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Clearing Contamination in Large Networks
Michael Simpson, Venkatesh Srinivasan, and Alex Thomo.

Abstract—In this work, we study the problem of clearing contamination spreading through a large network where we model the
problem as a graph searching game. The problem can be summarized as constructing a search strategy that will leave the graph clear
of any contamination at the end of the searching process in as few steps as possible. We show that this problem is NP-hard even on
directed acyclic graphs and provide an efficient approximation algorithm. We experimentally observe the performance of our
approximation algorithm in relation to the lower bound on several large online networks including Slashdot, Epinions and Twitter.

Index Terms—Social Networks, Graph Searching, Approximation Algorithms.
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1 INTRODUCTION

CONTAMINATION in a network may refer to several
scenarios including information propagating through

a social network, malware spreading through an online
network, or sickness spreading though a population. In par-
ticular, we are interested in studying social networks as they
allow for the widespread distribution of knowledge and
information in modern society. They are rapidly becoming
a place where people go to hear the news and discuss per-
sonal and social topics. In turn, the information posted can
spread quickly through the network eventually reaching a
large audience, especially so for influential users. However,
information spread in a social network can have either pos-
itive or negative effects. For example, posting about natural
disasters or warfare can either help or hinder other users
depending on whether the information is accurate or not. In
other cases, the information can be strictly detrimental, such
as negative rumours about private corporations or people
that can even affect the financial markets. Thus, since many
people today learn of news or events online it is important
to have tools to eliminate, not just minimize, the effects of
disinformation. Previous work has focused on the task of
limiting the spread of misinformation [1], [2], [3], [4] while
we study the stronger model of eliminating disinformation,
or any kind of contamination, from a general network.

For a contaminated network, we model the problem in
the context of graph searching; a classical game on graphs
[5], [6], [7]. In the graph searching game we may think of
a network whose edges are contaminated with a gas and
the objective is to clean the network with some number
of searchers. However, the gas immediately recontaminates
cleared edges if its spreading is not blocked by guards at
the vertices. The model does not assume knowledge of the
location of the gas, yet guarantees its elimination at the end
of the search strategy, and assumes an edge is determinis-
tically contaminated, as opposed to probabilistically, which
represents the case of a powerful adversary.

In the pioneering work of Brandenburg and Herrmann
[8] the dual to the well studied search number (the minimum
number of searchers required to clear a graph), search time,
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was introduced as a new cost measure in graph search-
ing. Naturally, we believe it is more important to clear
the network as quickly as possible when dealing with a
contaminant. Furthermore, until now the theory community
has mainly focused on the search number of an undirected
graph, but one needs to study the more general case of di-
rected graphs as many real world networks lend themselves
to be modelled as directed.

We study the problem of minimizing the time required to
eliminate the contamination in the network given a budget
of searchers. We prove that the search time problem is
NP-complete even for directed acyclic graphs (DAGs) and
introduce an approximation algorithm for clearing DAGs.
Furthermore, we propose a method for clearing a network
by first reducing it to a DAG which can be cleared by our
approximation algorithm. Additionally, we investigate the
merits of a split and conquer style strategy and show that
our strategy, which instead has searchers staying together
as a group, outperforms the (intuitively appealing) split and
conquer strategy on a broad class of DAGs. Along the way
we prove lower bounds on the time required to search a
directed graph and introduce a novel DAG decomposition
theorem.

We note that the study of search time is intrinsically
more difficult than computing the search number as we
can no longer be strategy oblivious. That is, when study-
ing the search number, one is only interested in knowing
whether some search strategy exists to clear a graph with
some number of searchers and thus can be solved through
structural properties alone. In contrast, trying to compute
the search time of a graph is closely tied to how the strategy
actually plays out. The foundation of our approximation
algorithm is a modified depth-first search which utilizes a
novel stopping condition that allows us to compute strate-
gies that do not allow for any recontamination of edges.
Our algorithm produces an edge ordering based on which
we construct strategies for an arbitrary number of searchers
by partitioning the resulting ordering.

Our main contributions can be summarized as follows.

1) We are the first to investigate the search time of
directed graphs.
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2) We prove the search time problem is NP-complete
on DAGs.

3) We devise an approximation algorithm for clear-
ing DAGs that also outperforms split and conquer
strategies on a broad class of DAGs.

4) We introduce a novel DAG decomposition theorem
which we believe is of independent interest.

5) We provide an experimental study of clearing large
social networks.

We start with an overview of information propagation in
social networks and the graph searching problem in Section
2. In Section 3 we introduce the necessary concepts and
definitions from graph searching. Section 4 presents the
lower bound for search time on directed graphs. In Section
5 we prove the NP-hardness of the search time problem
on DAGs. We introduce our strategy for clearing general
networks and the Plank algorithm in Section 6. Section 7
contains our approximation bounds, comparison to the split
and conquer strategy, along with our DAG decomposition
theorem. Finally, in Section 8 we provide our experimental
results.

2 RELATED WORK

The task of maximizing the spread of information in a
social network is a well studied problem with many works
investigating different aspects of the problem [9], [10], [11].
More recently, the problem of limiting the spread of rumours
or misinformation in a social network has been studied
by [1], [3], [4]. In [3], [4] the problem is posed in terms
of competing campaigns while [1] has the misinformation
diffusing through a network. All three works are modelled
by the Independent Cascade Model: a randomized diffusion
process on graphs. However, the location of the misinfor-
mation is known and nodes can be inoculated such that
once a node takes on the “good” information it will not
subsequently adopt the misinformation. While the goal of
these works was to limit the spread of misinformation, we
believe it is important to investigate how to remove the
misinformation from a network in its entirety. Furthermore,
the unknown location of the misinformation and the deter-
ministic spreading of contamination in our model captures
the case of a stronger adversary.

Several variants of the (undirected) graph searching
problem with respect to search number have been studied
with varying constraints and adversary behaviour, see e.g.
[6], [7], [12], [13]. In addition, it has been shown that the
graph searching problem is closely related to several other
notable graph parameters such as path-width, cut-width
and vertex separation, see e.g. [12], [13], [14]. It was shown
by Megiddo et al. [15] that computing the search number
is NP-complete on general undirected graphs, but can be
computed in linear time on undirected trees. Furthermore,
several works [16], [17], [18] have investigated the search
number in directed graphs with similar results.

The notion of search time for undirected graphs was
introduced by Brandenburg and Herrmann [8]. They note
that the classical goal of the graph searching game, where
the minimal search number is computed, aims to minimize
the number of resources used and as such corresponds to
space complexity. They study the length of a search strategy
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Fig. 1: An example search strategy

which corresponds to the time complexity of searching a
graph. They ask, how fast can a team of k searchers clear a
graph (if at all), and conversely how many searchers are
needed to search a graph in time t. In contrast, search
time in undirected graphs has also been investigated by
considering the length of path decompositions by [19] in
which they show that for any fixed k ≥ 4 computing the
minimum length path decomposition is NP-hard and give a
polynomial time algorithm for k < 4.

3 PRELIMINARIES

We consider the graph searching game on simple, weakly
connected, directed graphs G = (V,E) with n nodes, a set
of vertices V and a set of edges E. We assume there are
no self-loops and no multiple edges. A directed graph is
considered weakly connected if removing the directions on
all edges yields an undirected graph which is connected. For
a directed edge (u, v) we refer to u as the start node and v
as the end node. Also, we will use the term “digraph” when
referring to directed graphs.

The rules for the graph searching game are as follows:
Initially, all edges are contaminated and in the end all edges
must be cleared. In a move at each time t = 1, 2, . . .
searchers (or guards) are first removed from vertices and
then placed on other (and possibly the same) vertices. In
a single move some number of searchers can be placed or
removed subject to the searcher budget. An edge is cleared at
time i if both incident nodes have searchers placed on them
at the end of time i. A cleared edge e is instantaneously re-
contaminated if there is a directed path from a contaminated
edge to e without a searcher on any vertex of that path. A
search strategy is a sequence of moves that results in all edges
being cleared at the end. Then the search game is won.

In the following example we show one possible search
strategy with four available searchers for the directed graph
shown in Figure 1. In the first step, searchers are placed
on nodes 1, 2, 3, and 4 clearing the three blue (double-
wide) edges. In the second step, searchers are removed from
nodes 1, 2, and 3 to be placed on nodes 5, 8, and 6. We
clear another three edges, and mark cleared edges in green
(dotted). Finally, in a third step, we remove searchers from
nodes 4 and 5, and place them on nodes 7 and 9. We clear
the final three edges in the third step leaving the graph with
all its edges cleared.

Our formal definition is similar to that of Brandenburg
and Herrmann [8].
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Definition 1. A search strategy σ on a (connected) digraph G =
(V,E) is a sequence of pairs σ = ((E0, V0),
(E1, V1), . . . , (Et, Vt)) such that:

1) For i = 0, . . . , t, Ei ⊆ E is the set of cleared edges
and Vi ⊆ V is the set of vertices which have searchers
placed on them at time i. The edges from E \ Ei are
contaminated.

2) (initial state) E0 = ∅ and V0 = ∅. All edges are
contaminated.

3) (final state) Et = E and Vt = ∅. All edges are cleared.
4) (remove and place searchers and clear edges) For i =

0, . . . , t − 1 there are sets of vertices Ri = Vi \ Vi+1

and Pi = Vi+1 \ Vi where searchers are removed from
the vertices from Ri and then placed at Pi. The set of
cleared edges is Ei+1 = {(u, v) ∈ E | u, v ∈ Vi+1; or
(u, v) ∈ Ei | there is no unguarded directed path from
the end node of a contaminated edge to u}.

Let width(σ) = max{|Vi| | i = 0, . . . , t} and length(σ) =
t − 1 be the number of searchers and the number of moves of
σ respectively. Note that we discard the last move, which only
removes searchers.

While we need theEi sets above to define how a strategy
works, we only need the Vi sets to fully determine a strategy.
Therefore, we will often refer to a strategy by only listing its
Vi sets.

Definition 2. For a connected digraph G with at least two
vertices and integers s and t let search-widthG(t) be the least
width(σ) for all search strategies σ with length(σ) ≤ t and let
search-timeG(s) be the least length(σ) for all search strategies σ
with width(σ) ≤ s.

In other words, search-widthG(t) is the least number of
searchers that can search G in time at most t, and search-
timeG(s) is the shortest time such that at most s searchers
can search G. Thus, search-widthG(t) = s implies search-
timeG(s) ≤ t and conversely search-timeG(s) = t implies
search-widthG(t) ≤ s.

For a given time t, σ is space-optimal if width(σ) = search-
widthG(t) with length(σ) = t. For a given number of search-
ers s, σ is time-optimal if length(σ) = search-lengthG(s) with
width(σ) = s.

4 SEARCH-TIME LOWER BOUND

The lower bound for search time on a digraph does not
come as easily as the lower bound for undirected graphs of⌈
n−s
s−1

⌉
+ 1 shown by Brandenburg and Herrmann [8] since

the reasoning used there does not apply to the directed case.
That is, a search strategy on a digraph can leave a node
unguarded without suffering from recontamination unlike
in the undirected case. We follow a completely different
avenue to the lower bound.

Given a search strategy σ we can construct a set system
S = {S1, . . . , St} where each set corresponds to the place-
ment of searchers in a single step of σ. Thus, t represents the
number of steps the strategy requires. We have the following
conditions for such a set system to correspond to a valid and
complete search strategy.

1) |Si| ≤ s
2) If u, v are adjacent nodes in G then there exists an

Si where u, v ∈ Si

The first condition reflects the fact that we have s
searchers to work with while the second condition ensures
that every edge in G will be cleared. As a result we have the
following fact about S.

∀i ∃j such that Si ∩ Sj 6= ∅ (1)

Equation 1 comes from condition 2 and the fact that G is
connected since a set Si without an intersection with some
other set would constitute a separate connected component
violating our assumption of connectedness.

Note, a search strategy will also induce an ordering of S,
Ω, which dictates how the search strategy unfolds. Notice
that every search strategy induces a unique set system
while a given set system may correspond to several search
strategies depending on the ordering. Next we define the
progress of a set which will be utilized in the lower bound
proof.

Definition 3. The progress of a set Si in an ordering Ω is
|{v ∈ Si|v /∈ ∪j<iSj}|.

The progress of a set corresponds to the number of
new nodes visited in that step of the corresponding search
strategy.

Now, we present the search time lower bound on di-
rected graphs which utilizes the set system notion.

Theorem 1. For every connected digraph G with |G| = n and
integer s such that s is at least the search number of G all search
strategies require at least

⌈
n−s
s−1

⌉
+ 1 steps to clear G.

Proof. Assume we are given an arbitrary search strategy σ
for G. First, we construct the corresponding set system S
for σ. Then, we construct a meta-graph on S where each
meta-node represents a set Si ∈ S and there is an undirected
edge between two meta-nodes if their corresponding sets
have a non-empty intersection. Call the resulting graph
GS . Then, notice that equation (1) and our assumption of
connectedness implies that GS is connected.

Now, we present a special ordering Ω′ for S by perform-
ing a depth-first search of GS initialized on any node of GS .
The order in which meta-nodes are visited in the DFS makes
up Ω′. This ordering may differ from that of σ and is created
purely for the proof of bounding the number of sets, t.

Then, we can bound the progress ρ made by this or-
dering as follows. The first set visited in Ω′ has a progress
bounded above by s from condition (1) and the fact that
there are no previous sets in Ω′. Then, every subsequent set
Si in Ω′ has a progress bounded above by s − 1 since, by
the DFS style ordering, there will be a set located earlier
in Ω′ which was connected to Si, indicating a non-empty
intersection. Thus, if there are t sets, the total progress is
bounded above by s + (t − 1)(s − 1). Furthermore, ρ is
bounded below by n as it is a necessary condition that every
node in G be visited by a searcher in order to clear all edges
of G.
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Thus, we have

n ≤ ρ ≤ s+ (t− 1)(s− 1)

n− s ≤ (t− 1)(s− 1)
n− s
s− 1

≤ t− 1

Finally, since t must be an integer we have

t ≥
⌈n− s
s− 1

+ 1
⌉

=
⌈n− s
s− 1

⌉
+ 1

Therefore, we have shown that for an arbitrary search
strategy, the corresponding set system requires at least⌈
n−s
s−1

⌉
+ 1 sets and thus any search strategy for G must

take at least this number of steps.

In the next section we prove the hardness of computing
the search time of a DAG.

5 HARDNESS FOR DAGS

In this section we prove that computing the search time of
a DAG for a given number of searchers is NP-complete.
Consider the GRAPH SEARCHING problem as determining
the minimum number of steps required to clear an input
directed graph G on n nodes with s searchers. The decision
version asks if G can be cleared in t steps. To do this we
introduce two concepts required for the hardness proof: B-
sections and the loss function. First, consider an arborescence,
defined as a rooted directed tree with root node v attached
to m directed paths b1, b2, . . . , bm all beginning at v where
|bi| ≥ 1. We refer to such structures as B-sections and a
sample B-section can be seen in Figure 2. B-sections will be
used in Section 7.3 for our decomposition theorem. Next, we
define our loss function. We know that a strategy achieving
the lower bound with s searchers visits s new nodes in the
first step and s − 1 new nodes in each subsequent step. All
strategies can visit s new nodes in the first step. Thus, a
searcher placement deviating from the lower bound is one
in which s − 1 new nodes are not visited in a given step.
Note, this excludes the final step where there may not be
enough nodes left to visit s−1 new nodes. For this reason, an
alternative definition is a placement in which two or more
searchers are left stationary.

Definition 4. For a search strategy σ, the loss at step i <
length(σ) is given by

lossi(σ) =

{
0 if |Vi ∩ (∪j<iVj)| ≤ 1

|Vi ∩ (∪j<iVj)| − 1 otherwise

Then, the loss of σ, loss(σ) =
∑

i lossi(σ).

Now, consider the B-section in Figure 2 and the search
strategy shown which uses 3 searchers. The blue nodes
represent the searcher placements of the current step while
green nodes represent already visited nodes. The blue edges
indicate edges which are being cleared in the current step
while green edges are edges which have been cleared in
a previous step. Notice how the search strategy partially
clears each of the branches before finishing them off in
a single step. The ability to avoid loss when moving to

a new branch lay in the strategy’s ability to “set up” the
number of nodes left in each branch, after partially clearing
the branches, as a multiple of s − 1. This ensured that the
clearance of each branch ended exactly at the leaf nodes and
did not spill over into the next branch.

Now, we can generalize this idea to capture how a
strategy would have to behave to “set up” the branches of
a general B-section in a similar fashion in order to achieve
zero loss. Consider a B-section with m branches b1, . . . , bm
each of length d1, . . . , dm where di counts all nodes in bi
other than the branching node. The question of whether or
not zero loss can be achieved comes down to whether we
can end the clearance of each branch exactly at the branch’s
final node. Therefore, we are asking whether we can move
across the top of the B-section with the s searchers such that
after this initial sweep the number of nodes remaining to be
cleared in each bi is a multiple of s − 1. If this is the case,
the branches could then be cleared one at a time with all s
searchers with the clearance ending exactly at the last node
of each bi ensuring no loss when moving between branches.

The problem of the initial sweep across the top of
the B-section can be phrased as an instance of a BIN
PACKING variant. First, notice that there is a single value
0 ≤ xi ≤ s − 2 for each branch that makes the number of
nodes remaining in bi a multiple of s− 1. Thus, we wish to
know if we can pack the xi into bins of size s− 1 such that
each bin is exactly full. The solution to this problem tells us
if the B-section can be cleared with zero loss. However, we
know that not all B-sections can be cleared with zero loss
and we actually want to know the minimum loss achievable.
This leads to a variant of the optimization version of BIN
PACKING which we wish to solve. In the standard BIN
PACKING problem we wish to minimize the number of
bins used. Our problem is asking to minimize the number of
partially full bins. That is, we want to maximize the number
of exactly full bins as each partially full bin represents a
loss due to the strategy being forced to revisit a node or
carry unused searchers. We refer to this as the EXACT BIN
PACKING problem and in the decision version denote the
number of allowable partially filled bins by the parameter
p. First, we show that the EXACT BIN PACKING problem
remains strongly NP-hard even when p is fixed to 0.

Lemma 1. The EXACT BIN PACKING problem with p = 0 is
strongly NP-complete.

Proof. Consider an instance of the decision version of BIN
PACKING with items X = {x1, . . . , xn}, bin size V , and
b available bins. Then, let r = V b −

∑
xi. Here, r is the

total remaining bin space (regardless of packing) for the BIN
PACKING instance.

Now, we construct an instance of the decision version of
the EXACT BIN PACKING problem with items X ′ = X∪1r
where 1n is a set containing n 1’s, bin size V , and p = 0.
Then, the EXACT BIN PACKING instance has a solution iff
there is a solution to the instance of BIN PACKING.

If the BIN PACKING instance can be packed with b bins
then in the EXACT BIN PACKING instance we have exactly
the required number of 1’s to fill in the rest of the space
leaving all exactly full bins, i.e.

∑
xi + r = V b. However, if

the BIN PACKING instance requires more than b bins then
there will not be sufficient 1’s to fill in the space of additional
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Fig. 2: An example search strategy with zero loss

bins and therefore there will be at least one partially filled
bin, i.e.

∑
xi + r = V b < V (b+ k) for some k > 0.

Then, it follows from the above result that the general
version of EXACT BIN PACKING with arbitrary p is also
strongly NP-hard.

Corollary 1. The EXACT BIN PACKING problem is strongly
NP-complete.

Now, we formally show the hardness of the graph
searching problem on B-sections using the above result.
First, we show that the GRAPH SEARCHING problem
remains hard even for fixed t =

⌈
n−s
s−1

⌉
+ 1 and restricted

G.
Before we present the proof we will introduce some facts

about the GRAPH SEARCHING problem. First, the search
time of a strategy can be computed from the loss as t =⌈
n−s+loss

s−1
⌉
+1. Also, recall that the lower bound for clearing

a graph is tmin =
⌈
n−s
s−1

⌉
+ 1. Then, notice that tmin can be

achieved with a range of losses which depends on the values
of n and s. Namely, tmin will be achieved by any strategy
with 0 ≤ loss ≤

[⌈
n−s
s−1

⌉
− n−s

s−1
]
(s−1). We refer to the upper

bound by lossmax.

Lemma 2. The GRAPH SEARCHING problem on B-sections
with t = tmin is NP-complete.

Proof. Consider an instance of the decision version of EX-
ACT BIN PACKING with items X = {x1, . . . , xm}, bin
size V , and p = 1. We construct an instance of GRAPH
SEARCHING by transforming the xi into paths ρi of length
xi and attaching each ρi to a distinguished branching node
β. Additionally, we attach a path b of length

⌈∑
i xi−V
V

⌉
V −

(
∑

i xi − V ) to β. Call the resulting graph G and notice
thatG is a B-section. Let the GRAPH SEARCHING instance
have s = V +1 and t =

⌈ |b|+∑
xi−V

V

⌉
+1. Then, the GRAPH

SEARCHING instance has a solution iff there is a solution
to the instance of EXACT BIN PACKING.

Notice that we have chosen the length of b such that
lossmax = 0, therefore |b|+

∑
xi−V is a multiple of V . Also,

the chosen t = tmin. Thus, if the EXACT BIN PACKING
problem has a solution thenG can be cleared by first placing
a searcher at β and on every ρi of a bin in a sweep across
the top of G. The clearance of b is included in the final step
of the strategy. This search strategy has loss = 0 and will be
able to clear the graph in tmin steps.

In the other direction, given that G can be cleared in
t = tmin steps we show how to obtain a solution to the
EXACT BIN PACKING instance by progressively restricting
how such a strategy must behave. Again, the structure of G
is such that lossmax = 0 so the strategy clearing G cannot
incur any loss. Thus, we can immediately rule out strategies

which split into multiple groups; that is, any strategy in
which the subgraph induced from searcher placements in
a step does not form a connected component (ignoring the
directions on edges) as such a step incurs a minimum loss
of one. Then, to clear every branch we must leave a guard
on β as it is required to clear the first edge in each branch.
Thus, since we cannot incur any loss, no node other than
β can be revisited in any step else the strategy would not
visit s − 1 new nodes. Therefore, we cannot partially clear
any branch. Then, since each ρi has length less than V , the
strategy will fully clear some number of branches in every
step of the strategy. Now, observe that we have restricted
the allowable strategies such that they can only differ from
the one described above by a re-ordering of steps. Thus, the
ρi cleared in each step are placed in a bin and the resulting
bins make up the packing. Note, if b had non-zero length
we do not include it in the packing and thus get at most one
partially full bin.

From this we get our main result.

Theorem 2. The GRAPH SEARCHING problem on B-sections
is NP-complete.

Furthermore, hardness on B-sections implies hardness
on all its superclasses in the directed setting which includes
directed trees, DAGs and all their directed superclasses.
Therefore, we see an interesting comparison to computing
the search number on undirected graphs where the problem
becomes efficiently solvable when we move from general
graphs to trees. However, computing the search time does
not become efficiently solvable even when restricting the
input graph to a B-section. In the following section, despite
the hardness of the search time problem, we will introduce
an efficient approximation algorithm for searching general
digraphs.

6 OUR SEARCH ALGORITHM

6.1 Searching Digraphs
Since the graph searching problem is NP-hard even on B-
sections, the task of clearing networks, which are general
digraphs, is also NP-hard. We present a method for clearing
a general digraph which works in two phases. We first
compute a feedback arc set (FAS) for the network and remove
the resulting edges. Formally, an FAS is a set of edges whose
removal leaves a graph without cycles. Thus, by doing so,
we are left with a DAG which can be cleared by our Plank
algorithm given in the next subsection. In an online network
the removal of the FAS edges is accomplished by simple
software agents which block communication between two
users until the search strategy has completed. We emphasize
that blocking edges is much less resource intensive than
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placing searchers since the latter would likely involve clear-
ing the browser or machine of a user, whereas blocking an
edge has only “psychological” cost, if any, and it can even
go unnoticed by some users. The procedure for searching
general digraphs is outlined in Algorithm 1.

Algorithm 1 Search Digraph

Input: The input graph G
Output: A search strategy σ = (V1, . . . , Vt)

Compute an FAS for G
Remove the FAS edges from G to create a DAG G′ that
needs to be cleared
Run the Plank algorithm on G′ to compute a search
strategy σ = (V1, . . . , Vt)
return σ = (V1, . . . , Vt)

In the following section we present our Plank algorithm
for searching a DAG.

6.2 Plank Algorithm
Our Plank algorithm works in a depth-first manner with
some modifications specific to the graph searching problem.
The name comes from a description of how searchers are
placed in subsequent steps. Imagine a long plank of wood
lying on the ground. We can move this plank by picking up
one end until the plank is upright and then letting it drop in
the direction we wish to travel. By repeatedly moving in this
way we move the plank a distance equal to its length each
time. Then, we can think of the plank as s searchers placed
adjacently on a graph so that moving the plank corresponds
to visiting s− 1 new nodes.

The Plank algorithm is a two-phase algorithm for com-
puting its search strategy for a DAG, G. In the first step
the algorithm computes an edge ordering for G, Ψ, and in
the second step it compiles a search strategy from Ψ. In
Algorithm 2 below, mDFS refers to a modified depth-first
search designed specifically for the Plank algorithm. Our
mDFS operates similarly to the DFS algorithm, but with
a special stopping condition: we backtrack if the current
vertex has an unexplored incoming edge. This ensures we
do not allow any recontamination from uncleared incoming
edges as our strategy does not leave stationary guards
at vertices. The Plank’s high level execution proceeds as
follows:

1) Run mDFS on G to produce an edge ordering Ψ
2) Convert Ψ into a search strategy using s searchers

Now we present the Plank’s subalgorithms. First, we
have the pseudocode for themDFS algorithm in Algorithm
2. We assume all nodes in G are initially labelled as unvis-
ited and all edges as unexplored.

Note, in the case that every node in G is not visited in a
call to mDFS, we continue re-calling the algorithm passing
in an unexplored node until there are no more unexplored
nodes in G. If there are multiple edge labellings, they are
appended together to make a master edge labelling.

Next, we show how to convert the resulting edge la-
belling, Ψ, into a search strategy for G using s searchers
(Algorithm 3). In summary, Ψ is traversed adding nodes
to the current step in the search strategy until a step has

Algorithm 2 mDFS

Input: Input graph G and the current node v
Output: An edge ordering Ψ

Ψ← []
if v has no unexplored incoming edges then

Label v as visited
for all edges e in G.outEdges(v) do

if edge e is unexplored then
Ψ.append(e)
Label e as explored
w ← G.adjacentV ertex(v, e)
Ψ.append(mDFS(G,w))

end if
end for

end if
return Ψ

reached s placements. After Ψ has been traversed we will
have all the steps which make up the Plank search strategy
σ. This procedure is captured in the pseudocode of Algo-
rithm 3 where Vc represents the nodes present in the current
step.

Algorithm 3 Construct Strategy

Input: Sequence Ψ and the number of searchers s
Output: a search strategy σ = (V1, . . . , Vt)
σ, Vc,← ∅
for all edges e in Ψ do

if nodes(e) not in Vc then
Vc ← Vc ∪ nodes(e)

end if
if current step contains s placements then

σ.append(Vc)
Vc = ∅

end if
end for
return σ = (V1, . . . , Vt)

Furthermore, we introduce an optimized version of the
strategy construction algorithm in which the steps that
each node participates in during the strategy are recorded.
This allows us to determine if, when processing an edge
e = (u, v) in Ψ, the edge has already been cleared in a
previous step of the search strategy and thus can be skipped.
In doing this, we eliminate redundantly clearing an edge
multiple times leading to shorter search strategies. We can
efficiently determine if e has previously been cleared by
computing the intersection of the sets of steps that u and
v have participated in. This optimization allows us to avoid
storing and checking membership in a large set of cleared
edges. The optimized strategy construction algorithm is
shown in Algorithm 4.

Finally, we provide proofs for the correctness and
asymptotic runtime of the Plank algorithm.

Theorem 3. For any DAG G and budget of searchers s, Al-
gorithm 2 and Algorithm 3 produce a search strategy σ with s
searchers for G.

Proof. First, note that since Algorithm 2 is a modified DFS it
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Algorithm 4 Optimized Construct Strategy

Input: Sequence Ψ and the number of searchers s
Output: a search strategy σ = (V1, . . . , Vt)
i← 0
σ, Vc ← ∅
steps← new array of n empty sets
for all edges e = (u, v) in Ψ do

if steps[u] ∩ steps[v] = ∅ then
if u not in Vc then

Vc ← Vc ∪ u
steps[u]← steps[u] ∪ i

end if
if v not in Vc then

Vc ← Vc ∪ v
steps[v]← steps[v] ∪ i

end if
end if
if current step contains s placements then

σ.append(Vc)
Vc = ∅
i← i+ 1

end if
end for
return σ = (V1, . . . , Vt)

is clear that every edge e ∈ E is added to the edge ordering
Ψ. Second, Algorithm 3 places searchers on both endpoints
of every edge in Ψ. Thus, the resulting strategy σ will have
cleared every edge at some step Vi.

Now, we need to ensure that once an edge e = (u, v)
has been cleared it never gets recontaminated. Notice that
recontamination can only occur from an edge er directed
towards u. Suppose to the contrary that e is cleared in some
step i and er has not yet been cleared. Thus, Algorithm 2
would have had to have reached e when u had unexplored
incoming edges. Thus, we have a contradiction with line 2
of Algorithm 2 and therefore we will not have any recon-
taminating edges er present when clearing e. Finally, since
there are no cycles in G, we can never have a node with no
unexplored incoming edges that then become recontaminat-
ing edges resulting in a cleared edge remaining cleared for
the rest of σ.

In conclusion, as long as s ≥ 2, the resulting search
strategy σ will leave every edge in G cleared by the end
of σ.

Algorithm 2 is simply a modified DFS with an alternate
stopping condition yielding the same asymptotic runtime as
a traditional DFS and Algorithm 3 makes a single pass over
the resulting edge ordering.

Lemma 3. For any DAG G and budget of searchers s, Algo-
rithm 2 and Algorithm 3 run in time O(m+ n).

7 ANALYSIS

7.1 Approximation Bounds
In this section we will show that the Plank strategy is
a (3 + fO)-approximation algorithm for searching DAGs,
where fO is an instance determined parameter, and moti-
vate its performance on typical DAGs.

(a) (b)

(c)

(d)

Fig. 3: A sample (a) B-section (b) R-section (c) D-section and
(d) P -section

First we introduce some definitions to be used in the
following proofs. We define four types of DAGs referred to
as sections. We have already seen the definition ofB-sections
in Section 4 (Fig. 3(a)). Second are sections that resemble B-
sections, except that the direction of each edge is reversed.
That is, the structure is the same as a B-section, but with all
branches directed towards a distinguished root which we
refer to as R-sections (Fig. 3(b)). Next, we have sections which
look like diamonds, or D-sections (Fig. 3(c)). These sections
have a start node, two or more node disjoint branches, and
an end node with branches originating at the start node and
ending at the end node. Finally, we have simple directed
paths, or P-sections (Fig. 3(d)). Note, the blue and red nodes
mark the top and bottom nodes of a section respectively.

We prove in section 7.3 that any DAG can be
decomposed into sections of the above four types and
assume this holds for the remainder of the analysis.

To begin, we first prove an approximation bound for
zero-overlap DAGs and then modify the bound to include
the full range of DAGs. We define the overlap of a node v by

overlap(v) =

{
r if v is a top/bottom node in ≥ 3 sections
0 else

Where r is the total number of sections for which v is a
top or bottom node.

Then, the overlap of a DAG G, denoted Ω, is defined as
Ω =

∑
u∈V overlap(u). A DAG is said to be a zero-overlap

DAG if Ω = 0 and indicates a DAG in which each section
overlaps with at most one other section. The following
analysis assumes a zero-overlap DAG.

We bound the number of steps required by the Plank
strategy by bounding the loss measure we introduced in
Section 4. To that end, we consider the loss the Plank
strategy can achieve when taking an arbitrary step in its
clearance. We have four cases for how the strategy moves
between steps: (1) the strategy remains within a single
section, (2) the strategy moves from an unfinished section
to another unfinished section, (3) the strategy moves from
an unfinished or finished section to a previously unvisited
section or (4) the strategy finishes clearing a section and
returns to a partially cleared section. We investigate these
cases in four claims below.

Claim 1. A step taken by the Plank strategy described by Case 1
can incur a loss of no more than 2.
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Proof. Recall that the Plank strategy will move across
branches of a section one at a time. Thus, when moving
between branches in a B/R-section the strategy will revisit
the top/bottom node of the section. Thus, the strategy will
incur a loss if the previous branch was not cleared in a
single step. On the other hand, when moving between
branches of a D-section the Plank strategy will revisit both
the top and bottom nodes incurring a loss of two if the
previous branch was only partially cleared. Finally, a P -
section trivially cannot incur a loss.

Claim 2. A step taken by the Plank strategy described by Case 2
can incur a loss of no more than 3.

Proof. When moving to another unfinished section θ2, we
may revisit nodes that connect the sections as well as any
nodes already visited in θ2. Thus, we have a worst case loss
of 3 in the situation where both θ1 and θ2 are D-sections
with overlapping top nodes. Here, we revisit the bottom
node of θ1, the top node of each section and the bottom
node of θ2. In contrast, moving to a downstream section can
only incur a worst case loss of 1, when the bottom node is
revisited, as every other node is visited for the first time.

Claim 3. A step taken by the Plank strategy described by Case 3
can incur a loss of no more than 2.

Proof. When moving from a section θ1 to a new section θ2,
besides the nodes connecting sections, every node is being
visited for the first time. Thus, we again have a worst case
loss of 2, in the situation where θ1 and θ2 have overlapping
top nodes. In contrast, moving to a downstream section can
only incur a worst case loss of 1, when the bottom node is
revisited, as every other node is visited for the first time.

Claim 4. A step taken by the Plank strategy described by Case 4
can incur a loss of no more than d s2 − 1e.

Proof. When returning to a B-section θB , we incur a loss
of 1 by returning to the branching node. Then, consider the
case where θB is entirely cleared with the available searchers
and the strategy must again move to a new section or return
to another B-section. Here, moving to a new section would
incur no extra loss as the new section would be downstream
from θB . However, the strategy could continue clearing
B-sections and returning up to more partially cleared B-
sections incurring a loss each time this occurs. The number
of times the strategy could return to a B-section is bounded
by the number of searchers available, s, and the minimum
size of the portion of theB-section left to be cleared, 2. Thus,
the Plank strategy could take a single step which incurs a
loss of d s2 − 1e as the sections which are revisited must have
at least one node other than the branching node not yet
visited. An analogous situation occurs when returning to an
R-section. Note, a strategy will not return to an upstream
section while clearing a D-section and thus do not come up
in Case 3 steps.

Now, we can divide an arbitrary Plank strategy into
steps adhering to Case 1, 2, 3, or 4. Thus, w.l.g. we can
investigate the approximation ratios for steps of each type
to arrive at an overall approximation ratio. We group Case
1, 2, and 3 steps together as Type 1 steps while Case 4 steps
are referred to as Type 2 steps.

Lemma 4. The Type 1 steps have an approximation ratio of no
more than 3.

Proof. Given s searchers, consider k steps incurring a loss of
3. Then, the total number of nodes from Type 1 steps, n, is at
least (k−1)(s−4) + s+ 2 for s ≥ 6. We only consider s ≥ 6
because 5 or less searchers cannot enter into a pattern which
incurs a loss of 3 for successive steps. In the case of s = 5
we can only enter into a pattern having loss 2 between steps
and therefore have n ≥ (k− 1)(s− 3) + s+ 2. Furthermore,
in the case of s = 4 we can only incur a loss of 2 for a
single step in a specific D-section on 5 nodes where it is
easy to verify by hand that the approximation ratio remains
less than 3. For the s ≥ 6 expression, we visit s − 4 new
nodes in each step except the last step where we may run
out of nodes left to visit in which case 2 additional nodes
is a minimum and similarly for s = 5 where we visit s − 3
nodes in each step. Notice, the additional s comes from the
fact that all strategies visit s nodes in the first step and incur
no loss.

Then, the loss is bounded by 3k or 3(n−6)
s−4 for s ≥ 6 and

2k or 2(n−5)
s−3 for s = 5. Now, we can compute an approx-

imation ratio by comparing the lower bound dn−ss−1 e + 1 to
the expression dn−s+loss

s−1 e+ 1. First, in the case for s = 5 we
have,

⌈n− s+ 2(n−5)
s−3

s− 1

⌉
+ 1 ≤ ns− n+ s2 − 5s− 4

(s− 3)(s− 1)
(2)

Then ⌈n−s+ 2(n−5)
s−3

s−1
⌉

+ 1⌈
n−s
s−1

⌉
+ 1

≤ ns− n+ s2 − 5s− 4

(n− 1)(s− 3)
(3)

Where (3) is bounded above by 2 for s ≤ n+3
2 . Note, we only

consider the case where s ≤ n+3
2 since when s > n+3

2 all
n nodes will be cleared in 2 steps as no more than 3 nodes
will remain stationary between steps.

Second, in the case for s ≥ 6 we have,

⌈n− s+ 3(n−6)
s−4

s− 1

⌉
+ 1 ≤ ns− n+ 2s2 − 10s− 10

(s− 4)(s− 1)
(4)

Then

⌈n−s+ 3(n−6)
s−4

s−1
⌉

+ 1⌈
n−s
s−1

⌉
+ 1

≤ ns− n+ 2s2 − 10s− 10

(n− 1)(s− 4)
(5)

Where (5) is bounded above by 3 for 6 ≤ s ≤ n+4
2 . Note, we

only consider the case where s ≤ n+4
2 since when s > n+4

2
all n nodes will be cleared in 2 steps as no more than 4 nodes
will remain stationary between steps.

Therefore, an arbitrary number of Type 1 steps has an
approximation ratio of no more than 3.

Lemma 5. The Type 2 steps have an approximation ratio of no
more than 2.

Proof. Given s searchers, consider k steps incurring a loss of
d s2 − 1e. Then, notice that the upper bound on the number
of steps required by a strategy on zero-overlap DAGs is n−
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s + 1 as we visit at least one new node in each step. Thus,
k ≤ n − s + 1 giving a loss bounded above by kd s2 − 1e ≤
ns−s2+s

2 since d s2 − 1e ≤ s
2 . Now, notice that ns−s2+s

2 ≤ n
2

for s ≤ n which holds for all search strategies. Therefore,
we can compute the approximation ratio as,

⌈n− s+ n
2

s− 1

⌉
+ 1 ≤

n− s+ n
2

s− 1
+ 2 =

3n+ 2s− 4

2(s− 1)
(6)

Then ⌈n−s+n
2

s−1
⌉

+ 1⌈
n−s
s−1

⌉
+ 1

≤
3n+2s−4
2(s−1)
n−1
s−1

=
3n+ 2s− 4

2(n− 1)
(7)

Where (7) is bounded above by 2 for s ≤ n−1
2 . Note, we only

consider the case where s ≤ n−1
2 since when s > n−1

2 the
number of nodes remaining after the first step is less than n

2
and therefore the loss cannot exceed this value.

Therefore, an arbitrary number of Type 2 steps has an
approximation ratio of no more than 2.

Thus, we get the following approximation bounds for
the Plank strategy on zero-overlap DAGs.

Lemma 6. The Plank algorithm is a 3-approximation algorithm
for computing the search time of a zero-overlap DAG.

Proof. We consider an arbitrary instance of a Plank strategy.
The steps of the strategy are all of Type 1 or 2. Then, the
proof follows directly from Lemma’s 4 and 5.

In practice, the number of searchers will often be
much less than the size of the DAG, s � n, in which
case (3) ≈ 1 + O( 2

s ) + O( s
n ), (5) ≈ 1 + O( 3

s ) + O( s
n ),

and (7) ≈ 3
2 + O( s

n ). Furthermore, the structure of a
DAG required to produce an approximation ratio for (7)
of 3

2 + O( s
n ) is extremely artificial and would not show

up in a large fraction of DAGs. In general, we expect
the approximation ratio to closely resemble 1 + O( s

n ).
Therefore, proving the usefulness of the Plank algorithm
for typical zero-overlap DAGs.

Now, we must modify the bound for DAGs with nonzero
overlap. The overlap Ω of a DAG can be viewed as a rough
estimation of the density of the digraph. As such, DAGs
move progressively towards resembling directed complete
bipartite graphs (with all edges directed from one partition
to the other) as Ω increases. We take a conservative route
and add to the bound of 3 for zero-overlap DAGs an overlap
factor, fo. The fo factor upper bounds the number of steps
required to clear the number of possible edges incident on
the overlapping nodes. It is defined as,

fo =
( Ω

n− 1

)
(8)

and can often be approximated by m
n . Thus, combining the

possible loss in zero-overlap DAGs and the potential loss in
DAGs with overlap yields an approximation ratio that holds
for all DAGs of 3 + fo.

Theorem 4. The Plank algorithm is a (3 + fo)-approximation
algorithm for computing the search time of a DAG.

Note, as we provide a lower bound on the length of a
search strategy that is independent of the structure of the
input DAG, our fo factor may take on large values for highly
overlapping DAGs when the length of the Plank strategy, in
reality, may not be far off the instance-optimal solution.

7.2 Comparison to Splitting Strategies

Another natural candidate for graph searching would be a
BFS style strategy which we investigate next. We show that
the DFS style strategy, our Plank algorithm, outperforms the
BFS style strategies on a broad class of DAGs. We refer to
BFS style strategies as splitting strategies and define them as
follows.

Definition 5. The class of splitting strategies are all search strate-
gies which send at least two searchers down as many branches of
a section as possible.

The way in which a splitting strategy distributes the
searchers over the branches is arbitrary, but the key point
is that such a strategy tries to split as much as possible,
mimicking a BFS. As with the Plank algorithm, splitting
strategies do not move passed nodes with unexplored in-
coming edges to avoid recontamination. Alternatively, we
can think of splitting strategies as split and conquer style
strategies.

For the sake of brevity, we give a high level description of
our results regarding splitting strategies. We begin by prov-
ing the Plank strategy outperforms all splitting strategies on
each type of section individually. The proof follows from
a direct comparison of the loss required by any splitting
strategy to the upper bound on the loss possible by the
Plank strategy.

Now, the fact that any DAG can be decomposed into
sections of our four types, which we prove in the next
section, allows us to observe that the loss due to the Plank
algorithm will be the same in its clearance of decomposed
sections within a DAG as if they were being cleared in
isolation conditioned on the length of the section’s branches.
The condition required is that the B, R, and D-sections
contain branches of length s or greater which we refer to
as having large sections. Thus we are able to show the
following result.

Theorem 5. The Plank strategy outperforms all splitting strate-
gies in clearing DAGs with large B, R, and D-sections with any
number of searchers.

7.3 Decomposing a DAG

We claim that a DAG can be decomposed into sections
of our four types. Formally, we define a valid section-
decomposition as follows.

Definition 6. Given a DAG G a section-decomposition ∆ is
valid if and only if it consists of sections θi = (Vi, Ei) of type B,
R, D, or P such that

⋃
i Vi = V ,

⋃
iEi = E and Ei ∩ Ej = ∅

for all i, j. Additionally, sections may only overlap on top and
bottom nodes.

A merge operation takes two valid sections and combines
them to form a new valid section. Formally, given two
sections θ1 = (V1, E1) and θ2 = (V2, E2), merge(θ1, θ2) =
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(V1∪V2, E1∪E2). We outline the possible merge operations
in the below table.

Components Possible Merge Outcome
P B, R, D, P
B B
R R
D D
P , B B
P , R R
P , D D
B, R D
P , B, R D

Next, we define an ordering among valid section-
decompositions.

Definition 7. We say ∆1 < ∆2 if ∆1,∆2 are valid section-
decompositions and ∆1 can be obtained from ∆2 by some number
of merge operations.

Then, we can define a minimality property for section-
decompositions.

Definition 8. A section-decomposition ∆ is minimal if ¬∃ ∆′

such that ∆′ < ∆.

Finally, we show how to compute a minimal section-
decomposition for any DAG. Consider the following proce-
dure on a topological ordering Γ of a DAG G. In the first
phase we will move through Γ one node at a time. Starting
at the current node v we will traverse Γ for each outgoing
edge of v until we reach a node with multiple incoming
edges or zero or multiple outgoing edges. This sequence of
nodes will be appended to a list η. Phase one is presented in
the pseudocode of Algorithm 5.

Algorithm 5 Phase one of the minimal decomposition algo-
rithm
Input: the topological ordering Γ
Output: the list η
η ← ∅
for all nodes v ∈ Γ do

for all outgoing edges e of v do
u← e.destination
seq ← {v, u}
while u has exactly one outgoing edge eo do

u← eo.destination
append u to seq

end while
append seq to η

end for
end for

After this phase, each edge will be in a unique sequence
in η. In a second phase, for each sequence λ in our list
we will combine λ with other sequences located after λ in
η which have not already been designated to a section to
create a section of one of the four types. Once η has been
traversed each edge of G will be in a unique section.

The way in which we combine sequences is as fol-
lows. Consider two sequences λ1, λ2 made up of nodes
u1, . . . , um1 and v1, . . . , vm2 respectively. We proceed
through a series of possible scenarios. First, if u1 = v1 and

um1
= vm2

we combine λ1 and λ2 into a D-section. Second,
if u1 = v1 we combine λ1 and λ2 into a B-section. Third, if
um1

= vm2
we combine λ1 and λ2 into a R-section. Finally,

if the previous three scenarios fail to be met, we leave λ1
as a P -section. Phase two is captured in the pseudocode of
Algorithm 6. Note that we refer to the first and last nodes in
a sequence λ by λs and λe respectively.

Algorithm 6 Phase two of the minimal decomposition algo-
rithm
Input: the list η
Output: a collection of sections of type B, R, D, and D

for all sequences λ ∈ η do
collect all unclaimed sequences α ∈ η such that
λs = αs in a list L1

if L1 6= ∅ then
collect all unclaimed sequences β ∈ L1 such that
λe = βe in a list L2

if L2 6= ∅ then
create a D-section from L2 and λ
mark L2 and λ as claimed

else
create a B-section from L1 and λ
mark L1 and λ as claimed

end if
continue

end if
collect all unclaimed sequences γ ∈ η such that
λe = γe in a list L3

if L3 6= ∅ then
create a R-section from L3 and λ
mark L3 and λ as claimed
continue

end if
create a P -section from λ
mark λ as claimed

end for

Theorem 6. For any DAG G, Algorithm 5 and Algorithm 6
produce a minimal decomposition ∆.

Proof. Suppose there exists a section-decomposition ∆′ <
∆. Thus, there exists two or more sections in ∆ which can
be merged. Without loss of generality, suppose there are
only two sections θ1, θ2 which can be merged. Consider the
sequences λ1, . . . , λn and µ1, . . . , µn that were combined
to make θ1 and θ2 respectively. Then, it is easy to see that
regardless of which λi or µi appeared first in η, Algorithm 6
would have created a section with all the λi and µi in the
same iteration. Thus, there cannot be two or more sections
which can be merged and therefore there is no ∆′ < ∆.

8 EXPERIMENTS

In this section, we present the results of our experiments,
which have the following goals:

• Observe the performance of the Plank strategy in
various types of networks.

• Observe how the Plank strategy performs as the
number of searchers available increases.
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• Observe how the Plank strategy performs as the size
of the network grows.

• Study how the Plank strategy performs as we vary
size, number of searchers, and network structure on
random DAGs.

We note that for the majority of our datasets the direction
of the edges represents a following/trust relation which we
reverse to move to an influence relation.

All of our algorithms are implemented in Java and tested
on a machine with dual 6 core 2.10GHz Intel Xeon CPUs,
32GB RAM and running Ubuntu 14.04.2.

For the task of computing an FAS, an NP-hard problem,
we employ a heuristic introduced in [20] and remove the
resulting edge set from G. The approach in [20] is a greedy
algorithm that computes a vertex sequence from G and
returns all leftward arcs from the sequence as an FAS. The
algorithm begins with an initial bin sort on a set of vertex
classes determined by the degree of each vertex in G (more
specifically the difference between the out-degree and the
in-degree). The bins for each vertex class are implemented as
a doubly-linked list. In each round of the greedy approach
we remove a sink, source, or vertex corresponding to a
maximum vertex class and prepend or append the vertex
to one of two vertex sequences s1 and s2 depending on its
vertex class. As a result, this changes the vertex class of
adjacent vertices in G. In order to ensure the algorithm is
efficient the nodes of the doubly-linked lists are moved to
adjacent bins by manipulating the node references directly.
In the end, the two sequences s1 and s2 are concatenated
together to produce the final vertex sequence from which
the leftward arcs are taken as a FAS. The algorithm runs in
O(m) time and requires O(m) space.

8.1 Online Networks
For each of the networks we run our Plank algorithm on
the obtained DAG with s ranging from 0.1 − 1% of the
size of the network increasing in 0.1% increments. Then,
we plot the ratio of the length of the strategy to the lower
bound where we compare the baseline strategy construction
algorithm (mDFS) to the optimized version (mDFSO). Fur-
thermore, we compare the performance of the Plank strategy
to a generic splitting strategy (mBFSO) generated from a
modified BFS with the same alternate stopping condition
as our mDFS. The splitting strategy is generated with the
optimized strategy construction algorithm. Below we give
an overview of each of the datasets.

Wiki-Vote: First, we look at the Wiki-Vote dataset from
[21]. An edge in this network from user A to B indicates that
A voted for B to become an administrator on Wikipedia. The
wiki-vote dataset contains 7,115 nodes and 103,689 edges.
The FAS computed contained 8% of the network’s edges.

Twitter Retweet Network: The higgs-retweet network from
[22] maps the retweets by users of Twitter during the
announcement of the discovery of the Higgs Boson. The
network contains an edge from user A to B if A retweeted
B. The network contains 256,491 nodes and 328,132 edges.
The FAS computed contained 0.1% of the network’s edges
indicating a very DAG-like structure.

Email Communication Network: The email-EU network
from [23] was generated using email data from a large

Name |V | |E| FAS
wiki-Vote 7,115 103,689 8%
higgs-retweet 256,491 328,132 .1%
email-EuAll 265,214 420,045 14%
epinions 131,828 841,372 24%
slashdot 77,360 905,468 8%
wiki-Talk 2,394,385 5,021,410 10%
pokec 1,632,803 30,622,564 33%
twitter2010 41,652,230 1,468,365,182 22%

TABLE 1: Dataset statistics

Fig. 4: Time in seconds.

European research institution. The network contains an
edge from user A to B if A emailed B. The network con-
tains 265,214 nodes and 420,045 edges. The FAS computed
contained 14% of the network’s edges.

Signed Epinions: The signed Epinions trust network from
[21] contains an edge from user A to B if A trusts B on the
Epinions review site. The signed Epinions dataset contains
131,828 nodes and 841,372 edges. The FAS computed con-
tained 24% of the network’s edges.

Signed Slashdot: Next, we look at the signed Slashdot
dataset from [21]. An edge in this network from user A to
B indicates that B is a friend of A’s. The signed Slashdot
dataset contains 77.350 nodes and 905,468 edges. The FAS
computed contained 8% of the network’s edges.

wiki-Talk: The wiki-Talk network from [21] contains an
edge from user A to B if A has at least once edited a talk
page of user B on Wikipedia. The wiki-Talk dataset contains
2,394,385 nodes and 5,021,410 edges. The FAS computed
contained 10% of the network’s edges.

pokec: Pokec is the most popular online social network
in Slovakia. The pokec network from [21] contains an edge
from user A to B if B is a friend of A’s. The pokec dataset
contains 1,632,803 nodes and 30,622,564 edges. The FAS
computed contained 33% of the network’s edges.

twitter2010: The twitter2010 network from [24], [25] con-
tains an edge from user A to B if B is a follower of
A on the social network Twitter. The twitter2010 dataset
contains 41,652,230 nodes and 1,468,365,182 edges. The FAS
computed contained 22% of the network’s edges.

8.2 Discussion

Figure 4 shows the running time in seconds that it took to
compute the search strategies for each dataset including the
FAS computation. Most run in a matter of seconds, while
twitter2010 took approximately 25 minutes.



12

(a) wikivote (b) higgs-retweet (c) emailEU (d) epinions

(e) slashdot (f) wiki-Talk (g) pokec (h) twitter2010

Fig. 5: Approximation ratios for real datasets. The horizontal axes represent s ranging from 0.1–1% of the size of the network
increasing in 0.1 increments. The vertical axes represent approximation ratios.

Figure 5 shows the approximation ratios of the strate-
gies computed by our Plank algorithm and the splitting
strategy. On every network we see the optimized strategy
construction algorithm outperforming the baseline version.
Furthermore, on all networks except twitter2010 we see that
the Plank strategy outperforms the splitting strategy.

With regards to twitter2010, we note that our result from
section 7.2 comparing the two types of strategies relies on
a key structural aspect of the network - namely having
large sections. However, we expect the twitter network to
be very condensed and thus void of long chains of follower
relationships as evidenced by the network’s ratio of edges-
to-nodes.

We can see that the size of the network does not have
a strong influence on the resulting approximation ratio.
Instead, the structure of the network is the primary factor
in determining how large the approximation will be. As
we described in Section 7.1, the overlap factor, which can
often be approximated by m

n , drives up the approximation
ratio due to high overlap nodes having to be re-visited often
in the search strategy. Using this as a bearing, we see that
twitter2010, pokec, and wikivote, three networks with large
approximation ratios, have an edge-to-node ratio of 15.0,
18.7, and 35.2 respectively.

It is important to remember that the approximation
ratio is comparing the strategy lengths to the lower bound
and are therefore quite pessimistic. In reality, the optimal
strategy achievable for any given network is likely much
longer than the lower bound and therefore closer to the
length of the strategy computed by our Plank algorithm.

Finally, we also ran experiments with small fixed
amounts of searchers as shown in Figure 6 to illustrate
how our Plank algorithm performs when few searchers are
available. We see similar approximation ratios to Figure 5,
but note that increasing the number of searchers allows for
improvement. We outline the reasoning for this improve-
ment below.

Consider an arbitrary step Vi in a search strategy σ
using s searchers. The nodes in step Vi were determined
by sequential edges taken from the edge ordering. As such,
we can consider the edges used to select the Vi as intended
edges, that is, edges that we intended to clear in the current
step. Given s searchers, we will have s − 1 intended edges.
Now, consider the directed clique KVi

on the nodes of Vi.
Among the s(s−1) edges in KVi

, s−1 of them are intended.
This leaves, s(s − 1) − (s − 1) = (s − 1)2 edges that are
potentially edges of G. If any of these remaining edges
are, in fact, present in G, then the current step will clear
those edges in addition to the s− 1 intended edges. We can
think of these as freely cleared edges. Now, consider what
happens as s increases. We get an increasing number of
potentially free edges cleared in Vi. Therefore, as s increases,
the expected number of freely cleared edges increases which
leads to more edges cleared in each step of σ. As a result,
we expect the length of search strategies to decrease as s
increases. However, at the same time, the rate of decrease of
the approximation ratio will be influenced by the size of the
largest clique in G since increasing s beyond this size will
limit the number of free edges cleared.

8.3 Random DAGs

Next, we consider the individual parameters of the system
and investigate how the approximation ratio is affected as
they are varied. For these tests, we generate random DAGs
similar to the Erdös-Rényi model except we predetermine
an ordering of the nodes, (1 . . . n), in the DAG and then
randomly add edges from node i to j with probability p
provided i comes before j in the ordering. We generate five
random DAGs for each data point and average the results.

First, we study how the approximation ratio behaves as
the size of the network is increased. We fix p = 1

n and run
the tests for s = 10, 25, 50. Figure 7 shows the resulting
approximation ratios as the network size increases from
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Fig. 6: Approximation ratio when s = 50, s = 100, and s = 200.

Fig. 7: Effect of increasing network size on the approximation
ratio for s = 10, s = 25, and s = 50. The horizontal axes rep-
resent n ranging from 500–20,000. The vertical axes represent
approximation ratios.

1,000 to 20,000 nodes. We observe the ratios remain nearly
constant as the network size is increased.

Next, we look at how the approximation ratio behaves as
the number of searchers is increased. We fix p = 1

n and run
the tests for n = 5,000, n = 10,000, and n = 20,000. Figure 8
shows the resulting approximation ratios as the number of
searchers increases from 0.2% to 2% of the network size. We
see that the approximation ratio decreases as the number of
searchers increases.

Futhermore, we produce random DAGs according to
the Barabási-Albert model [26] to replicate the power law

Fig. 8: Effect of increasing searchers on the approximation
ratio for n = 5, 000, n = 10, 000, and n = 20, 000. The
horizontal axes represent s ranging from 0.2-2% of the size
of the network increasing in 0.2 increments. The vertical axes
represent approximation ratios.

structure exhibited in many online social networks. The
Barabási-Albert model takes three parameters n, m, and m0.
The graph begins with m0 isolated nodes. New nodes are
added to the graph one at a time until we have a graph with
n nodes. Each new node is connected to m ≤ m0 existing
nodes with a probability that is proportional to the number
of edges that the existing nodes already have. We direct new
edges from existing nodes to new nodes to maintain a DAG
structure. We run the Plank algorithm on each DAG with
n = 20,000 and s ranging from 0.5 − 3% of the size of the
network increasing in 0.25% increments.

In Figure 9 we have m = m0 = 2 and see a steady
decrease in approximation ratio. Then, in Figure 10 we
investigate the effects of adding an additional preferential
node where we observe a similar decrease in approximation
ratio. Finally, in Figure 11 we look at a Barabási-Albert DAG
in which there are 6 preferential nodes and 3 links are added
with each new node in which a decreasing approximation
ratio is also observed as the number of searchers (modestly)
increases. In each case we observe good approximation
ratios.

9 CONCLUSION

In this work we perform an extensive study of the problem
of eliminating contamination spreading through a network.
Specifically, we study the related graph searching problem
which we prove is NP-hard even on DAGs and therefore
an exact algorithm is infeasible for large networks. Con-
sequently, we introduce a novel approximation algorithm
for clearing DAGs which we incorporate into a procedure
for clearing general digraphs. We experimentally test our
algorithm on several large online networks and observe
good performance in relation to the lower bound. Further-
more, we explore various parameters of the graph searching
problem on random DAGs and discover the search time is
unaffected by network size, yet significantly decreases with
modest increases in searcher allocation.
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