View-Based Tree-Language Rewritings

Laks Lakshmanan, Alex Thomo University of British Columbia, Canada University of Victoria, Canada

Importance of trees – XML

• Semi-structured textual formats are very popular.

<movie>

<title>House of cards</title> <year>2013</year>

<character>

<name>Francis</name> <actor>Kevin Spacey</actor> </character>

<character> <name>Claire</name> <actor>Robin Wright</actor>

</character>

</movie>

XML (Multi TB) success stories:

- 1. Elsevier
 - Papers and books
- 2. JPMorgan Chase & Co
 - Stock research data
- 3. JetBlue Airways
 - Document management

Source: MarkLogic XML Impacting the Enterprise Tapping into the Power of XML: Five Success Stories

Importance of trees – JSON

• Semi-structured textual formats are very popular.

JSON (Multi TB) success stories:

- 1. CouchDB
- 2. MongoDB
- Jaql and Hive JSON SerDe for Hadoop

Mantra:

"Log first, ask questions later"

Importance of views (example)

- Big database of movies in a super-tree,
 - each movie being a sub-tree
- Query asks for all the movie sub-trees with a MAC.
 - small minority; number about 50.
 - Result materialized into a view.
- Tremendous help in answering new queries, e.g.
 - "find actors playing a MAC".
 - Rewrite into: "find actors playing a MAC in a movie having a MAC"
 - answer it on the materialized view.

Regular Expressions and Automata

• Return all movie actors

A pattern

$$_*m_*c\hat{a}$$

Reverse

• Return all movie actors

A pattern

$$_*m_*c\hat{a}$$

Bottom-up Tree Automata

• Return all movie actors

$$_*m_*c\hat{a}$$

Run

Bottom-up Tree Automata (II)

Return all movie actors of MACs

$$_*m_*c_{\text{MAC}}\hat{a}$$

• Automaton

Bottom-up Tree Automata (IV)

• Return all movies having some MACs

$$\underline{*\hat{m}}\underline{*}c_{_{\mathrm{MAC}}}a$$

Run

Bottom-up Tree Automata (V)

- Regular tree languages (RTAs)
 - the sets of trees recognized by TAs.
 - closed under intersection and complement
- Deterministic TA
 - For any tree t, there can be at most one accepting run of A on t.
 - Power-wise, TA = DTA.
- Complement obtained from deterministic TA
- Intersection via a special construction preserves determinism.

Queries

• Queries are regular sets of trees over

• Containment Lemma

 $\Sigma \cup \hat{\Sigma}$

 $Q_1 \subseteq Q_2$ implies $\operatorname{ans}(Q_1) \subseteq \operatorname{ans}(Q_2)$

Star Operation

Filled Star Operation

Rewriting, and two sets

Maximally contained rewriting:

$$R = \{ \xi \in \Upsilon^{\mathbf{x}} : V \, \star \xi \subseteq Q \}$$

The **bad** set:

 $X = \{\xi \in \Upsilon^{\mathbf{x}} : \text{ there exists } v \in V \text{ such that } v \star \xi \in Q^c\}$

The promising set:

 $Y = \{\xi \in \Upsilon^{\mathbf{x}} : \text{ there exists } v \in V \text{ such that } v \star \xi \in Q\}$

Proposition. $R = Y \setminus X$

Example with chains

 $Q = \{aacde, bbcde, cccde\}$ $V = \{aacde, bbcde\}$ $cde \in R$

$$V \star c\hat{d}e = \{aac\hat{d}e, \, bbc\hat{d}e\} \subseteq Q$$

Example with chains (II)

 $Q = \{aacde, cccde\}$

 $V = \{aa\hat{c}de, \, bb\hat{c}de\}$

 $c\hat{d}e \not\in R$

$$bbc\hat{d}e \in V \star c\hat{d}e$$

 $bbc\hat{d}e \not\in Q$

 $c\hat{d}e \in X$ $c\hat{d}e \in Y$

Inverse of the star operation

$$v \circ v' = \begin{cases} \xi & \text{if } v' = v \star \xi \\ \text{undefined otherwise} \end{cases}$$

Proposition.

$$X = V \diamond Q^c \qquad Y = V \diamond Q$$

Compute $K = J \circ J'$ where J and J' are RTQ

Colored Alphabets

- Markers will be colors
 - Blue for J
 - Red for J'

$$\Sigma^{\mathbf{r}} = \{a^{\mathbf{r}} : a \in \Sigma\}$$

$$\Sigma^{\mathbf{b}} = \{a^{\mathbf{b}} : a \in \Sigma\}$$

Colored Languages

- $\gamma^{\mathbf{b}}$ set of all trees having one node blue
- $\gamma^{\mathbf{r}}$ set of all trees having one node red
- **γ**^{b,r} set of all trees having one node blue and another red as descendant of the blue node
- $\Phi^{\mathbf{r}}$ set of all trees having all nodes black, except root which is red

Colored Languages (II)

- $J\,\subseteq\,\Upsilon^{\mathbf{b}}$
- $J' \subseteq \Upsilon^{\mathbf{r}}$

 $K \subseteq \Upsilon^{\mathbf{r}} \qquad K \subseteq \Upsilon^{\mathbf{r}} \setminus \Phi^{\mathbf{r}}$

 $J \star K \subseteq \Upsilon^{\mathbf{r}} \qquad J \star K \subseteq \Upsilon^{\mathbf{b},\mathbf{r}}$

Colored Languages (III)

- p over $\Sigma \cup \Sigma^{\mathbf{r}} \cup \Sigma^{\mathbf{b}}$
- $p^{\neg b}$ same as p, but with blue nodes turned black $p^{\neg r}$ same as p, but with red nodes turned black

 $L \text{ over } \Sigma \cup \Sigma^{\mathbf{r}} \cup \Sigma^{\mathbf{b}}$ $L^{\neg \mathbf{b}} = \{ \mathbf{p}^{\neg \mathbf{b}} : \mathbf{p} \in L \}$ $L^{\neg \mathbf{r}} = \{ \mathbf{p}^{\neg \mathbf{r}} : \mathbf{p} \in L \}$

Colored Languages (IV)

$$B_{L} = \{ \mathbf{p} \in \Upsilon^{\mathbf{b},\mathbf{r}} : \mathbf{p}^{\neg \mathbf{b}} \in L \} \text{ for } L \subseteq \Upsilon^{\mathbf{r}}$$

$$\mathcal{A} = (S, \Sigma \cup \Sigma^{\mathbf{r}}, F, \Delta) \quad \text{automaton for } L$$

$$\mathcal{B} = (S, \Sigma \cup \Sigma^{\mathbf{b}} \cup \Sigma^{\mathbf{r}}, F, \Delta_{\mathcal{B}})$$

$$\Delta_{\mathcal{B}} = \Delta \cup \{ H \xrightarrow{a^{\mathbf{b}}} s : H \xrightarrow{a} s \text{ in } \Delta \text{ and } a \in \Sigma \}$$

$$L(\mathcal{B}) \cap \Upsilon^{\mathbf{b},\mathbf{r}} = B_{L}$$

Similarly:

 $B'_{L} = \{ \mathsf{p} \in \Upsilon^{\mathbf{b},\mathbf{r}} : \mathsf{p}^{\neg \mathbf{r}} \in L \} \text{ for } L \subseteq \Upsilon^{\mathbf{b}}$ $C_{L} = \{ \mathsf{p} \in \Phi^{\mathbf{b},\mathbf{r}} : \mathsf{p}^{\neg \mathbf{b}} \in L \} \text{ for } L \subseteq \Upsilon^{\mathbf{r}} \setminus \Phi^{\mathbf{r}}$

Rewriting Algorithm $K = J \circ J'$

Compute: $B_J = B'_{J'}$

$$\begin{split} B_J \cap B'_{J'} \\ \mathcal{D} &= (S, \Sigma \cup \Sigma^{\mathbf{b}} \cup \Sigma^{\mathbf{r}}, F, \Delta) \qquad \quad L(\mathcal{D}) \subseteq \Upsilon^{\mathbf{b}, \mathbf{r}} \end{split}$$

 $\mathcal{E} = (S, \Sigma \cup \Sigma^{\mathbf{b}} \cup \Sigma^{\mathbf{r}}, F_{\mathcal{E}}, \Delta) \qquad L(\mathcal{E}) \subseteq \Phi^{\mathbf{b}, \mathbf{r}}$ $F_{\mathcal{E}} = \{s \in S : \text{ there exists } H \xrightarrow{a^{\mathbf{b}}} s \text{ in } \Delta\}$

Theorem. $L(\mathcal{E}) = C_K$

 $C^{\neg \mathbf{b}}_{\kappa} = K$

Rewriting Algorithm (II) $X = V \circ Q^c$ $Y = V \circ Q$

 $R = Y \setminus X$

Complexity

- **Proposition**. $K = J \circ J'$ can be computed in polynomial time.
- **Theorem**. The MCR of *Q* using *V* can be computed in exponential time.
- **Theorem**. Computing the MCR of *Q* using *V* is **EXPTIME-hard**.

Final Notes

- Query automata formalism used is equivalent in power to MSO (golden standard)
 - For specifying node-selecting queries.
 - Colors correspond to Boolean markings
 - J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree automata. DBPL, 2005
- XPath rewriting is NP-hard.
- XPath is a subclass of our formalism.
 - Our automata-based algorithm can be used as well for rewriting XPath queries.

K-ary queries

• **Example**: Find the 2-forests of actor tree pairs for actors who have played the same character together in some movie.

Run

Why is rewriting K-ary queries challenging

- It has been shown that k-ary queries can be encoded by unary queries
 - T. Schwentick. On diving in trees. In MFCS, 2000.
 - Done by going through MSO formulas.
 - Going from a k-ary query to an MSO encoding and then back to automata incurs non elementary complexity.
- Therefore we need a another algorithm for rewriting k-ary queries
 - that doen't go via MSO formulas

Conclusions

- Characterized view-based rewriting as solving a lang. equation
 - Defined appropriate tree operators
- Defined colored languages
 - Gave automata constructions
- Computed rewriting as a series of operations on automata
- Characterized the complexity of computing rewriting
 - Tight lower bound provided
- Extended the results to k-ary queries
 - Common in XQuery

Thank You