
Triangle Enumeration for Billion-Scale Graphs
in RDBMS

Aly Ahmed, Keanelek Enns, and Alex Thomo
{alyahmed,keanelekenns,thomo}@uvic.ca

University of Victoria, BC, Canada

Abstract. Triangle enumeration is considered a fundamental graph an-
alytics problem with many applications including detecting fake accounts,
spam detection, and community searches. Real world graph data sets are
growing to unprecedented levels and many of the existing algorithms fail
to process them or take a very long time to produce results. Many or-
ganizations invest in new hardware and new services in order to be able
keep up with the data growth and often neglect the well established and
widely used relational database management systems (RDBMSs). In this
paper we present a carefully engineered RDBMS solution to the problem
of triangle enumeration for very large graphs. We show that RDBMSs
are suitable tools for enumerating billions of triangles in billion-scale
networks on a consumer grade server. Also, we compare our RDBMS
solution’s performance to a native graph database and show that our
RDBMS solution outperforms by order of magnitude.

1 Introduction

The problem of triangle listing or triangle enumeration can be stated as follows:
Given an undirected graph G = (V,E) with no parallel edges or self loops, output
all tuples (a, b, c) such that nodes a, b, c ∈ V are pairwise connected in G (i.e.,
they form a triangle). Some algorithms only need to touch triangles or count
them, but in this paper, we require that algorithms store them explicitly (hence
the term triangle listing).

Triangle enumeration is considered a fundamental graph analytics problem
that constitutes a large portion of the computational work required for problems
such as calculating a graph’s global clustering coefficient (in which the number of
triangles each node is involved in is required) [20], finding k-truss decomposition,
and calculating the transitivity ratio of a graph. Some of the indirect applica-
tions of triangle enumeration include identifying social networks, determining a
community’s age [11], performing community searches [5, 18], and detecting fake
accounts, malicious pages, or instances of web spamming [16, 4].

Triangle enumeration is a nontrivial problem. The optimal worst case for
any algorithm’s time complexity is O(|E|3/2) [16]. Triangle enumeration does
not scale very well with large datasets as any node can participate in a trian-
gle with any other node in a graph so long as they have an edge between them,
making it difficult to break the problem into smaller pieces. The sizes of datasets

continue to grow, and massive datasets are becoming more common in business
and research. In particular, data in real-world networks is growing to unprece-
dented levels [10]. For example, Walmart is estimated to create 2.5 petabytes of
consumer data every hour [13], Facebook processes tens of billions of likes and
messages every day, Google receives 1.2 trillion search requests every year, and
Internet of Things (IoT) data is expected to exceed 175 zettabytes by 2025 [12].
Many algorithms either enumerate triangles for graphs that can fit in memory
[c.f. [19, 22]], are I.O. intensive [c.f. [9, 6]] or use distributed systems such as
MapReduce [c.f [17, 20]].

Relational Database Management Systems (RDBMSs) have been vital tools
in storing and manipulating data for many decades [7]. They are commonplace in
most businesses, and they are familiar to technical and non-technical users alike.
This paper aims to show that they are also useful for analyzing large graphs,
specifically in the area of triangle enumeration. The paper also shows how a
single machine can use simple partitioning techniques to enumerate billions of
triangles efficiently.

In recent times, Graph Databases (GDBs) have grown in popularity. Many
businesses may be considering moving to GDBs if they often analyze large
graphs. Using dedicated graph databases for graph processing is presumed to
provide better performance and scalability over relational databases (c.f. [3]);
however, graph databases still have a long way to reach the level of maturity of
RDMBSs. Using an RDBMS to implement graph algorithms is, in many situa-
tions, more efficient. However, computing graph algorithms using SQL queries
is challenging and requires novel thinking. As such, there is active research on
the use of novel methods to compute graph analytics on RDBMSs (c.f. [1, 14, 2,
8]). These works have shown that RDBMSs often provide higher efficiency over
graph databases for specific analytics tasks.

The contributions of this paper are as follows:

1. We engineer triangle enumeration algorithms in SQL using partitioning and
coloring

2. We suggest a modification of the PTE CD [16] algorithm, which we name
Source Node Partitioning, which allows us to scale efficiently

3. We compare the performance of a popular open source GDB and a commonly
used RDBMS.

4. We give a comparison of the performance of each algorithm on several graphs
including billion-scale graph.

2 Triangle Enumeration in RDBMS

The following section introduces state of the art triangle enumeration algorithms
and techniques. The basic method used for triangle enumeration, known as the
Compact Forward algorithm [21], is explained first. Adaptations created to han-
dle larger graphs that cannot fit into a single machine’s memory are then dis-
cussed. These adaptations are known as Triangle Type Partitioning [15], and

Pre-partitioned Triangle Enumeration [16]. Finally, a further adaptation con-
tributed by this paper that aims to reduce the complexity and the number
of queries generated, named Source Node Partitioning, is explained. The SQL
implementation of each algorithm developed is illustrated so that readers may
recreate these results in an RDBMS of their choice.

2.1 Compact Forward

The compact forward algorithm constitutes the main portion of work done to
enumerate triangles in all of the algorithms that follow. Its pseudo code is shown
as algorithm 1. It consists of two main parts: an edge iterator and an orientation
technique.

Algorithm 1: Compact Forward

Input : Undirected graph G = (V, E)
Output: All triangles of G
//Orientation of G
for (u, v) ∈ E do

if deg(u) > deg(v) or (deg(u) = deg(v) and u > v) then
Replace (u, v) with (v, u) in E;

//List triangles of G
for (u, v) ∈ E do

for w ∈ N(u) ∩N(v) do
Output triangle (u, v, w);

Edge Iterator. For any edge (u, v) ∈ E, we can find the triangles associated
with it by considering the intersection of the neighbors of u and v (denoted N(u)
and N(v) respectively). That is, if (u, v) exists, we can check to see if both (u,w)
and (v, w) exist for all such nodes w ∈ V . By performing this operation on all
edges, we are guaranteed to enumerate all triangles in the graph. Unfortunately,
we might count many duplicates depending on how the undirected graph G is
represented.

Orientation Technique. In order to eliminate duplicates, we direct the
graph G with a total ordering. Define the degree (or number of neighbouring
nodes) of a node v to be deg(v) and assume nodes are represented by unique
integer identifiers (i.e. V ⊂ N). Define a total ordering of the nodes in V , denoted
→, as follows: For all nodes u, v ∈ V , we say u→ v if and only if deg(u) < deg(v)
OR (deg(u) = deg(v) AND u < v). We then arrange all the edges in the graph
according to this total order. The resulting graph is a Directed Acyclic Graph
or DAG. But how does this help?

Consider a triangle (a, b, c), such that a → b, b → c, and a → c. When
iterating over edge (a, b), we discover (b, c) and (a, c) in the neighbours of a and
b. However, when we iterate over edge (b, c), we will not find (c, a) due to the
total ordering properties (similarly for edge (a, c), we will not find (c, b)). Thus
each triangle is counted exactly once. From now on, when we refer to triangle
(a, b, c), we assume the total ordering applies from left to right.

Notice that a total ordering could have been defined on the node identifiers
alone assuming they are unique. The reason for involving node degrees in the
total ordering is to prevent any given node from having a large list of outgoing
neighbours to search through. In the given total ordering, nodes of high de-
gree will have fewer outgoing neighbours and nodes of low degree, though their
neighbourhood primarily consists of outgoing neighbours, have few neighbours
by definition.

The SQL queries for orienting G are lengthy, yet simple to implement, so we
omit them. Algorithm 2 shows the edge iteration component written in SQL and
assumes the edge list E has already been oriented.

Algorithm 2: Compact Forward Edge Iteration in SQL

SELECT g1.fromNode AS A, g1.toNode AS B, g2.toNode as C
FROM E g1, E g2
WHERE g1.toNode = g2.fromNode
AND EXISTS (

SELECT 1 FROM E
WHERE fromNode = g1.fromNode AND toNode = g2.toNode);

2.2 Triangle Type Partitioning

Suppose G is a large graph that does not fit in a single machine’s memory, then
the edge list E must be partitioned into smaller lists in order to fit. Even though
an RDBMS is designed to handle data that does not fit in main memory, when
it has to deal with smaller chunks of the data at a time, the RDBMS can use
more efficient join algorithms, such as one-pass joins. However, a problem arises
when trying to list triangles in the edge partitions. Consider triangles that have
edges in more than one partition, they are certainly missed. As such, we cannot
expect the RDBMS query optimizer to be able to automatically find ways to
break up the data into chunks to facilitate better query evaluation algorithms.
Therefore, we focus here in ways to intelligently partition the data and create
independent subtasks.

The triangle type partitioning (TTP) algorithm [16] was designed to resolve
this issue. Originally it was designed as a Map Reduce algorithm to be run on
distributed systems, but in this paper, it is used on a single machine.

The first step is to colour the nodes using a function f : V → {0, 1, ..., ρ−1}.
This allows every triangle to be classified into the following three types:

– Type 1: All three nodes have the same colour.
– Type 2: Exactly two nodes have the same colour.
– Type 3: Each node has a distinct colour.

A visualization of the triangle types can be seen in figure 1.
Let Eij be the set of edges that have endpoints coloured i or j. There are

(
ρ
2

)
such sets. Let Eijk be the set of edges that have endpoints coloured i, j, or k.
There are

(
ρ
3

)
such sets as seen in figure 2.

Fig. 1: An example
of each type of tri-
angle in a node
coloured graph

No edge in a type 3 triangle has endpoints with the
same colour. Knowing this, we can transform the set Eijk
into E′

ijk = Eijk − {(u, v)|f(u) = f(v), (u, v) ∈ Eijk}
where we remove all such edges. This vastly improves per-
formance when enumerating type 3 triangles by reducing
the size of the edge lists. On the other hand, each set Eij
can contain type 1 and type 2 triangles.

In order to enumerate all triangles, algorithm 2 is run
on all

(
ρ
2

)
+

(
ρ
3

)
edge sets (replace E with Eij or E′

ijk

for all i,j, and k). This can be seen in algorithm 3, which
shows the structure for partitioning and generating the
SQL queries.

Algorithm 3: Triangle Type Partitioning

for i = 0 to ρ− 2 do
for j = i+ 1 to ρ− 1 do

Generate Eij from E
Run algorithm 2 on Eij

for i = 0 to ρ− 3 do
for j = i+ 1 to ρ− 2 do

for k = j + 1 to ρ− 1 do
Generate E′

ijk from E
Run algorithm 2 on E′

ijk

Eliminate duplicates from generated triangles

Consider the sets E02 and E12 from figure 2. The type
1 triangle of colour 2 is counted twice. In fact, this is true
of all type 1 triangles.

Fig. 2: A visualization of the edge sets from the graph in figure 2 when ρ = 3:
yellow = 0, blue = 1, pink = 2

Thus we count every type 1 triangle ρ − 1 times, and we count type 2 and
type 3 triangles exactly once. The duplicate triangles can then be eliminated.

2.3 Prepartitioned Triangle Enumeration - Colour Direction

Triangle type partitioning [16] is an effective method for enumerating triangles
in massive graphs that do not fit into memory, yet it is also possible to en-

sure each triangle is counted exactly once as well as greatly reduce the size of
the edge sets to be searched through in the CF algorithm. This is the goal of
the Prepartitioned Triangle Enumeration - Colour Direction (PTE CD) method,
which expands on the TTP algorithm. Again, this algorithm was proposed in
[16] for a Map Reduce setting. Here we adapt it for an RDBMS. Consider how
the TTP algorithm pays no attention to the direction of edges when parti-
tioning the edge set, indeed figures 2 and 3 do not display the direction of
the edges because that information is irrelevant to the algorithm. PTE CD,
however, takes advantage of the direction of each edge in the oriented graph.

Fig. 3: The graph of
figure 1 with edge
directions shown.
The labels indi-
cate which triangle
set each triangle
belongs to.

Let Tijk be the set of triangles (a, b, c) where f(a) =
i, f(b) = j, and f(c) = k (ie. ijk is a permutation of the
colours with replacement). For example, T001 6= T010 due
to the total ordering on the edges in G. This is made more
clear in Figure 3. There are ρ3 such triangle sets.

Suppose we are trying to find a triangle (a, b, c) ∈ Tijk
and we reach edge (a, b). We know edge (b, c) is in Ejk
and edge (a, c) is in Eik, which may or may not all be
the same edge set from our previous definitions, but more
specifically, we know (b, c) goes from colour j to k, and
(a, c) goes from colour i to k.

Let Eij be redefined in the following way:

Eij = {(u, v)|f(u) = i, f(v) = j, (u, v) ∈ E}

There are ρ2 such edge sets. This new definition allows
the algorithm to more precisely choose which edge sets to
search through and thereby reduces the total work.

The pseudo code in Algorithm 4 shows the implementation of the PTE CD
algorithm. It counts triangles of all types exactly once and improves the perfor-
mance greatly.

One issue is that it increases the number of edge sets from
(
ρ
2

)
to ρ2 and

the number of enumeration tasks from
(
ρ
2

)
+

(
ρ
3

)
to ρ3. However, it reduces the

number of colours needed to be effective compared to TTP, and since ρ is often
relatively small, this does not create a major issue in performance.

Algorithm 4: PTE CD

for i = 0 to ρ− 1 do
for j = 0 to ρ− 1 do

Generate Eij from E
for i = 0 to ρ− 1 do

for j = 0 to ρ− 1 do
for k = 0 to ρ− 1 do

Run algorithm 2 with Eij as g1, Ejk as g2, and Eik in the
EXISTS clause.

2.4 Source Node Partitioning (SNP)

In this section, we propose another algorithm, called Source Node Partitioning
(SNP), that partitions the graph into ρ partitions and generates ρ2 enumeration
tasks. SNP is conceptually simpler than PTE CD. Similar to PTE CD, SNP
enumerates each triangle only once and exhibits comparable performance to
PTE CD for medium datasets and even better for larger datasets.

The main idea is to partition an oriented input graph G into ρ parts where
all the edges (u, v) whose source nodes u are landed in the same partition i based
on partitioning function f(u). Each partition i will have a tuple (u, v, j) where
j equal the partition number for node v.

Ei = {(u, v, j)|f(u) = i, f(v) = j, (u, v) ∈ E}, 0 ≤ i, j ≤ ρ− 1

Now, in order to find a triangle (u, v, k) we only need to check if there is a
shared node k between the neighbours of nodes u and v. This is achieved by
joining in SQL the tables for Ei and Ej (assuming f(u) = i and f(v) = j).

(a) Input Graph (b) Partitioning into tables

Fig. 4: SNP partitioning

For example, given the graph in Figure 4 (a), and ρ = 3, we partition the
edges of the graph into the partition tables given in Figure 4 (b). Along with
the FID and TID attributes, which give the source and target of each edge, we
also have a third attribute, called Part, which stores the partition number, of
the target node.

To check for instance, if edge (3, 6) is part of a triangle, we need to find
the intersection of the neighbors of node 3 with the neighbors of node 6. These
neighbors can be extracted from the set of edges (6,), which exist in Partition 1
(as indicated by column Part) and the set of edges (3,), which exist in the
current partition, Partition 0.

Partition oriented graph G based on the source node could be done by several
ways for instance, we could use interval partitioning where each partition i will

have a unique range of nodes ID or use module function to distribute the source
nodes over partitions as shown in Algorithm 5.

In terms of pseudo code we create the partition tables using the queries given
in Algorithm 5. Then, we enumerate triangles using Algorithm 6. In a nutshell,
it joins two tables, for partitions Ei and Ej , respectively, and limits the scope
of the join in the table for Ei to only those nodes that have Part = j.

Algorithm 5: SNP: Graph Partitioning

Input: Oriented Graph G = (V,E), number of partitions ρ
Output: A set of ρ partition tables.
for i = 0 to ρ− 1 do

INSERT INTO Ei

SELECT FID, TID, TID % ρ AS Part
FROM E
WHERE FID % ρ = i

Algorithm 6: SNP (enumerate triangles)

Input: A set of ρ partition tables Ei.
for i = 0 to ρ− 1 do

for j = 0 to ρ− 1 do
SELECT G1.fid AS A, G1.tid AS B, G2.tid as C
FROM Ei AS G1, Ej AS G2
WHERE G1.tid = G2.fid AND G1.part = j AND

EXISTS
(SELECT 1 FROM Ei AS G3
WHERE G3.fid = G1.fid AND G3.tid =G2.tid)

Theorem 1. SNP Partitioned graph can only distribute a triangle (u, v, k) over
a maximum of 2 partitions.

Proof. To prove it by contradiction let us assume there is a triangle (u, v, k)
whose edges exist in three partitions which means neighbors of u and v in an
edge (u, v) must exist in three partitions. However, SNP will not separate the
edges with the same source node across different partitions, therefore neighbors
of u and v will only exist in a maximum of 2 partitions. �

3 Experimental Results

3.1 Setup Configuration

We executed the experiments on a cloud based virtual server running Windows
Server 2019 with 4 vCores and 16 GB of RAM.

As RDBMSs we used the latest versions of a commercial database (which we
anonymously call CD) As graph database, we used the latest version of a graph
database (which we anonymously call GD). We refrain from using the real names
of these databases for obvious reasons.

3.2 Datasets

We used four datasets from Stanford’s Data collection and four datasets from
The Laboratory for Web Algorithmics including a one-billion-edge graph.

The datasets are Web-Google, Pokec, Live-Journal and Orkut (from http:

//snap.stanford.edu), and Hollywood 2009, Hollywood 2011, UK 2005 and IT
2004 (from http://law.di.unimi.it/webdata). Table 1 shows statistics about
the datasets used.

Table 1: Graph Datasets
Dataset # Nodes # Edges # Triangles

Web-Google 875,713 5,105,039 13,391,903

Pokec 1,632,803 30,622,564 32,557,458

Live Journal 4,847,571 68,993,773 177,820,130

Orkut 3,072,441 117,185,083 627,584,181

Hollywood 2009 1,139,905 113,891,327 4,916,374,555

Hollywood 2011 2,180,759 228,985,632 7,073,951,555

UK 2005 39,459,921 936,364,282 21,779,347,099

IT 2004 41,291,594 1,150,725,436 47,249,138,589

3.3 Results

Our experiments began with a comparison of the performance of a popular open
source graph database and a well known, commonly used RDBMS. The initial
idea was to compare the time it took for each database system to compute the
clustering coefficient of each graph. However, after running various experiments,
it was determined that the graph database likely used approximation algorithms.
This theory was then supported when attempting to use the graph database’s
triangle listing algorithm which took substantially longer than the clustering
coefficient calculation, which does not make logical sense if no approximation
algorithms are involved because triangle listing is a subset of the computations
required for calculating the clustering coefficient. Moreover, the triangle listing
algorithm seemed to have a bug at the time of experimentation, and only listed
around a tenth of the triangles in the graph.

In order to ensure the measurements for the graph database were as fair
as possible, we caused the output to be written to a file instead of writing to
standard out (which can often take longer than a computation itself), and we

Fig. 5: A logarithmic runtime com-
parison between a graph database
and RDBMS when enumerating tri-
angles on the four smallest datasets:
google, pokec, livejournal, and orkut

Fig. 6: A comparison of runtimes of
the four algorithms discussed in sec-
tion 3 on the orkut dataset. ρ is
the number of node partitions of the
graph, not the number of edge sets
created by the algorithms.

scaled the triangle listing time linearly to match the approximate amount of time
it would take to enumerate all of the triangles rather than a fraction of them.

Figure 5 shows a comparison between the projected runtime of the graph
database and the actual runtime of the RDBMS baseline, which is the compact
forward algorithm run on the entire edge set at once. Note that the time scale
is logarithmic and we can see that the RDBMS greatly outperforms the graph
database when the graph database is required to list all triangles explicitly.

After seeing the drastic performance difference between the two databases in
just the baseline case, we did not see value in pursuing any further comparisons
with other methods or larger datasets.

Figure 6 compares the performance of all the algorithms discussed in section
2 on the orkut dataset. Smaller datasets did not see much improvement when
partitioned, as their edge sets were already quite small. No entry has been given
for the PTE BASE method (which is another name for TTP) when ρ = 2. This
is because the algorithm no longer benefits from the partitioning in this case,
and the results would be the same as the baseline CF results.

Note that the yellow bar is the same datapoint that was used in figure 5 for
the RDBMS baseline on the orkut dataset. Clearly the partitioning algorithms
made great improvements over the single table compact forward algorithm. From
this we conclude that partitioning can be helpful even when the dataset is able to
fit into a machine’s memory (as is the case with the orkut dataset). However, as
noted before, the benefits become less notable the smaller the dataset becomes
and in some cases the performance decrease slightly as the cost of partitioning
tables and query planning overcome the savings. As we moved to graphs with
billions of triangles, PTE Base reached its performance bottleneck; eliminating
duplicate triangles takes a considerable amount of time and resources to perform,
therefore, we decided not to test it with other datasets.

We turn our attention to the hollywood datasets for 2009 and 2011 which
have over 8 and 11 times more triangles than orkut respectively. Figure 7 shows
that PTE CD slightly outperforms the SNP method. Notice, however, that the
performance gap begins to close with more node partitions or colours. At first
inspection, this seems to be due to the growth rates in the number of queries
generated by each method. SNP generates ρ2 queries compared to PTE CD’s
ρ3 queries, which conceivably increases compiling and execution time as well as
clutters the SQL script files.

However, the difference is not as clear cut as it may seem. SNP only creates
ρ edge sets (or edge partitions), whereas PTE CD creates ρ2 edge sets. If the
desired edge set size is the same relative to the size of a machine’s memory (e.g.
we want edge sets to be a third the size of a machine’s available memory), then
PTE CD can use a smaller value for ρ than SNP can. Therefore PTE CD may
actually use less queries in practice.

For example, suppose a graph has an edge list with 1.2 million entries, and
we desire to use a machine that can fit 300,000 edges, then our edge sets should
have about 100,000 edges in them (if we want the database to perform an all-
in-memory join). SNP will use ρ = 12 to meet this requirement, whereas PTE
CD will use ρ = 4. Notice that 43 = 64 < 122 = 144 in this instance, and
PTE CD actually has fewer queries for similar-sized edge sets. Nevertheless,
in a very large graph, fewer queries might not be as desired. SQL might need
in worst-case scenario memory size of |Ei| ∗ |Ej | ∗ |Ek| to find triangles; hence
more scoped queries would be more efficient. Also, the partitioning function
used in SNP impacts the performance; figure 9 shows a noticeable difference in
performance when we used the modulo function, and this could be explained as
it is most likely to distribute high degree nodes across all partitions relatively
than distribute them using interval partitioning.

Fig. 7: Runtimes of SNP (blue) and PTE CD (red) algorithms on the hollywood-
2009 dataset (∼ 5 billion triangles) and hollywood-2011 dataset (∼ 7 billion
triangles). The x axis shows the value of ρ or the number of node partitions.

It is also worth mentioning that the distance between squares increases
quickly. In the previous example, PTE CD creates 16 edge sets rather than
the ideal 12. Suppose we need to divide the edge list of the graph into 37 edge
sets. Then PTE CD must use ρ = 7 and create 49 edge sets, which may cause
performance issues because the edge sets are too small compared to the optimal
value and the time to shuffle the data will increase. Figure 8 shows a decrease
in the performance of PTE CD as the number of triangles increase.

It would seem that using the same value of ρ for both methods is in inap-
propriate comparison, and this would explain the reduction in the performance
gap as ρ increases, since SNP performs better for higher values of ρ.

In each case, it may take some testing and experimentation to determining
the ideal value for ρ for a given dataset.

Fig. 8: A comparison of running time
between SNP and PTE CD as the
number of triangles increased. PTE
CD takes more time as partitioning
takes longer than SNP.

Fig. 9: SNP: A noticeable difference
in running time when partitioning
the graph using Interval Partition-
ing vs using Modulo function.

3.4 Experiments on Billion-Scale Networks

We show our experiments on two vast datasets, namely UK-2005 and IT-2004,
the latter with more than a billion edges. They represent the web network of UK
and Italy in 2005 and 2004, respectively. The precise number of nodes and edges
is given in Table 1. We ran both the SNP algorithm with ρ = 20 and PTE CD
algorithm with ρ = 8. Both algorithms ran in a single machine and enumerated
all triangles in a very reasonable time regarding the graph’s size and the number
of triangles found in each data set; IT 2004 and UK 2005 contain 47.2 and 21.7
billion triangles, respectively.

We compare the running time of the two algorithms in Figure 10. The re-
sult indicates that the SNP algorithm shows better performance than PTE CD.
The reason being that SNP scales linearly with ρ in partitioning the tables and
quadratically in the number of queries when enumeratimg triangles, however

PTE CD scales quadratic to ρ for partitioning tables and cubic to the number
of queries performed.

Fig. 10: Results of Triangles Enu-
meration on very large data sets, IT
2004: 1.15 billion edge graph and
UK 2005:0.93 billion edge, Using
SNP and PTE CD.

Fig. 11: The time for SNP to build
the partitions and run queries is sig-
nificantly less when datasets get sig-
nificantly larger.

Figure 11 shows the running time differences to partition the datasets and
to enumerate triangles between SNP and PTE CD algorithms. PTE CD takes
significantly more time to create ρ2 tables and execute ρ3 queries.

4 Conclusion And Future Work

We implemented Triangle Enumeration algorithms, such as CF, PTE Base, and
PTE CD, using RDBMSs. We proposed the SNP algorithm that partitions the
graph into ρ partitions and generates ρ2 enumeration tasks. SNP exhibits com-
parable performance to PTE CD for medium datasets and even better for larger
datasets. We experimented with billion scale graphs and enumerated tens of
billions of triangles, showing that RDBMSs can perform better than GBDs by
multiple orders of magnitude and process massive datasets in a consumer-grade
server. One possible direction for future research is to improve performance on
RDBMSs by compressing the edge list using variable byte encoding (VBE).

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Database mining:
A performance perspective”. In: IEEE TKDE 5.6 (1993), pp. 914–925.

[2] Aly Ahmed and Alex Thomo. “PageRank for Billion-Scale Networks in
RDBMS”. In: INCOS. 2020, pp. 89–100.

[3] Renzo Angles and Claudio Gutierrez. “Survey of graph database models”.
In: ACM CSUR 40.1 (2008), pp. 1–39.

[4] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. “PATRIC: A
parallel algorithm for counting triangles in massive networks”. In: CIKM.
2013, pp. 529–538.

[5] Jonathan W Berry et al. “Tolerating the community detection resolution
limit with edge weighting”. In: Physical Review E 83.5 (2011), p. 056119.

[6] Shumo Chu and James Cheng. “Triangle listing in massive networks”. In:
ACM TKDD 6.4 (2012), pp. 1–32.

[7] Edgar F Codd. “A relational model of data for large shared data banks”.
In: Software pioneers. Springer, 2002, pp. 263–294.

[8] “Computing source-to-target shortest paths for complex networks in RDBMS”.
In: JCSS 89 (2017), pp. 114–129.

[9] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. “Massive graph triangu-
lation”. In: SIGMOD. 2013, pp. 325–336.

[10] Hosagrahar V Jagadish et al. “Big data and its technical challenges”. In:
CACM 57.7 (2014), pp. 86–94.

[11] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. “Mining
Social-Network Graphs”. In: Mining of Massive Datasets. 2nd ed. Cam-
bridge University Press, 2014, pp. 325–383. doi: 10.1017/CBO9781139924801.
011.

[12] Sandeep Mahanthappa and BR Chandavarkar. “Data Formats and Its Re-
search Challenges in IoT: A Survey”. In: Evolutionary Computing and
Mobile Sustainable Networks. Springer, 2020, pp. 503–515.

[13] Andrew McAfee et al. “Big data: the management revolution”. In: Harvard
business review 90.10 (2012), pp. 60–68.

[14] Carlos Ordonez and Edward Omiecinski. “Efficient disk-based K-means
clustering for relational databases”. In: IEEE TKDE 16.8 (2004), pp. 909–
921.

[15] Ha-Myung Park and Chin-Wan Chung. “An Efficient MapReduce Algo-
rithm for Counting Triangles in a Very Large Graph”. In: CIKM. 2013.

[16] Ha-Myung Park, Sung-Hyon Myaeng, and U. Kang. “PTE: Enumerating
Trillion Triangles On Distributed Systems”. In: KDD. 2016.

[17] Ha-Myung Park et al. “Mapreduce triangle enumeration with guarantees”.
In: CIKM. 2014, pp. 1739–1748.

[18] Filippo Radicchi et al. “Defining and identifying communities in networks”.
In: Proceedings of the National Acad Sciences 101.9 (2004), pp. 2658–2663.

[19] Thomas Schank. “Algorithmic aspects of triangle-based network analysis”.
In: (2007).

[20] Siddharth Suri and Sergei Vassilvitskii. “Counting triangles and the curse
of the last reducer”. In: WWW. 2011.

[21] Michael Yu et al. AOT: Pushing the Efficiency Boundary of Main-memory
Triangle Listing. 2020. arXiv: 2006.11494 [cs.DB].

[22] Yang Zhang and Srinivasan Parthasarathy. “Extracting analyzing and vi-
sualizing triangle k-core motifs within networks”. In: ICDE. 2012, pp. 1049–
1060.

