
Fast and Scalable Triangle Counting in Graph Streams:
The Hybrid Approach

Paramvir Singh, Venkatesh Srinivasan, and Alex Thomo

University of Victoria, Victoria BC, Canada
{paramvirsingh,srinivas,thomo}@uvic.ca

Abstract. Triangle counting is a major graph problem with several applications
in social network analysis, anomaly detection, etc. One of the most popular tri-
angle computational models considered is Edge Streaming in which the edges
arrive in the form of a graph stream. We categorize the existing literature into
two categories: Fixed Memory (FM) approach, and Fixed Probability (FP) ap-
proach. As the size of the graphs grows, several challenges arise such as memory
space limitations, and prohibitively long running time. Therefore, both FM and
FP categories exhibit some limitations. FP algorithms fail to scale for massive
graphs. We identified a limitation of FM category i.e. FM algorithms have higher
computational time than their FP variants.
In this work, we present a new category called the Hybrid approach that over-
comes the limitations of both FM and FP approaches. We present two new algo-
rithms that belong to the hybrid category: Neighbourhood Hybrid Multisampling
(NHMS) and Triest/ThinkD Hybrid Sampling (THS) for estimating the number
of global triangles in graphs. These algorithms are highly scalable and have better
running time than FM and FP variants. We experimentally show that both NHMS
and THS outperform state-of-the-art algorithms in space-efficient environments.

Keywords: Triangle counting · Graph streams · Edge sampling.

1 Introduction

Counting triangles forms a basis for many network analysis, such as social network
analysis, anomaly detection, recommendation system, etc. The triangle count is critical
for frequently used triangle connectivity, transitivity coefficient, and clustering coeffi-
cient, in the analysis. This task is especially challenging when the network is massive
with millions of nodes and edges. Several methods had been proposed that are classi-
fied into two categories: exact counting and approximate counting. The exact counting,
for triangles, is done through enumeration/listing which touches the triangles one by
one [7]. The approximate counting is done by sampling the graph and using probabilis-
tic formulae to estimate the total number of triangles in the whole graph based on the
number of triangles found in the sample.

Edge streaming is a model where a series of edges arrives in order, one at a time.
There are many works published on triangle estimation using this model which we
classified into two categories. The first category includes algorithms that have a Fixed
Memory (FM) Budget. These algorithms sample the edges within the fixed memory

2 P. Singh et al.

budget and require the user to input the available amount of memory. Once the available
memory is full with edges, the next sampled edge randomly replaces an edge in the
memory. This is how the sub-graph is maintained within a fixed memory budget.

The second category includes the algorithms that require the user to specify an edge
sampling probability p that is fixed for the entire stream, we call them Fixed Proba-
bility (FP) approach. These algorithms maintain a memory reservoir that doesn’t have
any size limit. Therefore, if the graph stream arriving is massive, the algorithm often
runs out of memory. But, FP algorithms have some benefits over FM algorithms. We
analyzed and compared the time complexities of both categories, and show that the FP
algorithms are faster than FM algorithms, later in Section 3.

However, both categories have their own limitations detailed in section 3. The sam-
ple size always grows in FP algorithms due to which they often run out of memory. On
the other hand, FM algorithms have a higher running time than FP algorithms.

The idea of using fixed memory and fixed probability together remains unexplored.
We explore this idea and the key intention is to overcome the limitations of FM and FP
approaches. We form a new category called the Hybrid category. As the name suggests,
the Hybrid category utilizes the power of FM algorithms, that make it more scalable,
and the power of FP algorithms, that make it the fastest among all available algorithms.

1.1 Contributions

Our contributions are as follows:

– We prove that FP algorithms are faster than FM algorithms. We provide the running
time analysis to prove this claim in Section 3.

– We propose an algorithm called Neighborhood Hybrid Multisampling (NHMS). Not
only is our algorithm highly scalable compared to its FP variant NMS, but also is
significantly faster. The experimental results validate our claims when we compare
our algorithm with others on several real-life datasets.

– We propose an algorithm called Trièst - ThinkD Hybrid Sampling (THS) that is ex-
tremely efficient. We prove that THS is the fastest algorithm available for Triangle
Counting in Graph Streams. Our experimental results show that THS is at least 5
times faster than its FM variant.

– We conduct extensive experimentation and prove that our algorithm could execute
graphs with billions of edges with in 16 GB RAM and is thus scalable to large graph
datasets, whereas many other algorithms fail to execute on the same machine.

2 Prior Work

The extensive literature is available on the approximation of triangle counting in graph
streams. Since in this research we propose that the literature presented until now falls
in either the Fixed Memory (FM) or Fixed Probability (FP) category, we will classify
the previous work into these categories in this section.

Pavan et al. [6] presented a Neighbourhood Sampling algorithm that needs to ex-
ecute multiple copies called estimators to approximate triangles. Neighborhood Sam-
pling is an FM algorithm.

Fast and Scalable Triangle Counting in Graph Streams 3

Jha et al. [4] applied Birthday Paradox to get the estimate of triangles in graph
stream. Similar to Neighborhood Sampling, Birthday Paradox is also FM algorithm.

Stefani et al.[10] presented a suite of algorithms called Triest. Triest uses reservoir
sampling to sample multiple edges in a fixed memory reservoir. Shin et al. [8] proposed
two different algorithms named T hinkD (Think before you discard). The first algorithm
is T hinkDFast , which falls in an FP category. The other algorithm is T hinkDAcc which
handles a dynamic stream with edges insertion and deletion. As we are considering
insertion-only streams, T hinkDAcc is no different from Triest. Hence, both Triest and
T hinkDAcc belong to the FM category. For brevity, we call this algorithm T S.

Kavassery et al. [5] proposed two algorithms in the paper, Edge-Vertex Multisam-
pling (EVMS), and Neighbourhood Multisampling (NMS). EVMS is an extension to an
algorithm by Buriol et al. [3] It is categorized as FP algorithm. Kavassery et al. [5] pre-
sented another algorithm named NMS by modifying the Neighbourhood Sampling [6]
using the multisampling approach, similar to EVMS. NMS is also an FP algorithm, it
instead uses sampling of edges twice.

None of these works have explored the hybrid approach. We present a new hybrid
approach that is both scalable and faster than FM and algorithms. In addition, we present
two new hybrid category algorithms (NHMS and T HS, more details in section 4), that
perform better than all the works mentioned. NHMS is hybrid variant of NMS, and
T HS is hybrid variant of T S.

3 Fixed Probability vs Fixed Memory Algorithms

3.1 Fixed Probability Algorithms

FP algorithms work as follows: Given a fixed probability p, the algorithm samples the
edge from the stream with the probability p and add it to a reservoir, after which the
triangle count step is executed for each of the edge in the stream. If a triangle is found,
a variable Y is incremented that stores the triangle count in the sample. This continues
until the edges in the stream arrive. Whenever the triangle estimates are required, Y is
scaled up by some scaling factor and is returned as the final estimate.

Stefani et al.[10] discussed the drawbacks of the algorithms employing FP ap-
proach. The limitations of FP algorithms are as follows.

– The input parameter p to be fixed requires in-depth analysis to get the desired ap-
proximation quality.

– The reservoir size |R| always grows as there is no limit or restriction to store the
number of sampled edges.

– If p is chosen to be large, the algorithm may run out of memory.
– If p is chosen to be small, the algorithms will provide us suboptimal estimates.

3.2 Fixed Memory Algorithms

FM algorithms work as follows: Given a fixed memory budget K, the algorithm samples
an edge with probability K/t where t is the time of arrival of an edge, after which the
triangle count step is executed for each edge in the stream. Unlike FP algorithms, FM

4 P. Singh et al.

algorithms scale up the count of triangles found for each edge by some scaling factor η

and then add it to Y which is the triangle estimation. This continues until the edges in
the stream arrive. Whenever the triangle estimates are required, Y is returned directly as
the final estimate. We analyzed and found that there are also some drawbacks for FM
algorithms as listed below.

– The selection of input parameter, memory budget K, is not clear (even when there
is plenty of memory available), and this is similar to choosing input parameter p
for FP algorithms. Namely, If K is small, the triangle estimates we get have low
accuracy, and if K is large, the algorithm takes longer to run.

– We further observed that FP algorithms are significantly faster than FM algorithms.

3.3 Analysis

FM algorithms first directly fill the reservoir with the edges streamed. Once the reservoir
is full, the edge is sampled by probability K/t and is replaced with a random edge in
the reservoir. Hence, the reservoir remains almost full always.

In FP algorithms, there is no such reservoir with fixed size. The fixed probability
p specified by the user plays an important role here to store the sampled edges in the
memory. Let’s say there are |E| edges in graph stream Σ , the number of edges sampled
by the algorithm will be p|E|.

Time Complexity Comparison Stefani et al. [10] provides a time bound for each edge.
For each edge e = (u,v) to compute triangles, T S algorithm requires O(d(u)+ d(v))
steps where d(u) is the degree of vertex u.

Kavassery et al. [5] does not provide the theoretical time bound proofs for NMS
algorithm. We analyzed the NMS algorithm to measure the time complexity that is
identified as (p+q)∑u,v∈R(d(u)+d(v)+ c)[9].

While comparing the time complexity of NMS and TS, it is clear that they both
depend upon the sum of degree of the vertices of an edge arriving in the graph stream
i.e. O(d(u)+d(v)). We know that the FM algorithms store more number of edges in the
reservoir all the time, whereas, the FP algorithms gradually increases the stored edges
in the memory. Therefore, the computation of the shared neighbourhood will be more in
FM algorithms. This explains the higher computational times in case of FM algorithms.

4 The Hybrid Approach and Algorithms

The key idea behind the hybrid approach is to utilize the benefits of both FM and FP
approaches and overcome their limitations. The hybrid approach algorithms have the
combination of the fixed memory budget K and the fixed sampling probability p. We
present two new algorithms in this category.

Before moving further directly to the new algorithms, let us consider why the hybrid
approach is better than FP and FM algorithms. As we have already discussed the lim-
itations of FP and FM approaches in the previous chapter, the questions below would
answer how hybrid algorithms overcome them.

Fast and Scalable Triangle Counting in Graph Streams 5

Will Hybrid algorithms ever run out of memory like FP algorithms? The hybrid
approach limits the size of an edge reservoir by K, similar to FM algorithms, whereas in
FP algorithms, there is no such limit and the edge reservoir size always grows. Hence,
we overpower FP algorithm’s biggest limitation.

Are Hybrid algorithms faster than both FM and FP algorithms? We have al-
ready detailed how FP algorithms are faster than FM algorithms in section 3.3. Hybrid
algorithms follow the same trend as FP algorithms until the first K edges in the mem-
ory are stored. After the first K edges in FP algorithms, the number of edges keep on
growing in the memory and will have more number of neighbours stored, whereas in
the hybrid approach, the limit on memory reservoir is set, due to which the traversal
time becomes almost constant and does not grow much. Hence, hybrid algorithms are
faster than both FP and FM algorithms.

How should we select the value of the input p and K in hybrid algorithms to-
gether? Considering that the size of K in FM algorithms is chosen to be 1% of the
graph stream Σ , it is equivalent to assigning p to be 0.01 for FP algorithms. Similarly,
K = 10% of Σ is equivalent to p = 0.1.

Hybrid algorithms expect the input parameters similarly. Considering a user wants
to store 10% of the edges in memory, the value of K should be 10% of the total number
of edges and p should be 0.1. In case some other values are provided, hybrid algorithms
will have two possibilities as detailed below:

– If k is small or p is large, the algorithm will not go beyond the k number of the
edges in the memory, similar to FM algorithms.

– If k is large or p is small, the algorithm has enough memory to finish its work.

These characteristics of input parameters for Hybrid algorithms prove to be better
than FM and FP approaches, as the incorrect input values for both FM or FP algorithms
results in sub-optimal estimations. Considering the advantages of the hybrid approach
over FM and FP approaches, We developed the two new algorithms that belong to the
hybrid category, and are detailed in the subsequent sections.

4.1 Neighborhood Hybrid Multisampling (NHMS)

Neighborhood Hybrid Multisampling (NHMS) is the hybrid variant of NMS algorithm
discussed in Section 2. The intuition behind this algorithm is similar to NMS algorithm,
the only difference is the way edges are sampled using a hybrid approach. To understand
this better, let’s consider an example where we have two triangles, t1 = {a,b,c} and
t2 = {a,b,d} that share an edge ab. Assume the order of the edges arriving in the stream
is bc,ab,ca,ad,bd. NHMS will sample t1 if the first edge bc is sampled in L1, and the
edge ab is a neighbour of a sampled edge from L1 and is sampled in L2. When the
edge ca arrives, the algorithm checks if there’s an edge from L1 (i.e.bc) and L2 (i.e.ab)
respectively, that forms a triangle. Similarly, t2 will be counted on arrival of bd, if ad
is sampled in L1, and we already have ab sampled earlier in L2, therefore, 〈ab,ad,bd〉
forms a triangle.

The algorithm requires probabilities p and q just like NMS, along with a memory
budget K. We maintain two edge reservoirs L1 and L2. In our hybrid approach, we limit
the size of both the reservoirs to K/2.The pseudo-code can be found in Algorithm 1.

6 P. Singh et al.

Algorithm 1 NHMS
Input: A graph edge stream Σ , memory budget K, probabilities p and q.
1: L1← /0,L2← /0,Y ← /0
2: for each ei = (u,v) ∈ Σ do
3: if coin(p) = ”head” then
4: if |L1|< K/2 then
5: Add ei to L1
6: else
7: Replace a random edge in L1 with ei

8: if ei ∈ N(L1) then
9: if coin(q) = ”head” then

10: if |L2|< K/2 then
11: Add ei to L2
12: else
13: Replace a random edge in L2 with ei

14: for every (e j,ek) where e j ∈ L1, ek ∈ L2 such that time(e j) < time(ek) and (ei,e j,ek)
form a triangle do

15: Add the triangle (ei,e j,ek) to Y

16: Return |Y |/pq

Theorem 1 (Time Complexity for NHMS). Let p and q be the fixed probabilities to
sample the edges. The time complexity to process an edge e = (u,v) arriving in the
stream by Algorithm 1 is (p+q) ·O(d(u)+d(v)), where d(u) is the degree of vertex u
in the reservoir.

Proof. Suppose that R is the number of edges processed by Algorithm 1, p is the prob-
ability to sample L1 edges, q is the probability to sample L2 edges, K is the memory
budget, and d(u) is the degree of the vertex u in the reservoir.

The running time of NHMS algorithm is dependent on the degree of the vertices
of the edges sampled in L1 and L2. The triangle count is calculated by traversing the
edges from both L1 and L2 set, which are stored in the memory. When an edge (u,v)
arrives, the common neighbours are searched for each vertex of that edge in L1 and L2
set which takes pd(u)+qd(v) and pd(v)+qd(u) steps. This can be further reduced to
(p+q) ·O(d(u)+d(v)).

Theorem 2 (Space Complexity for NHMS). Let K be the number of edges to be stored
on the memory. The space complexity of Algorithm 1 is O(K).

Proof. Let K be the number of edges to be stored in the memory. The algorithm main-
tains two edge reservoirs L1 and L2 with the maximum size limit of K/2. Therefore, the
total memory consumed by algorithm will be O(K).

4.2 Trièst / ThinkD Hybrid Sampling (THS)

Trièst/ThinkD Hybrid Sampling (THS) is the hybrid variant of the TS algorithm dis-
cussed in Section 2. The algorithm requires a memory budget K just like TS, along with

Fast and Scalable Triangle Counting in Graph Streams 7

fixed probability p. We maintain an edge reservoir S which would have a maximum size
limit K, the triangle counter variable Y .

Algorithm 2 THS
Input: A graph stream Σ , sampling probability p
1: S← /0,Y ← 0
2: for each pair e = (u,v) in Σ do
3: Update(u,v)
4: Insert(u,v)
5: Estimate(Y)
6: Function UPDATE(u,v)
7: for each w ∈ N(u)∩N(v) do
8: Y ← Y +1
9: Function INSERT(u,v)

10: if coin(p) = ”head” then
11: if |S|< K then
12: S← S∪{(u,v)}
13: else
14: Replace a random edge in S with (u,v)
15: Function ESTIMATE(Y)
16: return Y/p2

The intuition behind this algorithm is somewhat similar to NHMS algorithm, the
only difference is that we just have one reservoir in this case. Consider an example
with triangles t1 = {a,b,c} and t2 = {a,b,d}, and the edge stream arrive in an order
ab,bc,ca,ad,bd. T S will count t1 if the edges ab and bc will be stored in S considering
it’s not full, and ca has neighbouring edges in S 〈ab,bc〉, that forms a triangle. Now
let’s consider S = {ab,bc,ca} and the reservoir is full, when the new edge arrives, it has
to replace an existing edge from S randomly. Therefore, the triangle t2 will be counted
on arrival of bd, if both ad and ab still exists in S. The pseudo-code can be found at
Algorithm 2.

Theorem 3 (Time Complexity for THS). Let p be the fixed probability to sample the
edges. The time complexity to process an edge e = (u,v) arriving in the stream by
Algorithm 2 is

p ·O(d(u)+d(v))

where d(u) is the degree of vertex u in the reservoir.

Proof. Suppose R is the number of edges processed by p is the probability to sample S
edges, K is memory budget, and d(u) is the degree of vertex u in the reservoir.

The running time of this algorithm is dependent on the degree of the vertices of
the edges sampled in memory budget K. The triangle count is calculated by travers-
ing the common neighbours of the vertices of an edge. When an edge (u,v) arrives,

8 P. Singh et al.

the common neighbours are searched for each vertex of that edge in S set which takes
p ·O(d(u)+d(v)) steps.

If |R|>K, the algorithm for the intersection of common neighbours requires O(d(u)+
d(v)) time, where the degrees are w.r.t. the graph formed by a stream so far.

Theorem 4 (Space Complexity for THS). Let K be the number of edges to be stored
on the memory. The space complexity of Algorithm 2 is O(K).

Proof. Let K be the number of edges to be stored in the memory. The algorithm main-
tains an edge reservoir S with the maximum size limit of K. Hence, the total memory
consumed by the algorithm will be O(K).

It can be formally verified that both NHMS and THS produce unbiased estimates
when the reservoirs used are not full. When the reservoirs are full, we still do not ob-
serve any bias in the estimations produced by our algorithms, and in practice, our es-
timations are equal or better than those produced by FM and FP algorithms. While we
are not able to show the unbiasedness of our algorithms formally, based on our exten-
sive experiments with large datasets and reservoir sizes of only 1% of the datasets, we
conjecture that our algorithms are unbiased or exhibit negligible bias.

5 Experimental Evaluation

5.1 Experimental Settings

Table 1: Summary of real-world graphs

Dataset Nodes Edges Triangles
enron 69,244 254,449 1,067,993

cnr 325,557 2,738,969 20,977,629

dblp 986,324 3,353,618 7,005,235

dewiki 1,532,354 33,093,029 88,611,129

ljournal 5,363,260 49,514,271 411,155,444

arabic 22,744,080 553,903,073 36,895,360,842

twitter 41,652,230 1,202,513,046 34,824,916,864

We implemented and executed all algorithms in Java 8. We also used Webgraph
framework [2] because of its great compression ratio in saving or loading graphs. Even
though the Xeon server had 64GB RAM, we did not change the default memory settings
of JVM. Server JVM heap configuration is 1/4 of the total System memory available.
Hence, the allocated memory that can be used by the whole implementation of algo-
rithm will be the maximum of 16GB. We had to tweak the JVM heap size for running

Fast and Scalable Triangle Counting in Graph Streams 9

the original NMS implementation provided by authors on Large graphs like Arabic and
Twitter, as it creates a lot of objects and does not scale up in 16GB RAM.

We perform the evaluation of these algorithms on six real word datasets of var-
ied sizes. All these datasets have been downloaded from the Laboratory of Web Al-
gorithms which provides the compressed form of large datasets using WebGraph [1].
These graphs are then symmetrized and any self-loop is deleted to get the correspond-
ing simple undirected graphs. Table 1 shows the summary of real world graphs used for
the experiments.

The comparison of all the algorithms is done considering the total number of edges
sampled by the respective algorithms. We followed this criteria to get a fair comparison
of all the algorithms (irrespective of FP, FM, or Hybrid approach) as to figure out how
the performance of the algorithms looks like when they store the same number of edges.
Based on this, our results are discussed in the next section.

5.2 Accuracy

TS NMS NHMS THS

0 1 2 3 4 5
·104

100

100.5

Edges Sampled

E
rr

or
(%

)

(a) Enron

0 1 2 3 4 5
·105

100

101

Edges Sampled

E
rr

or
(%

)

(b) CNR

0 2 4 6
·105

10−0.5

100

100.5

Edges Sampled

E
rr

or
(%

)

(c) DBLP

0 2 4 6
·106

10−1

100

Edges Sampled

E
rr

or
(%

)

(d) Dewiki

0 0.2 0.4 0.6 0.8 1
·107

10−1.5

10−1

10−0.5

Edges Sampled

E
rr

or
(%

)

(e) ljournal

0 0.2 0.4 0.6 0.8 1 1.2
·108

10−1.5

10−1

10−0.5

Edges Sampled

E
rr

or
(%

)

(f) Arabic

Fig. 1: Error Rate for algorithms TS, NMS, NHMS and THS

We ran an experiment by sampling 1%, 5%, 10% 15% and 20% of the graph size
respectively on THS, NHMS, TS and NMS algorithms and compared their accuracy.
The results are plotted in Figure 1 for all the graph datasets we used. Clearly, both THS
and NHMS have better accuracy than their counterparts. It is important to note that the

10 P. Singh et al.

difference in accuracy is not bigger in large graphs as the error rate is below 0.5% for
all the test cases. Even if TS and NMS algorithms are highly accurate, NHMS and THS
still have even better accuracy.

5.3 Running time

We ran an experiment in similar setting to accuracy i.e. by sampling 1%, 5%, 10% 15%
and 20% of the graph size respectively on THS, NHMS, TS and NMS algorithms and
compared their running time. We ignored the edge arrival time from the input graph
stream to accurately measure the run-time performance of the algorithms. The results
are plotted in Figure 2 for all the graph datasets that we used.

TS NMS NHMS THS

0 1 2 3 4 5
·104

10−0.6

10−0.4

10−0.2

100

Edges Sampled

E
la

ps
ed

Ti
m

e
(s

ec
)

(a) Enron

0 1 2 3 4 5
·105

100

101

Edges Sampled

E
la

ps
ed

Ti
m

e
(s

ec
)

(b) CNR

0 2 4 6
·105

100.4

100.6

100.8

Edges Sampled

E
la

ps
ed

Ti
m

e
(s

ec
)

(c) DBLP

0 2 4 6
·106

101

102

Edges Sampled

E
la

ps
ed

Ti
m

e
(s

ec
)

(d) Dewiki

0 0.2 0.4 0.6 0.8 1
·107

101.5

102

Edges Sampled

E
la

ps
ed

Ti
m

e
(s

ec
)

(e) ljournal

0 0.2 0.4 0.6 0.8 1 1.2
·108

102

103

104

Edges Sampled

E
la

ps
ed

Ti
m

e
(s

ec
)

(f) Arabic

Fig. 2: Run-time for algorithms TS, NMS, NHMS and THS

THS versus TS: THS proves to be 5 - 10X faster than its counterpart TS. Hence,
these results validate our claim that Hybrid algorithms are faster than FM algorithms.

NHMS versus NMS: There is only a slight difference between NHMS and NMS.
The reason behind this is that NMS is already an FP algorithm and Hybrid algorithms
follow the same execution trend as FP algorithms until the first k edges are processed,
after which the increase in time becomes constant. This would be more clear in the
next section on scalability. Hence, NHMS is faster than NMS algorithms after the first
k edges are processed.

Fast and Scalable Triangle Counting in Graph Streams 11

THS versus NHMS: Among our algorithms, THS outperformed NHMS consider-
ing the running time, but there’s consistently a trade-off among both between run-time
and accuracy. NHMS is more accurate whereas THS is much faster than NHMS. Over-
all, both our hybrid algorithms have better running time in comparison to both FM and
FP algorithms. THS outperformed all algorithms including NHMS.

5.4 Scalability

To measure scalability, we ran an experiment on twitter that has more than 1.2 billion
edges. Data points including time and the number of edges streamed are collected after
every 1 million edges in all the algorithms. The results are shown in Figure 3.

0 0.2 0.4 0.6 0.8 1 1.2
·109

0

1,000

2,000

3,000

4,000

5,000

Edges Streamed

E
la

ps
ed

Ti
m

e
(s

ec
)

TS NMS NHMS THS

Fig. 3: Scalability Analysis of algorithms on Twitter Graph

Scalability of FP algorithms: FP algorithms are not scalable due to their charac-
teristics. As the edges stored always grows in FP algorithms, elapsed time grows expo-
nentially as the number of edges increases on massive graphs. We can see the results of
NMS graph and the algorithm is unable to process whole graph stream and halted even
before the billion edges were processed. Hence, NMS is not scalable.

NHMS can scale NMS: As NHMS is the hybrid variant of NMS, it is important to
compare both. NMS does not scale on the large graphs, whereas we see NHMS is able
to process the whole graph stream. As we have already discussed, NHMS follows the
same trend as FP algorithms until the first k edges. We observe that behavior in Figure
3 around 600 million edges, where the curve started to flatten, after a slight exponential
rise (similar to NMS).

Scalability of THS and comparison with TS: As seen in Figure 3, THS scales
linearly. In comparison to TS that takes around 4200 seconds to execute on Twitter
graph, THS just takes 760 seconds that is 5.5X faster.

Overall, Both hybrid algorithms scale really well for large graphs and are faster in
executing the graph stream than both FM and FP algorithms.

12 P. Singh et al.

6 Conclusion and Future Work

In this study, We prove that FP algorithms are faster than FM algorithms, due to their
characteristics that we discussed in Section 3.3. In addition, we present two new algo-
rithms for triangle estimations that belong to the Hybrid category i.e. NHMS and THS.
In our evaluation, we observed that NHMS and THS perform a lot better than their
counterparts, i.e. NMS and TS, in both running time and accuracy. THS proves to be
at least 5 times faster than TS in all the cases with varied graph sizes and different
experimental settings. NHMS could not only scale NMS in 16 GB memory, but also is
approximately 2 times faster in most cases.

This research opens up a completely new dimension as we present a new hybrid
approach where the community contributions will be proven useful. The theoretical
proofs for the accuracy and variance of the estimates of both Hybrid algorithms will
provide additional validation of the algorithms. Also, both NHMS and THS can be
extended to count sub-graph structures other than triangle.

References
1. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multiresolution

coordinate-free ordering for compressing social networks. In: Srinivasan, S., Ramamritham,
K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th inter-
national conference on World Wide Web. pp. 587–596. ACM Press (2011)

2. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: Proc. of the
Thirteenth International World Wide Web Conference (WWW 2004). pp. 595–601. ACM
Press, Manhattan, USA (2004)

3. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting
triangles in data streams. In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. pp. 253–262. ACM (2006)

4. Jha, M., Seshadhri, C., Pinar, A.: A space efficient streaming algorithm for triangle count-
ing using the birthday paradox. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 589–597. ACM (2013)

5. Kavassery-Parakkat, N., Hanjani, K.M., Pavan, A.: Improved triangle counting in graph
streams: Power of multi-sampling. In: 2018 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining (ASONAM). pp. 33–40. IEEE (2018)

6. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling tri-
angles from a graph stream. Proc. VLDB Endow. 6(14), 1870–1881 (Sep 2013).
https://doi.org/10.14778/2556549.2556569, http://dx.doi.org/10.14778/2556549.2556569

7. Santoso, Y., Thomo, A., Srinivasan, V., Chester, S.: Triad enumeration at trillion-scale using
a single commodity machine. In: Advances in Database Technology-EDBT 2019, 22nd In-
ternational Conference on Extending Database Technology, Lisboa, Portugal, March 26-29,
Proceedings. OpenProceedings. org (2019)

8. Shin, K., Kim, J., Hooi, B., Faloutsos, C.: Think before you discard: Accurate triangle count-
ing in graph streams with deletions. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. pp. 141–157. Springer (2018)

9. Singh, P.: Fast and Scalable Triangle Counting in Graph Streams: The Hybrid Approach.
Master’s thesis, University of Victoria (2020)

10. Stefani, L.D., Epasto, A., Riondato, M., Upfal, E.: Triest: Counting local and global trian-
gles in fully dynamic streams with fixed memory size. ACM Transactions on Knowledge
Discovery from Data (TKDD) 11(4), 43 (2017)

