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Abstract. This research addresses the growing interdisciplinary inter-
est in Bitcoin by proposing a versatile compression framework for trans-
forming raw blockchain data into a streamlined compact format suitable
for high-performance analysis. Our approach focuses on developing a
language-agnostic API, ensuring accessibility across programming lan-
guages. Beyond data extraction, our framework outputs the Bitcoin user
transaction graph, facilitating network analysis, forensics, and pattern
detection. Processed data are exported to the HDF5 file format for com-
patibility with mainstream analysis tools. A proof-of-concept CPython
implementation demonstrates the framework’s feasibility, showcasing its
real-world applicability for data-driven investigations in Bitcoin research.
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1 Introduction

The Bitcoin blockchain3 is a decentralized, distributed ledger that records Bit-
coin transactions. This ledger is public and immutable, making it a valuable
source of information for various research and analytical purposes. However, its
sheer size presents significant challenges to researchers and analysts. The ability
to extract, store, and analyze blockchain data efficiently is desired by academics
and industry.

This research addresses a critical gap in the current landscape by proposing
an abstract algorithmic framework for the extraction and compression of Bit-
coin’s transaction ledger and user transaction graph. The data are converted into
a form that we call normal form, which adheres to a data-oriented design [3].

Data-oriented design is a design paradigm applied to algorithms and data
structures to maximize the use of the CPU and GPU cache. This involves mini-
mizing the size of the working set (program input, i.e. a matrix) to fit as much
data as possible into the cache, using a contiguous memory layout whenever pos-
sible, and designing algorithms so that data reside in the cache until they are no
longer needed by the program [8]. A cache line is the currency between the CPU
and the main memory [5]. Reading from memory is a significant bottleneck for
modern CPUs, thus high-performance data analysis necessitates fitting as much

3 https://bitcoin.org/bitcoin.pdf
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data as possible into consecutive cache lines so that the size of the subset of
the working set retrieved every time the CPU reads data from main memory is
maximized.

Our normal form makes it possible for the entire transaction ledger or user
transaction graph to fit into the main memory of a 64GB commodity research
machine, with O(1) indexing of the underlying data for fast lookups. The frame-
work facilitates the extraction of the raw blockchain data and transforms them
into our normal form with a minimal memory footprint, such that the entire
blockchain can be extracted on a commodity machine with just 32GB of mem-
ory.

To maintain the framework’s language-agnostic theme end-to-end, output
data are exported to the HDF5 file format [6], which can be processed by any
mainstream programming language and data analysis software. Furthermore, the
output can be seamlessly stored in a conventional SQL/No-SQL DBMS. We also
present a proof-of-concept implementation in Python to demonstrate the feasi-
bility and efficiency of our approach. We chose Python for our proof-of-concept
implementation because of its interdisciplinary popularity and the challenges as-
sociated with implementing the framework efficiently using this language. The
main challenge is CPython’s inefficient memory consumption; the increased pro-
ductivity and simplicity offered by its object-oriented and dynamically typed
nature come with trade-offs.

Our contributions can be summarized as follows.

– Algorithmic Framework/API: We introduce a comprehensive language-
agnostic algorithmic framework/API designed to efficiently extract and com-
press Bitcoin’s transaction ledger and user transaction graph. This frame-
work is crucial for handling the massive scale of blockchain data, which
contains over 800 million transactions as of January 1st, 20234.

– Cache Optimized Data Layout with O(1) Indexing: Our normal form
data structure facilitates O(1) indexing for high-performance data analysis.
The entire Bitcoin transaction ledger or user transaction graph can be ac-
commodated in the main memory of a commodity research machine.

– HDF5 Format for Cross-Platform Compatibility: Output data are
saved in the HDF5 file format, facilitating the use of the processed data
with various mainstream programming languages and data analysis tools,
and can be seamlessly stored in both SQL and No-SQL databases.

– CPython Proof-of-Concept Implementation: To validate our work, we
present a CPython-based proof-of-concept that overcomes the language’s
memory hurdles.

2 Related Works

BlockSci [7] is a comprehensive state-of-the-art blockchain exploration tool im-
plemented in C++ with a CPython interface for seamless high-level querying of

4 https://blockchain.com/explorer/charts/n-transactions-total
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the data. Similar to our work, BlockSci’s data layout is designed to maximize
the utility of the CPU cache. The project is no longer maintained, which makes
it challenging to install and use because of compatibility issues with newer ver-
sions of Linux and CPython. Because it is a packaged querying tool, there is
little flexibility in changing the set of transaction attributes and migrating the
data to a different DBMS.

BTCSpark [11] is built on top of Apache Spark and Spark SQL, a robust
and distributed data processing framework, to address the challenges associated
with large-scale Bitcoin data analysis. This approach is particularly valuable in
scenarios where the volume and complexity of Bitcoin data require efficient and
seamless distributed processing.

BitSQL [9] is an SQLite and MariaDB-based blockchain querying tool. The
data layout is similar to the one proposed by this work, but redundantly stores
both raw transaction IDs/addresses and their integer hashes, leading to an out-
put that is double in size compared to ours. Furthermore, our research dedicated
a significant amount of time to integrating various SQL/NoSQL DBMSs into the
pipeline and failed to replicate the claimed performance figures.

[2] contributes a general extraction framework for the Ethereum and Blockchain
blockchains. The framework extracts raw blockchain data, as well as off-chain
data (i.e. exchange rate, user IP addresses), and stores them in an SQL or No-
SQL database. The purpose of this framework is to facilitate individual as well
as cross-chain data analytics.

3 Background

3.1 Bitcoin transactions

The Bitcoin blockchain records transactions in a sequence of blocks, created
by miners in a peer-to-peer network. Miners compile transactions into blocks,
earning new Bitcoins and fees as rewards.

A Bitcoin transaction consists of an arbitrary number of inputs and outputs.
The currency of the Bitcoin blockchain is the set of unspent transaction outputs.
Each transaction output specifies a value of Bitcoins to be spent and contains a
script (ScriptPubKey) dictating the conditions under which these Bitcoins can
be spent. An unspent output is spent when referenced by a transaction input
alongside the appropriate unlocking script (scriptSig). Bitcoin users/entities are
an abstraction of output script addresses.

In a valid transaction, the sum of the Bitcoin value of the inputs must be
greater than or equal to the sum of the value of the outputs - users cannot spend
more money than they have. When the input value is greater than the output
value, miners can claim the remainder as a fee. If the total input value is greater
than the debt that needs to be settled, the remaining Bitcoins can be reclaimed
by appending an output(s) to the transaction’s output set referencing the desired
amount and address. This is known as a change output.
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The first transaction in a block is called Coinbase and can be used by miners
to claim the newly minted Bitcoins and any aggregated transaction fees. Coinbase
outputs create new Bitcoins, and thus increase the money supply.

3.2 User transaction graph and address clustering

A directed graph G = (V,E) consists of vertices V and directed edges E, where
each edge points from one vertex to another. The blockchain can be represented
as a directed multigraph, where directed edges represent transaction outputs and
vertices/nodes represent users. A multigraph is a graph that can have multiple
edges between a pair of endpoints.

Bitcoin users are inferred via address clustering. The common-input-ownership5

heuristic is the most widely used address clustering method (CIO henceforth)
The heuristic explicitly assumes that a multi-input transaction is signed (via the
ScriptSig) by the same user, even though it is technically possible for each input
to be signed by a separate user [4]. CIO is a computationally cheap algorithm
for address cluster inference and is supported by our framework.

3.3 Notations

We list some recurring notations throughout the paper. Whenever we use list
the order matters, and whenever we use set the order does not matter.

1. S(.) is the size of a data structure/type in bytes.
2. h: Block height. This is a block’s ordered position (index) in the blockchain.
3. Bh: List of blocks at height h. A block contains a list of transactions.
4. Th: List of transactions at height h, all the transactions in blocks in Bh.
5. Ah: Address set at height h, all the addresses in transactions in Th.
6. Uh: Sub-list of Th containing all the transactions of Th with at least one

unspent output.
7. b: Block : b ∈ Bh.

(a) b.h: Height of block b.
(b) b.t: Transaction list of block b; b.t ⊂ Th.

i. b.t[i]: ith transaction in b.t.
8. t: Transaction.

(a) t.id: Unique ID of the transaction.
(b) t.b: index of t in block b; 0 ≤ t.b < |b.t|.
(c) t.h: Transaction’s block height; 0 ≤ t.h < |Bh|.
(d) t.norm: Transaction’s normal form.
(e) t.in: List of transaction inputs (see below for the definition of inputs).
(f) t.out: List of transaction outputs (see below for the definition of outputs).
(g) t.uout: List of transaction unspent outputs.
(h) t.ts: Transaction timestamp.
(i) t.insum: Sum of inputs’ referenced unspent output values. Each input

references an unspent output from an older transaction.

5 https://en.bitcoin.it/wiki/Common-input-ownership_heuristic
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i. t.insum.f : Denomination flag.
ii. t.insum.v: Monetary value (Bitcoin or Satoshi, depending on f).

(j) t.outsum: Sum of a transaction’s output values. Same attributes as
t.insum.

(k) t.fee: Fee, if t.insum > t.outsum.
(l) t.norm: normal form, list of integers (see Methodology).

9. in: Input.
(a) in.i: ith input in t.in.
(b) in.id: Referenced output’s transaction ID (ti.id, ti ̸= t).
(c) in.outi: Referenced output’s position in its own transaction’s (ti) output

list (ti.out[in.outi]).
(d) in.addr: Input address.

10. out: Output, uout: Unspent output.
(a) out.addr: Output address.
(b) out.f : Denomination flag.
(c) out.v: Output Bitcoin value.

11. Gh: User transaction graph at height h.
(a) Vh: Node set.
(b) Eh: Edge set.

4 Methodology

4.1 Normal form, denomination flags, and MurmurHash

We transform raw Bitcoin transaction data into a list of unsigned 4-byte integers
that we call normal form. This list contains input/output addresses, output
values, sum of input values, and timestamp. The pipeline can be easily modified
to include other attributes, such as output script type.

Let |t.in| = n and |t.out| = m. The normal form structure is as follows:

1. The first two elements are n and m.
2. The following n elements are the MurmurHash-ed input addresses in the

order they appear in the transaction.
3. The following m elements are the MurmurHash-ed output addresses ”.
4. The following 2 · m elements are (flag, value) pairs, one pair per output

address. flag encodes value’s denomination (Satoshi or Bitcoin).
5. The last three elements are a (flag, value) pair encoding the total monetary

value of the inputs (t.insum), and transaction timestamp.

Transaction outputs are denominated in Satoshis (1BTC = 100e6 SAT ) on
the blockchain. Outputs greater than 232 − 1 SAT exceed the limit of a 4-byte
unsigned integer (uint32 ). For such large Satoshi values, we convert them into
Bitcoin, round them to the fourth decimal, and scale them back to an integer.
If still too large, the offset from 232 − 1 is stored. Negative fees due to rounding
errors are set to zero.

Denomination flags indicate the transaction value’s format and spent status.
This facilitates the construction of the unspent transaction output set (UTXO).
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Flags (0, 3) represent SAT , (1, 4) BTC, and (2, 5) BTC as an offset from 232−1.
Unspent output flags are < 3; when an unspent output is spent, it is marked as
spent by incrementing its flag by three. To convert back into SAT , for flag ∈
(1, 4) multiply the output value by 1e4, and for flag ∈ (2, 5) add 232 − 1 and
multiply by 10e4.

Raw Bitcoin transaction IDs (txid) are 64-character long HEX strings. Ad-
dresses are base58Check encoded alphanumeric strings of 58 characters [1]. txid
(t.id) can be represented as a HEX string of 64 characters (32 bytes) and an ad-
dress can be represented as a 58-byte array of ASCII characters. A raw Bitcoin
address and transaction ID occupy an entire cache line and half a cache line re-
spectively (a cache line is usually 64 bytes). Our solution uses the MurmurHash6

non-cryptographic hash function to convert addresses and transaction IDs into
4-byte unsigned integers.

4.2 Transaction indexing

Normal-form transactions are stored in a one-dimensional array of unsigned in-
tegers (tArr). To facilitate efficient traversal of the transaction array and O(1)
lookups we introduce two auxiliary offset arrays; toff and boff. toff maps an
ordered transaction index (i) to the slice of tArr that contains ordered transac-
tion i.

∀i ∈ [1, |Th|) : tArr[toff[i]:toff[i+1]) = Th[i].norm (1)

The i -th blockchain transaction’s normal form is stored in the range [toff[i],toff[i+1])
of tArr. Similarly, boff enables transaction indexing by block height. Given a
block height h, we can retrieve the block’s transaction set from tArr as follows,

∀h ∈ [1, |Bh|) : tArr[ toff[boff[h]] : toff[boff[h+1]]) = Bh[h].t (2)

We can also index transactions by block height and transaction block position
(t.h, t.b). For a = toff[boff[t.h]+t.b], b = toff[boff[t.h]+t.b+1],

tArr[a : b) = Bh[t.h].t[t.b].norm (3)

4.3 Retrieving input addresses

The first stage parses the raw data and maps transactions to normal form.
Let |Bh| = N and ∀b ∈ Bh : |b.t| = M , we have the following intermediate
representation,

tArr = [Bh[0].t[0].norm, . . . , Bh[N − 1].t[M − 1].norm] (4)

= [Th[0].norm, . . . , Th[(N ·M)− 1].norm] (5)

In our CPython implementation, we store tArr across multiple arrays/files
on 5e6 transaction intervals because of memory limitations. In the intermediate

6 https://github.com/aappleby/smhasher
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representation, inputs are represented as a triplet of integers compressed into
one integer between stages one and two. For now, assume that each input is
represented as an integer triplet (a set of three integers). For every t ∈ Th we
have,

∀i ∈ [0, |t.inp|) : (ti.h, ti.b, t.in[i].outi) ∧ (ti ̸= t) (6)

The items in the triplet refer to the referenced output’s transaction block
height, position in the block, and the output’s position in ti respectively. This
is used in the next stage to extract in.addr, in.f and in.v. Given an arbitrary
transaction id as input, the corresponding transaction can be retrieved in O(1)
via,

UMaph(id) → [t.h, t.b, |t.uout|], t = Bh[t.h].t[t.b] (7)

UMaph is a key-value data structure that maps a transaction ID to a triplet
containing the transaction’s block height, position in the block, and number of
unspent outputs. When a transaction is added to UMap, |t.uout|=|t.out|. When
a future in ∈ t′.in references t.uout, |t.uout| is decremented by one. Every time
block data are moved to secondary storage, UMap is updated such that every t
with t.uout ∈ ∅ is removed. The blockchain’s UTXO set at some height h can
be reconstructed via UMaph.

4.4 UMap as a CPython dict

As of v3.12, CPython’s dict is based on a dynamic indexing array and a compact
hash table7. Each entry in the hash table is represented by a hash (h) (≤ 8-byte
signed integer,), and two pointers (p) for the key-value (k, v) pair (8 bytes/-
pointer). An entry’s position in the hash table is stored in the dynamic array as
an ≤ 8-byte unsigned integer (i).

In general, a map data structure’s memory footprint is lower bounded by the
size of its payload and upper bounded by the payload times the resizing factor8.
For large payloads, the resizing factor for a Python dictionary is two, which
we can use to approximate an upper bound. The following formula calculates a
dictionary’s payload (P (k, v, i, h)) size (n is the number of (k, v) pairs),

S(P ) = n · (S(k) + S(v) + 2 · S(ptr) + S(h) + S(i)) (8)

S(P (k, v, uint32, int64)) = n · (S(k) + S(v) + 28) (9)

We estimate a dict ’s memory footprint to fall within this range,

S(P ) ≤ S(dict) ≤ 2 · S(P ) (10)

Considering the current size restrictions of the Bitcoin protocol |b.t| and
|t.out| rarely exceed 10e4, and is virtually impossible to exceed 1e6. The average
|b.t| for the past six years has hovered around 2e3, briefly reaching a peak of

7 https://mail.python.org/pipermail/python-dev/2012-December/123028.html
8 https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
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≈ 3.4e3 before reverting to the mean9. The record |t.in| and |t.out| stands at
20e3 and 13e3 respectively10. As of January 1st, 2023, |Bh| ≈ 770e3, so b.h can
be represented by a seven-digit integer to accommodate block heights < 1e7.

EncodeT transforms a (t.h, t.b, j) triplet tr into a 22-digit unsigned integer.
DecodeT is the inverse map,

EncodeT (tr) → ((1e7 + t.h) · 1e7 + t.b) · 1e7 + j (11)

DecodeT (int) → (t.h, t.b, j), int ∈ N (12)

Where, t.h = (int) div (1e14) − 1e7, t.b = ((int)mod (1e14)) div (1e7), and
j = (int) mod (1e6). Depending on the context, j can represent one of three
attributes. If tr describes an in, then j → in.i or in.outi, if tr describes an
out, then j → out.i, and if t is meant to keep track of |t.uout|, j =|t.uout|.
The maximum value in EncodeT ’s range is interpreted as t.h = 9999999, and
t.b = j = 999999. Any unsigned integer in this range is represented as a 36-byte
int instance in CPython, whereas an implementation representing the triplet as a
tuple of three int objects requires 148 bytes of memory. As a result, our encoding
consumes ≈ 50% less memory resources than a tuple-based representation.

4.5 Handling hash collisions

Unambiguous resolution of hash collisions in UMap leads to garbage output
data. To avoid ambiguity, we leverage that the chronological traversal of transac-
tions guarantees that previous transaction inputs do not reference the currently
processed transaction’s ID.

To add t.id to UMap, we MurmurHash the ID, check the hash’s membership
in UMap’s keyset, and if the result is positive there is a hash collision. This
means that an older transaction ID is mapped to the same hash. In this case,
we add the raw transaction ID to UMap’s keyset, represented as a string of 64
HEX characters. A low hash collision rate means that the memory footprint of
string keys is virtually zero. For any arbitrary transaction t′ referenced by some
input in another transaction t, we check the membership of t′.id in UMap.keys.
If it exists, t′ is represented by t′.id in UMap, and if it doesn’t, it is represented
by the MurmurHash of t′.id.

5 Algorithms

5.1 First Stage: Transforming raw transaction data into normal
form

The pipeline begins by traversing the raw transaction data to convert them into
normal form and create the (toff, boff, tArr) arrays and UMap in the process.
Each transaction t is temporarily stored in an array (tempt) that is unpacked

9 https://blockchain.com/explorer/charts/n-transactions-per-block
10 https://coinmetrics.io/batching/
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into tArr before moving on to the next one. For each transaction input (in), in.id
(the equivalent of t′.id) is looked up in UMap.keys according to the procedure
described above.

The desired (t′.h, t′.b, |t′.uout|) triplet is stored as an integer in UMap[key],
and is unpacked via outT = DecodeT (UMap[key]). The input is now represented
by EncodeT ((outT [0], outT [1], in.outi)), which is used in the second stage to
retrieve the input’s address and referenced output’s Bitcoin value, both of which
are stored in the referenced output. As per our pruning optimization, UMap[key]
(|t′.uout|) is decremented by one.

Next, each output address in t.out is hashed and appended to tempt, followed
by each output’s (out.f, out.v) pairs. The last three elements in the array are
t.insum.f = 0, t.insum.v = 0, t.ts. t is added to the unspent transaction set, rep-
resented by UMap. The algorithm checks t.id’s hash membership in UMap.keys
to determine whether there is a hash collision or not. It then encodes the de-
sired triplet inInt = Encode(t.h, t.b, |t.uout|) and adds a new entry to UMap,
UMap[key] = inInt. Depending on whether there is a hash collision or not, key
is either t.id or t.id’s hash.

5.2 Second stage: Resolving uout references

The list of files produced by the first stage is traversed to retrieve in.addr and
t.insum. The latter is necessary for the calculation of t.fee. If an input references
an unspent output stored in another file (file′), the input is stored in a map
(lookupMap) alongside other inputs with out-of-file references, so that their
data are retrieved after tArr is traversed. The map is then grouped by file ID so
that uout references located in the same file are grouped, and thus each file is
loaded once. Map keys are file IDs, pointing to (in, out) sequences. Both in and
out are encoded as EncodeT ((t.h, t.b, j)).

Each transaction (t) input is decoded to extract the corresponding uout refer-
ence, represented by the compressed (t′.h, t′.b, out.i) triplet. If t′.h is in the file’s
block height range, then t′ is in the same file. The referenced output (out) is
retrieved from tArr using the toff and boff offset arrays, the corresponding uout
reference in t.in is replaced by out.addr, t.insum.v is incremented by out.v,
t.insum.f is assigned the appropriate flag, and out.f is incremented by three to
mark it as spent. If t′.h is not in the file’s block height range, then the input and
the referenced output are appended to lookupMap[t.h], and the corresponding
uout reference in t.in is set to NULL. Once all transactions in the file are tra-
versed, the missing data are retrieved by traversing lookupMap and loading the
appropriate files.

5.3 Third stage: Address clustering

This stage applies the CIO heuristic to the address set (Ah), implemented based
on the Weighted Quick Union Find algorithm [12,13]. [10] implements CIO using
a variation of Union-Find.
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WQUF consists of two core operations; Find and Union. If an arbitrary
element belongs to a set, Find returns the set’s root, and if it doesn’t, it returns
the empty set operator. Union merges two distinct sets by attaching the root of
the smaller set to the root of the larger set. It then increments the size of the
larger set by the size of the smaller set to reflect the size of the expanded set
and finally returns the root of the larger set.

5.4 Fourth stage: User transaction graph

For every t ∈ Th, the cluster address (set root) of t.in is retrieved via
parentMap[t.in[0].addr], and an outgoing edge is connected to each output clus-
ter (∀out ∈ t.out : parentMap[out.addr]). This process leads to the creation of
|t.out| number of edges. parentMap maps a MurmurHash-ed Bitcoin address to
its cluster address (set root).

A dummy Coinbase node (user) is added to the graph to represent transfers
of newly minted Bitcoins and transaction fees. For each t, if t.fee > 0, an edge
is created between the input cluster and Coinbase, weighted by the transaction
fee. The graph is implemented by a key-value data structure, where each key is
a cluster ID that points to a list of outgoing edges,

edge = (parentMap[out.addr], out.f, out.v, t.ts) (13)

6 Results

Experiments Small Large

Height range h ∈ [0, H] [0, 3e5] [0, 769842]

|AH | 3.733e7 1.084e9

|TXH | 40e6 792e6

CPU i7-3770 Xeon E5-2620

DRAM 12GB 128GB

DIMMs 2x4GB, 2x2GB 8x16GB

L1 256KiB 384KiB

L2 1MiB 1.5MiB

L3 - 15MiB
Table 1. The first column lists experiment parameters, the second column represents
Experiment Small, and the third Experiment Large.

6.1 Compression

We define compression rate as the percentage data size reduction by the com-
pressed data (a) relative to the uncompressed data (b),

CR(a, b) = (1− (S(a)/S(b))) · 1e2 (14)
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The unclustered blockchain’s (u) HDF5 output consists of tArr, toff, and
UMap (key-value pairs stored in a 1D array) and the clustered blockchain’s (c)
HDF5 output consists of the same arrays plus parentMap. In Experiment Large,
the observed S(u) (minus UMap), S(c) (minus UMap, parentMap), S(UMap),
and S(parentMap) are 53.8, 44.5, 1.2, and 6.3 GB respectively. With S(Bitcoin)
≈ 446 GB on January 1st 2023, our normal form yields CR(u,Bictoin) ≈ 88%.

The graph (ĜH) is stored in three arrays; nodes contains cluster addresses,
edges contains the outgoing edges for each cluster, and eoff contains the edges
offsets for each cluster (identical to tArr and toff). The observed S(ĜH) (minus
UMap, parentMap) in B is ≈ 43 GB, with 4 GB evenly divided between nodes
and eoff arrays, and 39 GB for edges. The total size (with the two maps) is ≈
47.3 GB.

Fig. 1. [Left]: X and Y-axis represent the sizes of the transaction set (|Th|) and unspent
transaction set (|Uh|) respectively, as h grows to H. [Middle]: The graph shows the
observed compression rate from pruning UMap (CR(UMap′, UMap)) as a function of
the size of the transaction set |Th|, as h grows to H. [Right]: Cumulative Distribution
Function of negative wealth. The X-axis represents negative wealth values and the y-
axis node count.

6.2 Memory

UMap and parentMap are the data structures with the largest memory footprint
in the API. An alternative solution to dict would be a key-value pair DB, in which
case a sample of the key-value pairs reside in the cache (DRAM in this case) and
the rest in storage. We tried two state-of-the-art solutions, RocksDB and Redis,
and in both cases, elapsed time increased at least three-fold. Approximately half
of the queries are cache misses, and retrieving data from storage is orders of
magnitude slower than main memory. The decision to store intermediate data
([toff,boff,tArr]) in pickle files has a similar reasoning. We tried two RDBMs,
MySQL and SQLite, and elapsed time increased at least ≈ three-fold.

Fig. 6.1 [left] shows that |Uh| ≈ |Th|/10 throughout the experiment. For n =
|UH | = |TH |/10 ≈ 90e6, S(P ) yields 8.7GB, thus our estimate is S(UMapH) ∈
[8.7, 17.4] GB. The observed S(UMapH) is 13.1 GB, ≈50% greater than our
lower bound, and ≈ to the median value of our estimated size range. As of
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October 2023, |Th=H | ≈ 900e6, so our pruning optimization makes it possible to
extract 90% of the unclustered transaction data with just 32GB of DRAM.

UMap is pruned every time the extracted block data are stored in secondary
storage and removed from the cache. Data are dumped in storage on 5e6 transac-
tion intervals, thus Fig. 6.1 [middle] contains 160 such measurements. The prun-
ing optimization’s returns are diminishing as h, and therefore |Th|, increases. For
|Th| ≥ 400e6, the achieved compression rate stays at 5%. At p = (400e6, 40e6),
UMap is pruned an additional 80 times. However, had the pruning stopped at
p, |UMap.keysh=H | would have grown to 40e6 · (1.05)80 ≈ 200e6.

parentMap.keys is the equivalent of AH . To estimate its size at the end of
B, we set n = |AH | ≈ 1e9 and get S(parent) ∈ [92, 184] GB. The observed
S(parent) is 115GB, approximately 25% larger than our lower bound, and 17%
less than the median value of our estimated size range.

6.3 Elapsed time

Experiment timings Small Large tL/tS
Normal Form 2h 45min 67h 50m 25

UOUT References 12min 68h 340

Address clustering 2.5min 2h 30m 60

Graph creation 7min 3h 30m 30

Data export 3min 1h 15m 25

Total 3h 10min 5d 23h
Table 2. First column lists experiment parameters, second and third columns list the
results in Experiment Small and Large respectively, and fourth column lists Experiment
Large/ Experiment Small timing ratios.

Table 2 lists the timings for each stage. Experiment Large’s working set is ≈
20 times larger than Experiment Small’s, and since the framework’s complexity
is O(n), we should expect timings in Large to be at least 20 times greater than
Small. The empirical average tL/tS ≈ 45 reflects the difference in processing
power between the two machines and the growing number of CPU cache misses
in Experiment Large due to the much larger working set (and an unexpected issue
with stage two). We suspect that a critical factor in stage one’s poor performance
could be the third-party library used to read the raw blockchain data11. A main
priority for our future work is further investigating the potential bottlenecks
caused by this API.

Stage two’s poor performance can be attributed to its worst complexity case
turning out to be its average/expected complexity due to the inherently random
nature of unspent output references. The worst case is that each file has at least
one uout reference for each previous file. That proved to be the case for most of

11 https://github.com/alecalve/python-bitcoin-blockchain-parser

https://github.com/alecalve/python-bitcoin-blockchain-parser
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our block files. As a result, most files had to access all previous files to retrieve
input data, equivalent to performing a file scan each time.

6.4 Information loss from floating point arithmetic

Floating point arithmetic approximation error inevitably leads to nodes with
negative wealth, spending more Bitcoins than they receive. We classify a user
transaction graph Ĝh as a valid economy if it satisfies the following constraints:

1. ∀n ∈ (V̂h − {CB}) : ˆWealthh(n) ⪆ 0

(a) ˆWealthh(n) = inV alh(n)− outV alh(n)

2. Supplyh ≈ ˆSupplyh
(a) ˆSupplyh = outV alh(CB)− inV alh(CB)

3. Supplyh ≈ Sum( ˆWealthh(n) ∀n ∈ V̂h)

Where inV alh and outV alh represent the total value of a node’s incoming
and outgoing edges at h respectively. Supplyh represents the Bitcoin supply in
the blockchain at h, and ˆSupplyh is the supply in Ĝh. ˆWealthh(n) represents
individual node wealth, where the real precise value is unknowable. CB repre-
sents the Coinbase node. The first constraint states that a node cannot spend
more Bitcoins than it owns. The following constraints can be deduced from the
first one and all constraints are relaxed, therefore a node’s wealth can be slightly
negative.

Experiment Large Gh=H Ĝh=H

SupplyH 19.249e6 19.237e6

|VHW<0 |/|VH | 0 0.1416

min(WealthH) 0 −129e− 3

SupplyH − Sum(WealthH) 0 17.28
Table 3. First column lists the parameters of the experiment, second column lists the
ground truth data (the blockchain), and third column lists the observed values.

Table 3 lists the necessary data to prove that our ĜH satisfies all three
constraints. All measurements are made at the end of Experiment Large, at
height h = H = 769, 842. The observed ˆSupplyH/SupplyH = 99.94% means
that the Bitcoin supply in ĜH , based on outV alH(CB)− inV alH(CB), reflects
the real supply at height H. ĜH then satisfies the second constraint.

The second statistic measures the proportion of |V̂H | with negative wealth

(v ∈ V̂H : ˆWealthH(v) < 0). Given that |V̂H | ≈ 490e6, and |V̂HW<0
|/|V̂H | ≈ 14%,

≈ 69e6 nodes in the graph have a negative net worth. This does not invalidate
our user graph; Fig. 6.1 [right] shows the cumulative distribution function of
negative user wealth at h = H, where 99% of negative Wealth values fall in the
[1e−4, 0) range. The most negative observed Wealth value is ≈ −0.13 Bitcoins.
ĜH then satisfies the first constraint.
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The last statistic measures the difference between the supply in ĜH and total
user wealth. The value of the real figure is zero because user wealth cannot exceed
SupplyH . In ĜH , this figure is ≈ 17 Bitcoins. In relative terms (17/SupplyH) ≈
8.83e − 57 , so the observed figure is very close to zero. ĜH satisfies the last
constraint and thus qualifies as a valid economy.
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