M≥ei).

For the second case, we can analyze the matching result
of the worst case for a certain seller s1, as shown in Figure 4.

Fig. 4. The worst case: if one of the copies is matched to a buyer, none
of the rest can be matched due to the conflict threshold (which is 0 in
the worst case). b5 arrives first and it is in conflict with other buyers.

Let degrees1 be the degree constraint of s1 and
conflict(s1,b) be the largest possible number of conflict
edges associated with any s1’s neighboring buyer node. For
example, in Figure 4, degrees1 = 6 and conflict(s1,b) = 5
(b5 is in conflict with 5 buyer nodes).

For a seller s1, if (degrees1 − 1) ≤ conflict(s1,b), the
largest possible number of unmatched copies is (degrees1 −
1); otherwise, the number is (conflict(s1,b)).

If we consider the case when d1 = maxs∈S D(s) and
d2 = maxv∈B |{(v, v′)|(v, v′) ∈ C}| are known ahead
of time, up to max(d1 − 1, d2) vertices in S(O[ei,ei+1)) −
S(M≥ei) can be mapped to a unique vertex s′ ∈ S(M≥ei);
then we have the lemma.

We remark that this upper bound is tight. For example,
in the worst case shown in Figure 4, d1 = 6 and d2 = 5.
Suppose that in the optimal solution, b5 is not matched to
s1, then all other buyer vertices are able to be matched.
Thus, |S(O[ei,ei+1)) − S(M≥ei)| = 5, |S(M≥ei)| = 1, and
max(d1 − 1, d2) = 5. In addition, if the conflict threshold
t becomes larger than 0, more copies of s1 will be allowed
to be matched to buyer vertices. Then the number of un-
matched copies is less than max(d1 − 1, d2). Therefore, the
upper bound still holds.

Lemma 2. ∀i ∈ {0, 1, ..., g − 1}, w(M≥ei) ≥
1

(α+1)ew(O[ei,ei+1)), where α = max(d1 − 1, d2).

Proof. Since each copy (ŝ) of any seller vertex s can be
matched to only one buyer vertex b, the number of matched

seller copies is equal to the number of matched edges. By
Lemma 1, for any i ∈ {0, 1, ..., g − 1}, we have

|O[ei,ei+1)| = |S(O[ei,ei+1))|
= |S(O[ei,ei+1)) ∩ S(M≥ei)|+

|S(O[ei,ei+1))− S(M≥ei)|
≤ (max(d1 − 1, d2) + 1)|S(M≥ei)|
= (max(d1 − 1, d2) + 1)|M≥ei |

then

w(M≥ei) ≥ ei|M≥ei | ≥
ei

max(d1 − 1, d2) + 1
|O[ei,ei+1)|

≥ 1

(max(d1 − 1, d2) + 1)e
w(O[ei,ei+1))

the lemma follows.

Now, we can prove Theorem 4 using Lemma 2.

Proof.

E[w(M)] =
∑

0≤i≤g−1
w(M≥ei)

1

g

≥ 1

(α+ 1)eg

∑
0≤i≤g−1

w(O[ei,ei+1))

=
1

(α+ 1)eg
w(O).

5.3 The Randomized Algorithm for D(b) ≥ 1

In general, each buyer vertex can be matched to more
than one seller. By making copies of each buyer vertex
upon arrival, Algorithm 1 for D(b) = 1 can be shown to
adapt well with little modification. Let D(b1) denote the
degree constraint of a buyer vertex b1. Upon arrival of
this buyer, the algorithm immediately makes D(b1) copies,
(b1,1, ..., b1,D(b)). Instead of grouping the copies, the algo-
rithm considers one copy at a time. We require that each
buyer copy can be matched to at most one seller, and two
copies of the same buyer cannot be matched to the same
seller. Since the input of CA-WBM remain the same (i.e., a
set of sellers S and the maximum edge weight wmax), the
theoretical analysis also applies.

5.4 The Lower Bound on Competitive Ratio

Ting et al. [24] proved that for the online maximum
weighted b-matching problem, no randomized algorithm
can be better than dlog2(wmax+1)e+1

2 -competitive. Since their
problem, online maximum weighted b-matching problem, is
a special case of our problem, we get the same lower bound
as in [24] showing that the performance of our algorithm,
Randomized CA-WBM, is near optimal.

Theorem 5. For online CA-WBM, no randomized algorithm can
achieve a competitive ratio better than dlog2(wmax+1)e+1

2 .
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6 EXPERIMENTAL EVALUATION

In this section, our main focus is to illustrate the proposed
algorithms’ optimality and scalability for CA-WBM and
online CA-WBM. Specifically,

• CA-WBM. Since CA-WBM is proven to be NP-hard,
we mainly focus on the performance of the proposed
approximate algorithms. For the SDP formulation, we
evaluate its performance by comparing the optimal
solution and the solution obtained by the rounding
procedure for several combinations of degree and con-
flict constraints. For the ILP formulation, we perform
experiments to compare the integral solution with the
result of the linear programming (LP) relaxation with
rounding on much larger graphs. Finally, we demon-
strate the scalability of our greedy algorithm.

• Online CA-WBM. We evaluate the proposed random-
ized algorithm by repeating experiments for different
random arrival sequences. We calculate the competitive
ratio for each run and compare the average behavior to
the upper bound.

We conducted comprehensive experiments with eBay’s
transactional data provided by Terapeak. The original data
consists of three-month transactions across all categories of
eBay Canada and eBay US in 2013. We used the data of a
specific category (Cell phones and Accessories) from both
eBay Canada and eBay US. In order to test the algorithms
on datasets of different scales, we created three datasets for
evaluation: a small-scale synthetic dataset (eBay Canada),
a moderate-scale synthetic dataset (eBay Canada), and a
large-scale real-world dataset (eBay US).

The datasets of eBay Canada are called “synthetic” be-
cause we changed the original graph structure with an
imputation step to generate bipartite graphs of different
sizes. The details about how we created synthetic datasets
will be explained in Sections 6.1, 6.1.1 and 6.1.2. The real-
world eBay US dataset contains purchase information of
transactions between buyers and sellers in the category of
cell phones and accessories. Note that even though we
used data from Terapeak, similar transaction data can also
be collected via the eBay API3. The basic information of each
dataset is summarized in Table 1.

Experiments with the small-scale and moderate-scale
datasets were run on a 64-bit Ubuntu 12.04 desktop of
3.40GHz * 8 Intel Core i7 CPU and 3.8 GB memory. Ex-
periments with the large-scale dataset were run on a similar
desktop with 12 GB memory.

6.1 CA-WBM
To create synthetic datasets for small-scale and moderate-
scale experiments, we use eBay Canada data and firstly
sort buyers, as well as sellers, by the total monetary pur-
chases and total profits, respectively. Adding edges between
sorted buyers and sellers, we can create bipartite graphs
of different density settings. In the experiments, edges are
generated in a manner that each seller has the same number
of connected buyers. For example, if the density is set to
0.5%, each seller will be connected to roughly 90 buyers
(calculated from the synthetic-moderate data in Table 1).

3. https://go.developer.ebay.com/

The first seller (top ranked) is connected with the first 90
buyers (from 1 to 90), and the second seller is connected
with buyers from 11 to 100, and so on. The weight of an
edge is the sum of the buyer’s total monetary purchases
(on all sellers within the category) and the seller’s total
profits (from all buyers within the category). Of course,
any monotone weight function can be used. For each buyer
(seller) in the bipartite graph, the degree constraint ratio is
the proportion of the maximum number of matched sellers
(buyers) among all candidates. Every node (buyer or seller)
in the experiment has the same degree constraint ratio.

We also introduce conflict edges between pairs of buyers.
The requirement could be set by sellers who do not want
to be recommended many buyers that are in conflict with
each other, e.g., buyers who share similar features such as
the same address. By limiting the number of conflicting
buyers, we could promote diversity of the matching results
for sellers.

In the following experiments, we randomly create con-
flicts between buyers according to different conflict pair
ratios. This ratio is the number of buyer pairs in conflict
divided by the total number of buyer pairs.

6.1.1 CA-WBM on Small-scale Synthetic Datasets
As discussed in Section 2, the SDP formulation of CA-WBM
can be solved by a SDP solver plus a rounding procedure.
We use SDPT3 [26], [27] as the SDP solver. For ILP, we use a
fast linear programming (LP) solver, Gurobi4 for Matlab, to
solve CA-WBM at different scales.

The applicability of the SDP approach for CA-WBM
severely suffers from the limitation of physical memory, i.e.,
the need to store a large-dimensional matrix [28]. In the
real-world scenario, the dimension of the matrix can easily
reach hundreds of thousands or more, which is beyond the
capacity of a stand-alone machine. Due to this reason, we
can only test the performance of the SDP approach in small-
scale datasets.

We create a subgraph of small size consisting of top 5
sellers and top 26 buyers (ranked by money). Each seller is
connected with 10 buyers so that each buyer can be assigned
to multiple sellers. Specifically, the first seller is connected
with buyers from 1 to 10, the second seller is connected with
buyers from 5 to 14, and so on. We use two types of edge
weight, money and node rank. Money weight is computed
in the same way described earlier, i.e., the sum of the buyer’s
total monetary purchases (on all sellers within the category)
and the seller’s total profits (from all buyers within the
category). Of course, any monotone weight function can
be used. Rank weight equals the multiplication of a big
constant (the total number of buyer and seller nodes in the
entire graph, 20, 626 in our case) and the reciprocal of the
sum of the buyer’s rank and the seller’s rank.

We create different number of conflict buyer pairs
by randomly sampling the number of buyer pairs with
the following percentages of total possible buyer pairs,
{5%, 10%, 15%, 20%}. We set different degree constraint ra-
tios for each node, {20%, 30%, 40%, 50%, 60%}. In addition,
we use a constant (“1”) for each seller’s conflict constraint,
which means each seller can at most accept one conflict

4. http://www.gurobi.com/

https://go.developer.ebay.com/
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TABLE 1
Basic Information of Synthetic and Real-world Datasets

synthetic-small synthetic-moderate eBay US
Algorithms tested SDP optimal, SDP with rounding, ILP, GREEDY ILP, LP with rounding, GREEDY GREEDY
Number of buyers 26 18, 742 5, 751, 334
Number of sellers 5 1, 884 126, 101
Number of edges 50 56, 520 11, 387, 517
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Fig. 5. Money solution of different conflict pair ratios. When degree constraint ratio and conflict pair ratio are both low, GREEDY shows close to
optimal solutions while SDP with rounding is weaker. Values of each bar are actual solutions. All values and running times can be found in Figure 5
of the supplementary material of this paper.

buyer pair. We use this constant to amplify the impact of
conflict constraint on the small-scale subgraph. For SDP
with rounding, we run the randomized rounding procedure
20 times and take the best solution.

Figure 5 and Figure 6 depict the comparison of different
approaches, including SDP based approaches (Section 4.1),
ILP (Section 4.2), and GREEDY (Section 4.3), for the money
weight and rank weight, respectively. The result obtained
by ILP is the integral optimal.

In Figure 5, we observe that regardless of conflict pair
ratio, solutions of the different methods are very similar
when degree constraint ratio is smaller than 60%, with
SDP with rounding being slightly weaker than others. The
reason is that when the degree constraint is tight, the conflict
constraint of each seller is less likely to be activated, i.e.,
chances are rare for multiple conflict buyers to be matched
to a seller. The difference arises when the degree constraint
ratio and the conflict pair ratio are both weak and the higher
conflict pair ratio results in larger performance drop for both
SDP with rounding and GREEDY (e.g., comparing the sets
of bars of 60% degree constraint ratio in (c) and (d)).

Figure 6 shows a similar performance change trend

for the approaches. For example, the solution difference
becomes larger when degree constraints are weaker and the
performance of SDP with rounding and GREEDY gradually
decreases as the conflict pair ratio increases. Meanwhile, we
also observe that the performance of GREEDY is always
superior to that of SDP with rounding.

We also observe that both SDP with rounding and
GREEDY achieve close to optimal solutions (compared to
the result of ILP). Specifically in the experiments, GREEDY
exhibits a superior performance compared to the theoretical
analysis.

6.1.2 CA-WBM on Moderate-scale Synthetic Datasets
ILP formulation enables us to take full advantage of the
LP solver (Gurobi) to solve CA-WBM problems with larger
sizes. In this section, we perform moderate-scale experi-
ments to compare solutions of different methods, i.e., ILP
(Section 4.2), LP relaxation with rounding (Section 4.2) and
GREEDY (Section 4.3).

We create a 0.16%-density bipartite graph using the
same method described in Section 6.1. Note that the den-
sity of the corresponding real-world buyer-seller graph is
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Fig. 6. Rank solution of different conflict pair ratios. GREEDY achieves close to optimal performance in all cases. The solutions obtained by SDP
with rounding are slightly worse compared to GREEDY. Values of each bar are actual solutions. All values and running times can be found in Figure
5 of the supplementary material of this paper.

0.016%. The full graph consists of 18742 buyers, 1884 sellers
and 56520 edges. We also extract three subsets of different
sizes from the full graph, i.e., using 25%, 50% and 75% of
the total number of edges (the number of buyer and seller
nodes decreases accordingly). The degree constraint ratio,
conflict pair ratio are 50% and 10%, respectively. The conflict
threshold t (refer to Section 2) for each seller is set to be 50%
of the total number of conflicting buyer pairs associated
to the seller. Figure 7 shows the solution comparison of
different methods on different datasets.

Figure 7 shows very promising results for LP relaxation
with rounding and GREEDY algorithms on both money
weights and rank weights; they are only slightly worse
than the optimal integral solution obtained by ILP. Com-
paring to the SDP experiments, this experiment also verifies
the effectiveness of both LP relaxation with rounding and
GREEDY on moderate datasets because the graph we use in
this section is considerably larger than the one used for SDP
experiments. The density (0.16%) is also 10 times larger than
the corresponding real-world buyer-seller graph (0.016%).
Therefore, our ILP formulation improves the scalability of
solving moderate-scale CA-WBM problems.

6.1.3 CA-WBM on Large-scale Real-world Dataset
When the size of the graph grows larger, however, the ILP
formulation and the corresponding LP relaxation become
untameable with existing ILP/LP solvers due to the enor-
mous number of variables (as shown in Table 2) and pro-
hibitive computational requirement. In this case, GREEDY
shows its most important advantage that it scales very well

when applied to even larger datasets. We run GREEDY on
the large-scale eBay US dataset, which contains 5, 751, 334
buyers, 126, 101 sellers and 11, 387, 517 edges. The weight
of edge between a buyer and a seller represents the total
amount of money spent by the buyer on this seller. To
show its scalability as graph size increases, we extract three
subsets of different sizes from the full graph, i.e., using
25%, 50% and 75% of the total number of edges. The
degree constraint ratio, conflict pair ratio are 20% and 1%,
respectively. A larger conflict pair ratio results in more z
variables. The conflict threshold t (refer to Section 2) for
each seller is set to be 20% of the total number of conflicting
buyer pairs associated to the seller. Table 3 summarizes the
statistical information of each subset. The running time of
GREEDY for each of them is shown in Figure 8.

TABLE 2
Problem Size of LP Formulation for Each Subset of eBay US

25% 50% 75% 100%
# constraints 6, 022, 924 6, 860, 587 8, 488, 620 10, 043, 227
# variables 2, 935, 592 6, 183, 430 9, 843, 523 13, 467, 108

# z variables 88, 712 489, 671 1, 302, 885 2, 079, 591
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Fig. 7. ILP experiments of CA-WBM on moderate-scale datasets. Both
LP relaxation with rounding and GREEDY achieve close to optimal
solutions. Values of each bar are actual solutions. All values and running
times can be found in Figure 6 of the supplementary material of this
paper.

TABLE 3
Basic Information of Three Subsets of eBay US

25% 50% 75% 100%
# buyers 1, 574, 114 2, 988, 717 4, 300, 322 5, 751, 334
# sellers 66, 751 90, 925 109, 511 126, 101
# edges 2, 846, 880 5, 693, 759 8, 540, 638 11, 387, 517
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Fig. 8. Greedy algorithm on large-scale datasets showing its scalability.

In Figure 8, the running time increases nearly linearly,
and it only requires less than one hour to get a solution
using a single desktop computer when the number of edges
is considerably as large as 11, 387, 517.

6.2 Online CA-WBM
We use the same 0.16%-density bipartite graph as in Sec-
tion 6.1.2 and we retain all edges (full size). The settings
for degree constraint ratio, conflict pair ratio and conflict
threshold t also remain the same. We repeat 10, 000 tests for
money weight and rank weight, respectively. In each run,
we randomly generate the arrival sequence for buyers and
we compute its competitive ratio after it finishes. Figure 9
shows the box plot of competitive ratios for money and rank
weight. In both cases, the majority of competitive ratios are
located under 4. The average competitive ratio out of 10000

tests is 3.25 for money weight, and 3.63 for rank weight,
respectively. Therefore, on average, the online algorithm
indeed shows promising performance.
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Fig. 9. Competitive ratios of 10000 runs for Alg. 1. For money weight,
first quartile, median and third quartile are 1.047, 1.067 and 3.012,
respectively. For rank weight, the values are 1.14, 1.296 and 3.068,
respectively.

7 RELATED WORK

CA-WBM is a non-trivial extension of the classical weighted
bipartite b-matching (WBM), a fundamental problem in
computer science. The broader applicability of CA-WBM
and the difficulties of solving the problem are discussed in
the supplementary material of this paper.

WBM finds applications in different scientific fields, in-
cluding resource allocation [1], [2], scheduling [3], Internet
advertising [4], [9], [10], [12], [29] and recommender sys-
tems [5], [30]. In addition, weighted b-matching in general
graphs has been shown to be useful for a wide range of
machine learning tasks, including classification [31], [32],
structured prediction models [33], spectral clustering [34],
graph embedding [35], semi-supervised learning [36], and
manifold learning [37].

Since WBM can be reduced to the transportation prob-
lem (or the maximum flow problem) in operations re-
search [13], [14], it can be solved in polynomial time by
a number of classical algorithms. Denoting the number of
vertices as n and the number of edges as m, WBM can
solved in O(m

√
n) time using Dinic’s algorithm [38], [39].

Similarly, Hopcroft-Karp algorithm [40] finds a maximum
matching in bipartite graphs in O(n2.5) time.

Approximation algorithms for WBM also exist to im-
prove the efficiency on large-scale real-world datasets,
which often have millions of vertices and edges. In a cen-
tralized setting, Mestre [41] showed that a greedy algorithm
can achieve 2-approximation in O(mlogn) time. The author
also provided two linear time approximation algorithms:
a 2-approximation algorithm that runs in O(bm) time and
a ( 23 − ε)-approximation algorithm that runs in expected
O(bmlog 1

ε ) time. In a distributed setting, Hoepman [42]
showed that the greedy algorithm can be easily distributed
and achieves 2-approximation in O(m) time. Morales et
al. [43] showed how to implement the similar greedy al-
gorithm in MapReduce paradigm. None of the above al-
gorithms includes conflict constraints. Recently, Manshadi
et al. [44] modelled the generalized matching problem as
linear program and proposed a distributed algorithm to
cope with large-scale datasets. The algorithm allows for a
small violation of lower- and upper-bound constraints in the
optimization. Since their focus was on the scalability issue
of linear program, they did not consider and analyze the
impact of conflict constraints either.
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From the point of view of practical applications, CA-
WBM is related to the task of constraint-based recommen-
dation ( [45], [46], [47], [48], [49], [50], [51]). The first three
works considered constraints on item features (attributes)
and user preference relaxation [47], thus they did not study
the same type of constraints as we do. The rest of works
are more closely related to our problem but they did
not consider conflict constraints either. Karimzadehgan et
al. [48], [49], [52] studied the problem of optimizing the
review assignments of scientific papers. They employed
constraints on the quota of papers each reviewer is as-
signed. However, differently from our approach, in their
optimization setup, matching of reviewers with a paper was
done based on matching of multiple aspects of expertise.
Xie, Lakshmanan, and Wood in [50] studied the problem of
composite recommendations, where each recommendation
comprises a set of items. They also considered constraints
including the number of items that can be recommended to
a user. Their objective, however, was to minimize the cost
of a recommended set of items when each item has a price
to be paid. Parameswaran, Venetis, and Garcia-Molina in
[51] studied the problem of course recommendations with
course requirement constraints. Similarly as [50], the goal
of [51] was to come up with set recommendations. However,
the challenge they addressed was the modeling of complex
academic requirements (e.g., take 2 out of a set of 5 math
courses to meet the degree requirement). Such constraints
are different from those that we consider in this paper.
Diversity is also a relevant topic in recommender systems.
Adomavicius and Kwon [53] proposed a number of different
ranking approaches for improving recommendation diver-
sity. Their approach was mostly based on item popularity
and they focused on controlling accuracy-diversity trade-
off. They did not consider the conflict constraints between
similar items.

CA-WBM is also related to graph-based recommenda-
tions, such as [54], [55], [56]. Guan et al. [54] studied re-
source recommendation based on tagging data. The authors
proposed a graph-based representation learning algorithm
to investigate the relationship between users, tags and doc-
uments. Zhao et al. [55] tackled the problem of personalized
tag recommendation. They modelled the complex relation-
ships in tagging data as a heterogeneous graph. A novel
ranking algorithmic framework was proposed to deal with
multi-type interrelated objects. Guan et al. [56] analyzed
members’ web surfing data and utilized a probabilistic
graphical model to investigate fine-grained knowledge ac-
quiring and sharing in collaborative environments.

Additionally, CA-WBM can be applied to facilitate de-
sign of negotiation-based trade mechanisms in the context of
bilateral markets [57]. A bilateral market consists of sellers
and buyers who wish to exchange goods. The market’s
main objective is to compute the optimal allocation that
maximizes gain from trade. Naturally, bilateral automated
negotiation among rational agents (market participants)
with one-shot protocol (where one participant proposes a
deal and the other one may only accept or refuse it) can
be conceptualized as WBM [58], [59] and can be solved effi-
ciently. Typical research work in this field includes exploring
the agent’s utility spaces [60], [61] and designing negotiation
strategies that achieve Pareto-efficient agreements [62], [63].

By incorporating conflicts, CA-WBM can be used to capture
multiple compatibility issues among requests or offers [63],
[64], and could lead to novel negotiation strategy design.

The online version of CA-WBM is related to online
WBM. Karp et al. [65] first introduced the online bipartite
matching problem, in which b = 1 and edges weights
are all 1. They showed a greedy algorithm GREEDY with
competitive ratio of 1

2 and a randomized algorithm RANK-
ING (under the assumption of adversarial order) with the
optimal competitive ratio of 1 − 1

e ≈ 0.632. Later, simpler
proofs for the competitive ratio of RANKING were given
in [66], [67], [68]. Kalyanasundaram and Pruhs [69] stud-
ied online unweighted b-matching and presented a deter-
ministic algorithm BALANCE which achieves an optimal
competitive ratio of 1 − 1

(1+ 1
b )

b . For online WBM, Ting and
Xiang [24] proposed a randomized algorithm and a deter-
ministic algorithm. Both algorithms were proven to be near
optimal. Online WBM has also been intensely studied in the
emerging domain of Internet advertising [4]. Typical prac-
tical scenarios include online adwords [9], [10] and display
advertising [11], [12]. Mehta [4] summarized various results
in different arrival models (adversarial order, random order
and known IID) for online matching problems, including
bipartite matching, vertex-weighted bipartite matching (on-
line adwords) and edge-weighted and capacitated bipartite
matching (display advertising). Typically, these problems do
not consider conflict between entities. Therefore, online CA-
WBM is valuable to provide more flexible service to online
advertising.

8 CONCLUSIONS

We initiated the study of a novel extension of classic
weighted bipartite b-matching (WBM). The question we ad-
dressed is how to maximize the total weight when matching
vertices under both degree and conflict constraints (CA-
WBM). The CA-WBM problem is general and can find many
applications in the domain of E-Commerce, such as Internet
advertising and personalized recommendation.

We provided a formal definition of the central problem,
CA-WBM, that directly models both the degree constraint
on each vertex and conflict relationship between vertices on
the same side. We showed that by considering the conflict
constraints, the complexity of WBM increases significantly.
We proved that CA-WBM is NP-hard. We modelled it using
semidefinite programming (SDP) and integer linear pro-
gramming (ILP). Then we proposed a SDP algorithm with
rounding, LP relaxation with rounding, and a greedy algo-
rithm to solve CA-WBM. We also proposed a randomized
algorithm to solve online CA-WBM. We showed that they
achieve close to optimal solutions via comprehensive ex-
periments using synthetic datasets. We derived a theoretical
bound on the approximation ratio of the greedy algorithm
and showed that it is scalable on a large-scale real-world
dataset.
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and Their Applications. New York, NY, USA: Cambridge University
Press, 1998.

[16] M. Yannakakis, “On a class of totally unimodular matrices,” in
Foundations of Computer Science, 1980., 21st Annual Symposium on,
Oct 1980, pp. 10–16.

[17] K. R. Rebman, “Total unimodularity and the transportation prob-
lem: a generalization,” Linear Algebra and its Applications, vol. 8,
no. 1, pp. 11 – 24, 1974.

[18] E. M. Arkin and E. B. Silverberg, “Scheduling jobs with fixed start
and end times,” Discrete Appl. Math., vol. 18, no. 1, pp. 1–8, Nov.
1987.

[19] R. Bhatia, J. Chuzhoy, A. Freund, and J. S. Naor, “Algorithmic
aspects of bandwidth trading,” ACM Trans. Algorithms, vol. 3,
no. 1, pp. 10:1–10:19, Feb. 2007.

[20] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C.
Spieksma, “Interval scheduling: A survey,” Naval Research Logistics
(NRL), vol. 54, no. 5, pp. 530–543, 2007.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes in C: The art of scientific computing (second edition).
Cambridge University Press, 1992.

[22] M. X. Goemans and D. P. Williamson, “Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming,” J. ACM, vol. 42, no. 6, pp. 1115–1145,
Nov. 1995.

[23] J. Mestre, “Greedy in approximation algorithms,” in ESA, 2006,
pp. 528–539.

[24] H. Ting and X. Xiang, “Near optimal algorithms for online max-
imum weighted b-matching,” in Frontiers in Algorithmics - 8th
International Workshop, FAW 2014, Zhangjiajie, China, June 28-30,
2014. Proceedings, 2014, pp. 240–251.

[25] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update
and paging rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, 1985.

[26] K. C. Toh, M. Todd, and R. H. Tütüncü, “Sdpt3 – a matlab software
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