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Abstract

Regular path queries (RPQs), expressed as regular ex-
pressions over the alphabet of database edge-labels, are
commonly used for guided navigation of graph databases.
RPQs are the basic building block of almost all the query
languages for graph databases, providing the user with a
nice and simple way to express recursion. While convenient
to use, RPQs are notorious for their high computational de-
mand. Except for few theoretical works, there has been lit-
tle work evaluating RPQs on databases of great practical
interest, such as large spatial networks.

In this paper, we present a grid-aware, fault tolerant
distributed algorithm for answering RPQs on spatial net-
works. We engineer each part of the algorithm to account
for the assumed computational-grid setting. We experi-
mentally evaluate our algorithm, and show that for typical
user queries, our algorithm satisfies the desiderata for dis-
tributed computing in general, and computational-grids in
particular.

1 Introduction

Motivation. Regular path queries (RPQs) are used for nav-
igating graph databases (or data-graphs in short). As their
name suggests, these queries are described by means of reg-
ular expressions over the alphabet of database edge-labels.
The answer to an RPQ is the set of database objects reach-
able by paths spelling words in the corresponding regular
language. For example, the answer to the query

highway* || (road + €)*,

where || is the shuffle operator, is the set of objects reach-
able by following highways interleaved by no more than k
roads.

Over the last years, RPQs have been the focus of nu-
merous works (see [1, 5, 7, 9, 14, 10, 20] etc). This is not
surprising as RPQs are the basic building block of almost
all query languages for data-graphs, providing the user with
a nice and simple way to express recursion (see for a dis-
cussion [20]). However, RPQs are notorious for their high
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computational demand. For this reason, there have been
many attempts to find clever ways to evaluate the “nice” but
“time consuming” RPQs. Most of such work is related to
XML data-trees, and their methods seem to apply to trees
only. There has been much less work regarding the evalua-
tion of RPQs on general data-graphs or regarding the eval-
uation of RPQs on particular data-graphs of great practical
interest, such as large spatial networks. As the seminal work
[15] points out, RPQs are an integral part of an intelligent
querying of spatial networks.

In this paper, we focus on grid-aware evaluation of RPQs
on spatial networks for which we present a distributed algo-
rithm, which, experimentally, exhibits a desirable property
for a grid setting: the computational stress on participat-
ing machines decreases proportionally with the increase of
the number of machines. This is especially appropriate for
grids, where the power comes from the large number of ma-
chines rather than from their individual power, and where
machines can refuse to accept load above some predefined
threshold.

The main characteristic of the spatial networks that dis-
tinguishes such databases from other databases studied in
the literature, is the fact that they can be conveniently mod-
eled by weighted graphs. Navigation of such databases im-
plies more than “starting from object a we can reach object
b by following some path spelling a word in a given RPQ.”
Rather, one is also interested in discovering the cheapest
such path that connects a with b and its expense.

This additional requirement makes the evaluation task
more difficult. Namely, we cannot benefit anymore from
special graph indexes, such as data-guides introduced in the
literature (cf. for example [16]) because they ignore the
cost of the database paths. The lack of index structures for
this problem makes developing a grid-aware approach even
more important if one is to have RPQs feasible for practical
use.

Related Work. Regular path queries are by now part of the
folklore (cf. [1, 8, 11, 12, 13, 15, 16, 19]). Despite the great
attention on RPQs over the years, there has been no work in
devising efficient algorithms for their evaluation on spatial
networks which include, as a special case, road networks.



As explained above, because of the special nature of the
spatial network graphs, the known (efficient) methods for
evaluating RPQs are not applicable in this case.

Few works have dealt with a distributed evaluation of
path queries. The most important are [2], [19], and [18]. In
[2] and [19], the data-graphs are unweighed, and their al-
gorithms do not seem generalizable to our case. Moreover,
the algorithm of [19], distributes the load unevenly among
processors, which is an undesirable feature in a grid setting.
The algorithm of [2] assumes that each processor services
one object only, and this is one more reason for the inappli-
cability of [2] in our setting.

The methodology described in [18] works on weighted
regular path queries and, while its algorithm can be adapted
to work for weighted databases, the approach lacks many
important features that are needed in a grid setting, notably
termination detection, fault tolerance and experimental con-
siderations.

Finally, in [17], a distributed all-to-all algorithm is pre-
sented. The setting there is different, first because the query
is assumed to start from each object (as opposed to starting
from a designated object), and second because it is assumed
that each object is served by a dedicated (for that object)
process. Both these assumptions are not applicable to spa-
tial networks with millions of objects.

Our Approach. While the general idea of [18] seems to
work in a general distributed setting, it becomes “the devil
is in details” when one tries it in a grid environment. In this
paper we tackle several challenges in turning the proposed
method of [18] into a practical and resilient algorithm for
a grid setting. Furthermore we present experimental results
and discuss performance considerations.

First let us give a high level description of [18]. For this,
assume a database is partitioned among a set of cooperating
machines, and a given RPQ is to be evaluated starting from
an object o residing in the partition belonging to some orig-
inating machine. Let s be the start state of an automaton
A for the given RPQ. Now, associate o with s, and start-
ing with this association, perform path “expansions,” which
generate other object-state associations. An expansion is
possible if there is a match of a database edge with an au-
tomaton transition both originating from the object and state
(respectively) of the association being expanded. The asso-
ciations are labeled with the weight of the best path known
so far. When the evaluation needs to continue to other parti-
tions, the relevant information is packed into messages and
sent to the corresponding machines. If an object a is associ-
ated with with a final state, then a is produced as an answer
to the given RPQ and is labeled with the weight of the path
followed to reach it. As it is possible that the same object
can be reached (later on) by some other path, the label of the
corresponding answer can be “corrected” at a later stage.

The above simple procedure can become a viable prac-
tical algorithm (for a grid setting) if one further addresses
issues related to termination detection, fault tolerance and
performance optimization. These issues are the focus of
this paper.

Ensuring termination detection is an important, but chal-
lenging goal of any distributed algorithm. The task is
more difficult if one allows for sudden machine losses dur-
ing computation. Such losses can easily happen in a grid
setting, and grid-aware algorithms must be resilient under
these conditions. In this paper we introduce an RPQ eval-
uation methodology that includes a resilient algorithm for
termination detection, which smoothly adapts to machine
losses. Our approach for fault tolerance allows for the com-
putation to continue, on the fly, on mirroring machines, i.e.
machines that handle portions of the database previously
served by the defunct hardware. If such “back-up” ma-
chines are not available, we make provisions to provide at
least the search results obtainable were the search to be run
on the subset of the spatial network database served by the
currently available machines. Furthermore, we remark that,
since at some point in time, some of the navigation used
the whole database, we may get more results than those
strictly available if we were to restart the RPQ evaluation
once some machines failed.

We assess the performance of our RPQ evaluation ap-
proach by first investigating issues associated with com-
putational and communicational costs. It is important to
design for reduced computational stress on the participat-
ing machines since, in a grid setting, computational devices
may not tolerate loads above certain threshold. One element
to investigate in the quest for “balanced” computation is the
choice of the data partitioning. It turns out that a good parti-
tioning is interrelated with the database storage scheme for
which our approach uses a clustering RTree (spatial) index.
With such an index, we not only cluster together (in disk-
blocks) segments that are spatially close to each other, but
also partition the data among participating grid machines.
Namely, each machine locally stores and works on a subset
of the RTree leaves. After this RTree partitioning, each ma-
chine builds a local RTree index on the blocks assigned to
it.

The investigation of the communication properties of
our approach to RPQ evaluation revealed that the same
structures that support computation recovery after machine
losses also serve as “message suppressors,” that signifi-
cantly reduce communication, thus rendering the overall
number of messages “negligible” for today’s high-speed
networks.

The other observation is that the total number of mes-
sages is almost independent of the number of participating
grid machines. This is certainly very desirable in a grid en-
vironment because it allows for scaling to large number of



machines without induced message penalties.

Further performance tuning requires investigating the
details of the computation and, in particular, the choice of
expanding object-state associations. These associations are
inserted in a processing queue and then experimentation
is done with various queue strategies having as objectives
the reduction of stress on machines, the quality of inter-
mediate query answers, and the minimization of number of
messages. It turns out that the choice of queueing strat-
egy matters for all the above goals. Further improvements
can be achieved by the processing order in an expansion,
i.e. the order among three basic steps: dequeue (an object-
state association), find “next” associations, and possibly re-
lax weights in existing associations. This is a subtle point.
While the dequeue step has to come first, the other two steps
can have the order interchanged. In this paper, we propose
the order: dequeue, relax weights due to the dequeued asso-
ciation, and then find and enqueue next associations. This
order provides better quality of intermediate query answers
when using the best queue strategy.

The rest of the paper is organized as follows. In Sec-
tion 2, we formally define spatial network databases, regu-
lar path queries (RPQs), and their semantics. In Section 3,
we present our grid-aware distributed algorithm, which has
two interwoven components: the RPQ evaluation and the
resilient machine loss and termination detection. In Sec-
tion 4, we thoroughly discuss queue strategies for optimiz-
ing our algorithm. In Section 5, we present our experimen-
tal results. Finally, Section 6 concludes the paper.

2 Spatial Network Databases and Regular
Path Queries

We consider a spatial network database (or just database
in short) to be an edge-labeled graph with real non-negative
values assigned to the edges. Intuitively, the nodes of the
database graph represent objects and the edges represent
spatial segments and their length.

Formally, let A be an alphabet. Elements of A will be
denoted R, S, .... In practice such symbols are for exam-
ple road, highway, freeway, bridge, and so on. Objects
will be denoted a, b,c,...,o0,.... A database DB is then
a weighted graph (V, E), where V is a set of objects, and
FE CV xAxRxV isasetof directed edges labeled with
symbols from A and weighted with numbers from R.

A regular path query (RPQ) is a regular language over
A. As such, computationally, an RPQ is a finite state au-
tomaton (FSA) A = (P, A, 7, pg, F'), where P is the set of
states, A is the alphabet, 7 is the transition relation, pq is
the initial state, and F’ is the set of final states. For the ease
of notation, we will blur the distinction between RPQs and
FSA’s that represent them. Let us denote with length()
the usual length of a path 7 in the database, i.e. the sum

of the edge-weights along the path. We define the weighted
answer (WAns) to A as follows

WAns(A,o0,DB) = {(a,r) e VxR
there exists a path 7 from o to a in DB,
which matches an accepting path p in A,
and r = min{length(w) : 7 as above}}.

As an example consider the database DB in Figure 1
and the query Q = RR + T'T'. There are three paths going
from object o to object c. The shortest path consisting of a
single edge of weight 2 spells the word S which does not
belong to query . The two other paths spell words in @
(RR and T'T respectively). The shorter of these two is the
path spelling RR with a length of 3, and thus we have that
(¢,3) € WAns( A, 0, DB).

Figure 1. An example database.

3 Grid-Aware Distributed Evaluation of Path
Queries

Before evaluating any query, we spatially cluster the
database into disk blocks by using a clustering RTree in-
dex. Then, in a round-robin fashion, we assign each block
to a participating machine.

The preference of this partitioning method over a hierar-
chical one is motivated by the grid setting for the query eval-
uation. If we assign machines big partitions of contiguous
areas, then machines work for long continuous intervals un-
der heavy stress. On the other hand, if we assign machines
small partitions of contiguous areas, such as block-sized
leaves of a clustering RTree index, then machines alternate
shorter work intervals with idle intervals. This method is
desirable in a grid setting, where machines(servers) allow
only a limited quantum of running time for each served
task. Furthermore, as described in the results section, this
partitioning approach pays a negligible price in terms of in-
creased volume of communication.

Since in a grid setting, the machines may leave in the
middle of a computation, we take into account the possi-
bility of replicating the data partitions to several machines.
During the evaluation, only one of the machines that store a



partition is selected. If later on, the machine decides to leave
the evaluation, then the algorithm smoothly “switches” to
another machine storing the same data partition(s), and re-
covers the lost part of the computation.

We denote the participating machines with
M, ..., Mj;,.... We organize the database as an
edge relation. The edges of the database are categorized
as: a) local edges connecting objects stored in the same
machine, or b) cross-boundary edges connecting objects
stored in different machines. In an edge (a,R,r,b)
€ D x A xR x D we also store a flag indicating whether
the edge is local or not. If the edge is a cross-boundary one,
we also store an id-list of the machines where the (next)
edges (b, _, _, _) are stored.

Each machine maintains three structures:

1. A table of object-state-weight (OSW) triples. We call
them OSW tables, and denote with OSW; the table
of a machine M;. OSW tables have a hash organiza-
tion in our implementation. Initially, these tables are
empty.

2. A processing queue () of object-state-weight triples.
We denote with @); the queue of a machine M;. Ini-
tially, all queues are empty except for the queue of
the initiating machine, which stores the triple (o, s, 0),
where o is the designated origin object, and s is the
starting state of the query automaton. The queue strate-
gies and their significance for grid settings are dis-
cussed in the next section.

3. A message log table (Log) of object-state-weight-
machine quadruples. We denote with Log; the mes-
sage log of a machine M;. The Log tables have a hash
organization in our implementation. These tables are
the key structure for recovering the lost computation
when machines (suddenly) leave the query evaluation.
Also, the Log tables are important in significantly re-
ducing the messages to an almost negligible number.
Initially, these tables are empty.

We can visualize the answering of an RPQ query as (im-
plicitly) building on the fly a weighted graph of object-
state associations. With this visualization, the weights in
the OSW triples correspond to the weights that a classical
single-source shortest path algorithm maintains for the pro-
cessed nodes of the graph.

Each machine M; works in parallel with other machines
as follows. First a triple, say (a,p,r), is removed from
queue (;, and checked against O.SW; to see whether there
is already a triple (a,p,_). If not, then (a,p,r) is in-
serted into OSW;. Otherwise, when a triple, say (a, p, s)
is found in OSW;, we update (or relax) its weight by set-
ting s < min{r, s}.

If a dequeued triple was “useful,” i.e. if it caused an in-
sertion or update in O.SW, then such a triple might trigger
further insertions or updates. Thus, for a useful triple we
have a second step in its processing. During this step, we
“expand” it by generating the “next” OSW triples. The ex-
pansion is done by trying to find from object a and state p
an edge and a transition (respectively) that match. Each ex-
pansion creates new OSW triples, which are inserted in Q;.
It might happen that some new triple, say (b, q, s), is cre-
ated by following a cross-boundary database edge. In such
a case the triple is “not local,” i.e. object b is not stored in
M, but in another machine M;. [When we say that “object
b is stored in M;,” actually what we mean is that the edge
tuples (b, _, _, _) are stored in M;.] When such triples will be
dequeued and processed, they will be packed into messages
and sent to the corresponding machines. Each message sent
by machine M; is also logged in table Log;.

A machine M; can also receive messages of the type
(M, gone), which informs M; about the loss of a grid ma-
chine M; from the query evaluation. As we mentioned
above, we can assume the existence of partition replicas,
and so, the data stored in machine M; might also exists
in some other machine, say M. In such a case, machine
M; retrieves from Log; all the messages (if any) sent ear-
lier to M, and resends them to M},. Machine Mj,, receiv-
ing work through these messages (sent earlier to M), will
be able to redo the work of M, and continue further. It
should be clear that our algorithm continues to work fine
when there are machine losses even without having data
replication. The algorithm will not get “stuck,” but con-
tinue to produce all the answers, which are obtainable from
the part of the database graph stored in the remaining “live”
machines. The fact that our algorithm can take advantage of
data replication makes it more general, and able to produce
the “perfect” query answer set when replication is in place.

The algorithm terminates when the processing queues of
each machine get empty, and when there are no messages,
which are sent but not yet received.

Our algorithm has two interwoven components: the
computation of query answers (as described above), and
its machine loss and termination detection. To simplify
the presentation and to improve readability, we present the
components separately. The two components can be easily
merged in an unified algorithm.

The computation of query answers is formally as fol-
lows.

Algorithm 1

Input: A query automaton A = (P, A, 7, po, F'), adatabase DB,
and a start object o of the DB. Automaton .4 is sent first to
all participating machines.

Output: WAns(A, o, DB).

Method:
Suppose that object o is in machine M.



1. Insert (po, 0,0) in queue Qo (of Mo).

2. Repeat 3 and 4, at each machine M; in parallel, until
termination is detected.

3. Remove from queue @Q; (according to its policy) a
triple (a, p,r).

(a) if p € F (i.e. pisafinal state in query automaton
A)
then
insert (a,r) in WAns(A, o, DB) or update
some existing
(a,s) € WAns(A, o, DB) by setting
s < man{r, s}
(b) if a is alocal object
then
insert (a, p, r) in OSW; if there does not ex-
ist a triple (a,p, s), or otherwise (possibly)
update (a, p, s) by setting s < min{r, s}.
else (object a belongs to a remote machine)
if (a,p,7) & Log; or
(a,p,7’") € Log; and v’ > r
then
pack (a,p,r) in a message and send it
to the machine responsible for a. Insert
(a,p,r) in Log; table.
(c) if an insertion or update happened in OSW;
then
For each edge a 2 bin DB and each
transition (p, R,q) € 7, insert the triple
(¢,b,7 + ¢) into Q.

4. Upon receipt of a message (a,p,r) insert the triple
(a,p,r) into Q;.

5. Upon receipt of a message (M, gone), resend all the
messages (a,p,r) € Log;, where object a belongs to
M;, to a live machine My, which replicates the M;
data partition.

Observe that in step 3a of the above algorithm, we incre-
mentally build WAns(A, o, DB) each time that an object is
associated with a final state. In practice, such answers are
directly sent by the machines to the user as soon as they are
discovered. The question is what is the quality of the pro-
duced answers? This question arises because the weight of
the answer objects might be lowered later due to discovery
of new cheaper paths from the origin. At the termination of
the algorithm the weights will be optimal, but the question
is what can be done to have almost optimal intermediate
answer weights. Interestingly, the quality of intermediate
answers is significantly influenced by the processing queue
strategy that we discuss in detail in Section 4.

We would like to mention here that the above algorithm
can be easily enhanced to also produce the cheapest paths
corresponding to the query answers.

Another feature that we also want to stress is about the
Log tables. Namely, they not only make possible the re-
covery of the computation in case of machine losses, but

also serve as message suppressors, which significantly re-
duce the number of messages in the system and the compu-
tational stress on the grid-machines. To see this, let us con-
sider an object a in some machine M}, which has several
incoming cross-boundary edges from objects in some other
machine M;. Object a can be reached by several paths, go-
ing through M; objects, and thus, there might be an attempt
(by M) to send many (a, p, ) messages, for some state p
in A. However, it makes sense to send {a, p, r) only if it is
the first (a, p, -) message, or if the last such message, say
{a,p,r’), has ' > r. Notably, Log tables give us the abil-
ity to perform this check, and suppress many useless mes-
sages. Experimentally, we found that Log tables are smaller
than OSW tables, and both were small enough to be kept
in main memory. For typical queries on (big) real spatial
databases, these tables were in the order of only few thou-
sand elements (see Section 5).

Now, we turn our attention to the machine loss and ter-
mination detection component of our algorithm. For this,
we adapt the Dijkstra-Scholten termination detection algo-
rithm ([6]). The original DS algorithm assumes that the ma-
chines are alive through all the computation, which is an
assumption we cannot make in a realistic grid setting.

The idea of [6] is to organize the active machines,
i.e., those currently processing the query, in a spanning tree
rooted at the query originator, which, by definition starts as
an active machine. We assume a (previously passive) ma-
chine joins the tree upon the receipt of its first message/task
from an active machine which becomes its parent. Active
machines send messages/tasks to other machines which, in
turn, acknowledge them back as appropriate. Each active
machine uses a local variable rasks to keep count of its un-
acknowledged messages/tasks. Messages are, in general,
acknowledged immediately unless they are the “engaging
messages,” i.e. messages that result in passive machines
becoming active. A non-originating active machine can be-
come passive, and attain “local termination” if its local pro-
cessing queue is empty and it has no unacknowledged mes-
sages. At that time, the respective machine acknowledges
its parent and severs its connection from the spanning tree.
The processing of the query ends when the originating ma-
chine has no unacknowledged messages left.

We extend the above procedure to account for machine
losses by monitoring each node of the Dijkstra-Scholten
spanning tree except for its root since we make the prac-
tical assumption that M, the originating machine, does not
fault during the search — otherwise the user can restart the
computation. We also assume that once sent, messages are
guaranteed to be delivered, although, perhaps with some de-
lay. Furthermore, messages exchanged between any two
processors are guaranteed to be delivered in the order they
are sent.

At any time, each node in the spanning tree is responsi-



ble for monitoring the health of its parent. In turn, the par-
ent maintains the records necessary to ensure termination
detection. For completeness, each leaf node is monitored
by a “dummy offspring leaf.” We will let the root machine
My to play this (additional) role!

All monitoring is done using a loss detection service
which can be as simple as a ping command and which re-
ports to a child the demise of its parent.

As machines fault, the termination spanning tree needs
to be rebuilt on the fly by the remaining machines involved
in the search. As such two issues need to be resolved: live
spanning tree orphans need to acquire new parents and all
nodes need to readjust their termination bookkeeping in or-
der to account for faulty machines. Upon detecting its par-
ent loss, a nonroot node makes, as the new parent, the clos-
est alive ancestor in the spanning tree. A node determines
its new parent by traversing its path to the root, a piece of in-
formation that is given to each node by its (old)parent upon
“engagement.”

This traversal is also used by the live nodes to adjust
the termination bookkeeping: the new parent, as determined
above, erases any bookkeeping associated with its offspring
on this particular path.

Monitoring by the originating machine My, in its other
role as a dummy offspring of the leaves, relies on other
nodes to communicate changes in their leaf-status, i.e. when
they change from “passive” to “active” and vice versa. This
information is then used to maintain the list of the moni-
tored leaves.

The details of the algorithm are as follows:

Algorithm 2 (Machine loss and termination detection)
Each non-originating machine M; initializes the local variables
parent; = null and pathToRoot; = ().

The originating (root) machine My, in order to serve its (other)
role as a dummy offspring of the leaves, initializes a list of leaves,
L = (), and a map pathToRootMap = (. The elements of
pathToRootMap (which is implemented in practice as a hash
table) will be keyed by machine ids. For example if there exists
an element keyed by machine id ¢, then it will be the sequence
of machine ids starting with ¢ and continuing with the ids of its
ancestors (in order) all the way to the root. Such an element (se-
quence of machine ids) is denoted with pathToRoot M apl[i], and
will exist only if machine M; becomes a leaf in the termination
detection tree.

Repeat steps 1-11 in parallel, until global termination is detected.
At each non-root machine M/;:

1. When a basic message (a, p, r) is about to be sent (in step 3
of Algorithm 1) to machine M

(a) create and initialize a variable tasks{ = 0 if it did not
exist before
(b) if tasks] = 0 (i.e. (a,p,r) is a potentially engage-
ment message for M)

then send message (a, p, 7, + pathT oRoot;) to M;

2. Upon receipt of a message (a, p, 7, path) from some other
machine M,

if i # 0 and parent; = null (i.e. M; is passive)

then (M; becomes active and joins the termination detec-
tion tree as a leaf)

(a) set parent; = k and pathToRoot = path

(b) start, with respect to My, a loss detection ser-
vice SF.

(c) send a monitoring requesting message
(active, k, path) to Mo
(This is done because M; is a leaf now, and
root My also serves the (other) role as a dummy
offspring of the leaves.)

(d) send a confirmation message to parent Mj,

else send acknowledgment ack to machine M

3. Upon the receipt of a confirmation message from some ma-
chine M; set tasks] = tasks] + 1.

4. Upon receipt of an acknowledgment message from some ma-
chine Mj, set tasks] = tasks] — 1.

5. Upon receipt of a message notifying the loss of machine Mj:

(a) scan pathToRoot; for the first live ancestor [ (and its
dead offspring ¢) and send (M, gone) to M;.

(b) Furthermore, change the parent: set parent; = [ and
send a newOffspring message to machine M;.

6. Upon receipt of a newOffspring message from machine M;
set task] = task] + 1 if such variable exists, or otherwise
create and initialize task! = 1.

7. Upon receipt of a (Mg, gone) message, delete task] if such
variable exists.

8. If the local processing queue is empty and Vj taslcs{ =0
then send (passive, parent;, tail(pathToRoot)) to Mo,
send acknowledgment to parent;,
set parent; = null and
declare local termination (become passive).

At root machine Mj:

9. Upon receipt of a message (active, k, path) from M; (see
Step 2), start monitoring of M; and stop monitoring of Mj,
(if appropriate) as follows:

(@) set L = LU {i}, pathToRootMap[i] = path and
start S§ (a loss detection service for M;).

(b) if k € L then (now M is not anymore a leaf, so we
delete the information about it)
set L =L — {k},
remove pathToRoot M apl[k], and
stop S{f (the loss detection service for My).

10. Upon receipt of a message (passive, k, path) from machine
M; (which finished computation, see Step 8) do:



(@ L=L-—{i},
remove pathToRoot M apli], and
stop S (the loss detection service for M;)
(b) if Mo monitors no other offspring of M},
(i.e. the parent of M;, which is M}, has become a leaf)
then set L = L U {k},
pathToRoot M aplk] = path and
start S (a loss detection service for My).

11. If the local processing queue is empty and V5 tasks{ =0,
then query was answered and global termination is declared.

4 Queue Strategies

Our basic algorithm running at each processor is in fact
an extension of one-to-all label-correcting shortest path al-
gorithms. In such algorithms, the “labels” refer to the nu-
meric value recording the length of the shortest paths (dis-
covered so far) to the nodes of the graph.!

The label-correcting (or better phrased “weight-
correcting”) algorithms maintain a processing queue,
similar to our processing queues, into which the candidate
nodes for update are inserted. Notably, there has been an
extensive research on finding the best strategy of inserting
and removing from the queue. For the single processor
case, by using a priority queue, we obtain the Dijkstra’s
classical algorithm. In this case, each node will enter and
exit the processing queue exactly once. For this reason,
Dijkstra’s algorithm is not in fact a label (weight) correcting
method but rather a label (weight) setting one. In contrast,
the label correcting methods avoid the overhead associated
with a priority queue, with the tradeoff of more processing
queue node insertions.

The simplest label correcting method, the Bellman-Ford
method, uses a FIFO processing queue; nodes are removed
from the top of the queue and are inserted at the bottom.
More sophisticated label correcting methods maintain the
processing queue in one or in two queues and use a more
complex removal and insertion strategies. The objective is
to reduce the number of node re-entries in the processing
queue. The general principle behind the rationale of each
algorithm is that the number of node re-entries is reduced
if nodes with relatively small weight are removed first from
the processing queue.

The most well known queue strategy for label correcting
algorithms is the Smallest-Labels-First-Large-Labels-Last
(SLF-LLL) strategy of [3]. In this strategy, the processing
queue is maintained as a double ended list. At each itera-
tion, the node removed is the top node of the list. However,
when the top node has a larger weight than the average node
weight in the queue (defined as the sum of weights of nodes
in the queue divided by the cardinality of the queue), this

IThe numeric labels in label-correcting algorithms should not be con-
fused with the symbol labels of the database edges.

node is not removed but rather it is repositioned to the bot-
tom of the queue. Regarding the insertion of a new node in
the processing queue, we compare first its weight with the
weight of the node at top of the list. If the weight of the
new node is smaller, then it is inserted at the top of the list.
Otherwise it is inserted at the bottom of the list.

What Bertsekas et. al. observed experimentally, is that
in the single processor case, shortest path algorithms which
employ the SLF-LLL method are faster than the classic Di-
jkstra’s algorithm. This was argued to happen due to the
computational overhead for maintaining the priority queue
in Dijkstra’s algorithm.

Moreover, label-correcting algorithms have been the
main class of algorithms that have been successfully par-
allelized, achieving an impressive speed-up in computation.
Parallelization of these algorithms using a shared memory
approach is presented in [3]. Notably, in their parallel ap-
proach, Bertsekas et. al. obtain even better results when
using SLF-LLL queues than when using priority queues.

We note here, that although using a priority queue in
the single processor case gives us the Dijsktra’s algorithm,
which is in fact a label setting algorithm, in the multipro-
cessor case, even if we use local priority queues at each
processor, we still have a label correcting algorithm. This is
because the weight of a node might need to be updated due
to paths that “cross over” to different processors during the
evaluation of the query.

We want to stress here that experiments of Bertsekas et.
al. were designed for graphs stored in main memory and not
in secondary storage, as in our setting. Furthermore, we are
not solving an unrestricted shortest path problem, but rather
one guided by a query automaton. Consequently, Bertsekas’
observations needed to be checked anew. We discuss these
and other performance issues next.

S Experiments

We conducted extensive experiments in a large GIS road
network, provided by US Census Bureau ([4]). Namely,
we chose the New York city map, which is one of the most
dense areas, with approximately 435000 edges (roads, high-
ways, etc). We store the map partitions in edge organized
tables, whose storage is structured using a clustering RTree
index (see Section 3), which is available in MySQL 5.0.

We ran our experiments on a network of Pentium IV
2.4 Ghz machines, running Fedora Core Linux, Java 1.5,
MySQL 5.0, and MySQL Connector/J 5.0, connected via a
Cisco 1G switch.

Initial experiments used a database partitioning based
on the original TIGER point organization([4])) which or-
ders points in a line-based order from north to south. It
was soon clear that this organization was causing signifi-
cant number of disk accesses and, thus, slowdowns due to



=3
S
=
N
o
=

7K

B FIFOQ ® SLF-LLL Q O Priority Q

[BFFO Q ® SLF-LLL Q O Priority Q

~
=]
=
I
N
S
=

BFFOQ ®SLF-LLL Q O Priority Q

)
)
=

M M 6K

o

S

=
I

o
S
=
I
=3
=
I

N
S
=
I
N ow
o
=
I

SQL queries

w
8
=

f
o
=
f

)

=1

=
I

Total number of updates
5 5
= =
I I

=]
=
f
o
=

=3
=
!
o
=
[

1 2 4 8 16 32 1 2 3
Number of machines

Number of machines

5K

&
=

)
x

Number of messages
w
=

=

=)
=

4 5 6 1 2 4 8 16 32
Number of machines

45 2000

BFFOQ ®SLF-LLLQ O Priority Q|

D FIFOQ B SLF-LLL Q O Priority Q

60K

40 T 1800 1

35 H 1600 H

50K

301 1400 H

ize

1200 1

40K 1

=)

S

S
I

30K 1T

Maximum queue si
@
3
3
f

Maximum machine working time (secs)

1 2 4 8 16 32
Number of machines

1 2

Number of machines

Maximum size of OSW tables

10K T

» 0 = -

8 16 32 1 2 4 8 16 32
Number of machines

Figure 2. Experimental results.

its one-dimensional spatial locality. We then switched to an
R-tree clustering based partition which halved the execution
time. This partitioning method was used in all subsequent
experiments as it seems to be quite appropriate for grid envi-
ronments in which, at any time, computations are provided
with large disk space, but limited memory footprint and ex-
ecution time.

We show here only results for a typical query, which is
highway*||(road + €)*, where || is the shuffle operator. This
query asks for finding the objects reachable by following
highways interleaved by no more than k roads. The results
we show here are for £ = 10. We want to mention here, that
for other queries, we got results that were similar to the ones
that we show. We experimented with 2, 4, 8, 16, and 32 ma-
chines. Let us discuss our results shown in Figure 2. All the
results are given with respect to the number of participating
machines.

The top-left and bottom-left graphs are similar in shape.
The top-left graph shows the maximum number (among
machines) of SQL queries executed (for fetching database
edges), while the bottom-left graph shows the maximum
working time (in seconds) of machines. These two graphs
are good indicators of the stress reduction on participating
machines as the number of machines increases. Namely,
we observe reduction of stress in (almost) half as the num-
ber of machines doubles at each point. Also, we observe
that the use of SLF-LLL or just FIFO queues, in the name

of reducing the computational overhead of maintaining a
priority queue, is in fact not justified. This is also amplified
by the top-middle graph, which shows that the number of
total updates in OSW tables is minimal when using a pri-
ority queue. Recall (from steps 3a and 3b of Algorithm 1)
that the number of updates translates directly to the qual-
ity of (intermediate) query answers that the user receives
while the computation is still going on. Clearly, less up-
dates means that there are less inconsistent query answers
that get their weight corrected. By considering the number
of updates, we conclude that when machines use priority
queues, the quality of answers is twice better than when us-
ing SLF-LLL queues, and an order of magnitude better than
when using FIFO queues.

The top-right graph in Fig. 1 shows the total number of
messages sent during the query evaluation. Clearly, when
the machines use priority queues the number of messages
is smaller. However, more important is the observation that
our algorithm is not message intensive. Notably, when us-
ing priority queues, the number of messages is approxi-
mately 3500 and this is quite negligible for today’s high
speed networks. In general, the communication is quite bal-
anced as there is little variance between the number of mes-
sages employed by different machines. Also, we remark
that our algorithm is scalable as the number of messages
grows very slowly with the number of machines.

Finally, in the bottom-middle and bottom-right graphs,



we show the maximum size (number of triples) of process-
ing queues and OSW tables (respectively) among partici-
pating machines. [The size of OSW tables does not depend
on the queue being used] The sizes reduce in half as the
number of machines doubles. These structures fit very well
in main memory especially as the number of machines be-
comes larger.

6 Conclusions

We have identified the major problems faced in a grid-
aware evaluation of regular path queries on spatial network
databases. We have provided a complete distributed solu-
tion, which reduces the computational stress proportionally
to the number of participating grid machines. Also, our so-
lution is resilient with respect to machine losses and termi-
nation detection, which are common phenomena in a grid
setting. Experimental evidence shows that our algorithm,
under normal conditions, is not message intensive, with
the total number of messages being negligible for today’s
networks. Finally, experimental evidence shows that our
grid-aware algorithm provides an on-line evaluation perfor-
mance for the notoriously hard regular path queries.
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