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Abstract. We introduce a bridgeness measure to assess the influence
of a node in the connectivity of two groups (communities) in a so-
cial network. In order to protect individual privacy upon possible re-
lease of such information, we propose privacy mechanisms using zero-
knowledge privacy (ZKP), a recently proposed privacy scheme that pro-
vides stronger protection than differential privacy (DP) for social graph
data. We present techniques to compute the parameters required to de-
sign ZKP methods and finally evaluate the practicality of the proposed
methods.

1 Introduction

For many years, complex graphs of real world networks have been studied from
different aspects. One major line of research is devoted to the study of the
role of nodes and edges in the functionality and structure of networks. Various
indices have been proposed to characterize the significance of nodes and edges.
Centrality measures like degree, closeness, and betweenness (cf. [30, 12] are used
to determine the role of a node in maintaining the overall and partial connectivity
of networks. Various definitions of bridgeness are proposed to measure the role
of nodes or edges [28, 5]. Here we define another notion of bridgeness to measure
the effect of a node (particularly a linchpin3) on the connectivity of two groups
(communities) in a social graph.

Graph characteristics like bridgeness, similar to other aggregate information,
are usually released to the third parties for different purposes. The release of such
information can violate the privacy of individuals in networks. Among the wide
range of definitions and schemes presented to protect data privacy, ǫ-Differential
Privacy [11, 9, 10] (DP for short) has attracted significant attention in recent
years. By adding appropriate noise to the output of a function, DP makes it
practically impossible to infer the presence of an individual or a relationship
in a database using the released information. While DP stays resilient to many

3 Highly active members of networks usually act as linchpins. For example, highly
active authors or actors in collaborative networks play an essential role in connecting
sub-units (communities or clusters) [25].



attacks on tabular data, it might not provide sufficient protection in the case of
graph data, particularly social networks (c.f.[13, 19]). Because of the extensive
correlation between the nodes in social networks, not only the participation of
a node (or relationship), but also the evidences of such participation have to be
protected. And this requires a higher level of protection than DP (cf. [19]).

We explain the matter using an example. Suppose there are two groups of
nodes g1, g2, and a node p in a social graph G. We want to publish the number
of triangles between these three disjoint components of G. Suppose that there is
a triangle between Bob in g1, Alice in g2, and p. As a consequence of such rela-
tionship, some friends of Bob make connections to Alice and to p, thus creating
new triangles. What we want to protect is Bob’s edge to Alice. From a counting
perspective the existence or not of this edge can change the answer by 1. DP
works in this case by ensuring that for any true answer, c or c− 1, the sanitized
answer would be pretty much the same. However, this is not strong enough; the
existence of Bob’s edge influenced the true number of triangles not just by 1,
but by a bigger number as it caused more triangles to be created by Bob’s and
Alice’s friends.

In order to provide sufficient data privacy for social graphs, Gehrke, Lui, and
Pass proposed “zero-knowledge privacy” (ZKP) in [13]. The definition of ZKP
is based on classes of aggregate functions. ZKP guarantees that any additional
information that an attacker can obtain about an individual by having access
to the privatized output is indistinguishable from what can be inferred from
some sampling-based (approximate) aggregates. The level of privacy in ZKP
mechanisms is defined using the sample complexity of aggregates. For instance,
suppose in the Bob’s example above the network size is 10000 and the sample
size is

3
√
100002 = 464. With such a sampling rate of almost 0.05 the evidence

provided by say 10 more triangles caused by Bob’s connections will essentially
be protected; with a high probability, none of these 10 triangles will be in the
sample.

In this paper, we use ZKP to provide connection privacy when releasing
inter-community bridgeness of linchpin nodes. We define a natural notion of
bridgeness in social graphs and present a ZKP mechanism for private release of
bridgeness. Specifically, we propose methods to compute the sample complexity
of the bridgeness function. In order to achieve this, we present techniques to
express the function as averages of specially designed, synthetic attributes on
the nodes of graphs. Then, we derive precise prescriptions on how to construct
ZKP mechanisms for the function.

The rest of the paper is organized as follows. We discuss related work in
Section 2. In Section 3, we define our notion of bridgeness. Section 4 contains
an elaborate discussion of the background concepts related to zero-knowledge
privacy. In Section 4, we present ZKP mechanisms for bridgeness measure. Also
in this section, we present our methods to compute the sample complexity of
bridgeness. Section 6 presents a numeric evaluation of the ZKP mechanism, and
Section 7 concludes the paper.



2 Related Work

Massive networks, graphs, and graph databases have become very popular for
more than a decade (c.f. [14, 2, 35, 3, 15, 31, 32, 4]). Computing statistics and sum-
marizations for graph data is very important as it is difficult to understand their
structure using other means (c.f. [36, 39, 18, 37, 38, 16, 22]).

The common goal of privacy preserving methods is to learn from data while
protecting sensitive information of the individuals. k-anonymity for social graphs
(cf. [23, 6, 21, 7]) provides privacy by ensuring that combinations of identifying
attributes appear at least k times in the dataset. The problem with k-anonymity
and other related approaches, e.g. l-diversity [24], is that they assume the adver-
sary has limited auxiliary knowledge. Narayanan and Shmatikov [27] presented
a de-anonymization algorithm and claimed that k-anonymity can be defeated by
their method using auxiliary information accessible by the adversary.

Among a multitude of different techniques, differential privacy (DP) [1, 8, 11,
9] has become one of the leading methods to provide individual privacy. Various
differentially private algorithms have since been developed for different domains,
including social networks [17, 29]. However as already shown, DP can suffer in
social networks where specific auxiliary information, such as graph structure and
friendship data, is easily available to the adversary. Important works showing
the shortcomings of DP are [19, 20].

Gehrke, Lui, and Pass in [13] present the notion of zero-knowledge privacy
that is appealing for achieving privacy in social networks. Zero-knowledge pri-
vacy (ZKP) guarantees that what can be learned from a dataset including an
individual is not more than what is learned from sampling-based aggregates
computed on the dataset without that individual.

Shoaran, Thomo, and Weber in [34], use ZKP to release connectedness statis-
tics between groups in a social network. This is different from the current work,
where we aim at privately releasing bridgeness statistics for linchpin nodes.

Regarding DP, [33] discusses the utility of the statistics distorted to satisfy
DP. Here we consider the utility of the bridgeness statistics distorted to satisfy
ZKP, and conclude that the utility is better than that of the ZKP mechanism
in [34].

3 Graphs and Bridges

We denote a graph as G = (V,E), where V is the set of nodes and E ⊆ V ×V is
the set of edges connecting the nodes. We consider S ⊂ 2V to be a set of disjoint
node groups of size r or more that a social network wants to release statistics
about. Let g′ and g′′ be two groups in S and p be a node in G such that p /∈ g′

and p /∈ g′′.

Definition 1. The bridgeness of node p on two groups g′ and g′′ is defined as

Bp(g
′, g′′) =

|{(p, v′, v′′) : v′ ∈ g′, v′′ ∈ g′′, and {(v′, v′′), (p, v′), (p, v′′)} ⊆ E}|
|g′| · |g′′|



Intuitively, bridgeness Bp(g
′, g′′) is the fraction of the number of (p, v′, v′′)

triangles that exist over the number of all possible (p, v′, v′′) triangles.
Throughout the paper, we will refer to the bridgeness as Bp whenever g′ and

g′′ are clear from the context.
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Fig. 1. Bridgeness

Example 1. Fig. 1 shows a graph G with two groups g′ and g′′, having three and
two nodes, respectively. There are three edges connecting the nodes of g′ and g′′,
and four edges connecting node p to the nodes of g′ and g′′. These edges form
three triangles in total between p and two groups. The number of all possible
such triangles is 3× 2 = 6. Therefore, we have Bp = 3

6 = 0.5.

4 Background on ǫ-Zero-Knowledge Privacy

Zero-Knowledge Privacy (ZKP) introduced by [13] is an enhanced privacy scheme
that guarantees stronger privacy protection, compared to other currently well-
known methods such as differential privacy (DP), especially in social networks.
Due to the extensive influence in such networks, the presence of a single element
(node or connection) can lead to the creation of several new elements in the
network. Therefore, in such settings a privacy mechanism needs to protect not
only the participation of an element in the network, but also the evidence of such
a participation, i.e. the presence of new elements created under the influence of
the element in focus.

ZKP requires that whatever an intelligent agent (adversary) can discover
from sanitized output of the mechanism is not more than what can be discovered
by an assumed equally gifted agent that only has access to some sampling-based
aggregate information. The latter agent is sometimes referred as simulator4.

4 In this context, adversaries and simulators are in fact some algorithms.



Thus, ZKP framework is defined based on a class of aggregate functions agg,
such that the specification of those functions is used to define the privacy level
of the ZKP mechanism. For example, the sample size in the class of aggregate
functions directly affects the accuracy of the output (as it will be defined later
in this section). Using such parameters we can design a ZKP mechanism that
can provide a similar privacy protection. The importance of agg functions in the
definition of ZKP is that by sampling data, the evidence of participation is also
protected.

Let G be a graph. We denote by G−∗ a graph obtained from G by removing
a piece of information (for example an edge). G and G−∗ are called neighboring
graphs.

Let M be the privacy mechanism that securely releases the answer to a query
on graph G, and let A be the intelligent agent that operates on output M(G),
that is, privatized answer, trying to breach the privacy of some individual. Let
S be a simulator as capable as A, that would have access to some aggregate
information obtained by an algorithm T ∈ agg. Note that, the assumed algorithm
T only would compute approximate answers to aggregate functions by sampling
graph G−∗, i.e. the graph that misses the piece of information which should be
protected.

Definition 2. (Zero-Knowledge Privacy [13]) The mechanism M is ǫ-zero-
knowledge private with respect to agg if there exists a T ∈ agg such that
for every adversary A, there exists a simulator S such that for every G, every
z ∈ {0, 1}∗, and every W ⊆ {0, 1}∗, the following hold:

Pr[A(M(G), z) ∈ W ] ≤ eǫ · Pr[S(T (G−∗), z) ∈ W ]

Pr[S(T (G−∗), z) ∈ W ] ≤ eǫ · Pr[A(M(G), z) ∈ W ]

where probabilities are taken over the randomness of M and A, and T and S.

This definition assumes that both the adversary and simulator have access
to some general and easily accessible auxiliary information z, such as graph
structures or the groups the individuals belong in.

Note that, based on the application settings the selection of k – the number
of random samples – in agg algorithms is very important. It should be chosen
so that with high probability very few of the elements (nodes or edges) related
with the element whose information has to be private will be chosen. We will
often index agg by k as aggk to stress the importance of k. To satisfy the ZKP
definition, a mechanism should use k = o(n), say k =

√
n or k =

3
√
n2, where

n, the number of nodes in the database, is sufficiently large (see [13]). DP is a
special case of ZKP where k = n.

Achieving ZKP. Let f : G → R
m be a function that produces a vector of

length m from a graph database. For example, given graph G, the set of groups
S, and a node p, f produces Bp measures for m pairs of groups. We consider the
L1-Sensitivity to be defined as follows.



Definition 3. (L1-Sensitivity) For f : G → R
m, the L1-sensitivity of f is

∆(f) = max
G′,G′′

||f(G′)− f(G′′)||1

for all neighboring graphs G′ and G′′.

Another essential definition is that of “sample complexity”.

Definition 4. (Sample Complexity [13]) A function f : Dom → R
m is said to

have (δ, β)-sample complexity with respect to agg if there exists an algorithm
T ∈ agg such that for every D ∈ Dom we have

Pr[||T (D)− f(D)||1 ≤ δ] ≥ 1− β.

T is said to be a (δ, β)-sampler for f with respect to agg.

This definition bounds the probability of error between the randomized com-
putation (approximation) of function f and the expected output of f . Basically,
functions with low sample complexity (smaller δ and β) can be computed more
accurately using random samples from the input data.

When the released information, as typical, is real numbers, the ZKP mecha-
nism San achieves the privacy by adding noise to each of the numbers indepen-
dently.

Let Lap(λ) be the zero-mean Laplace distribution with scale λ, and variance
2λ2. The scale of Laplace noise in ZKP is properly calibrated to the sample com-
plexity of the function that is to be privately computed. The following propo-
sition expresses the relationship between the sample complexity of a function
and the level of zero knowledge privacy achieved by adding Laplace noise to the
outputs of the function.

Proposition 1. ([13]) Suppose f : G → [a, b]m has (δ, β)-sample complexity
with respect to agg. Then, mechanism

San(G) = f(G) + (X1, . . . , Xm),

where G ∈ G, and Xj ∽ Lap(λ) for j = 1, · · · ,m independently, is

ln
(

(1− β)e
∆(f)+δ

λ + βe
(b−a)m

λ

)

–ZKP with respect to agg.

5 ZKP Mechanism for Bridgeness

In this section we design a ZKP mechanism to privately release Bp measures. Let
f be the function that given graph G, set S, and node p produces a c-dimensional
vector of Bp measures (numbers), where c =

(|S|
2

)

.



Let f = [f1, . . . , ft] be the vector that is to be privately released. We apply a
separate Sani (ZKP) mechanism, for i ∈ [1, t], to each of the elements of f . Let
us assume that each Sani provides ǫi-ZKP for fi with respect to aggki , where
ki = k(n)/t and n = |V |. Then, based on the following proposition, f will be
(
∑t

i=1 ǫi)-ZKP with respect to aggk(n), where k(n) =
∑t

i=1 ki.

Proposition 2. (Sequential Composition [13]) Suppose Sani, for i ∈ [1, n], is
an ǫi-ZKP mechanism with respect to aggki . Then, the mechanism resulting from
composing5 Sani’s is (

∑n

i=1 ǫi)-ZKP with respect to agg(
∑

ki).

Consider G and G−e, where G−e is a neighboring graph of G obtained from
G by removing edge e. The goal of our mechanism is to protect the privacy of the
connections between the nodes of different groups. Therefore, we assume that
the removed edge e is an edge between two nodes of two different groups in S.
Removing such an edge from G can change by at most 1 the numerator of a Bp

measure in G−e. Note that this change affects only one Bp measure in the whole
graph G−e. Therefore, the sensitivity of any Bp function is ∆(Bp) = 1/r2, where
r is the minimum group size in S.

Suppose Bp(g, g
′) is an element of f , where g and g′ are groups in S. Let

San = Bp(g, g
′)+Lap(λ) be a ZKPmechanism which adds random noise selected

from Lap(λ) distribution to the output of Bp(g, g
′) in order to achieve ZKP. Our

goal here is to come up with the right λ to achieve a predefined level of ZKP.
Based on the definition of ZKP, one should first know the sample complexity

of Bp function. For this, without any change in semantics, we will express Bp so
that it computes an average rather than a fraction of two counts. Then, using
the Hoeffding inequality (cf. [26]) we compute the sample complexity of Bp.

Expressing Bp. In addition to regular node attributes (if any), we introduce |S|
new boolean attributes, one for each group in S. We denote each new attribute
by upper-case I indexed by a group id. Each attribute Ig is a boolean vector of
dimension |g|, where each dimension corresponds to a node in g. A node v in
graph G will have Ig(v)[u] = 1, where u ∈ g, if {(v, u), (p, v), (p, u)} ⊆ E, and
Ig(v)[u] = 0, otherwise. For each pair of groups g and g′ we can show that

Proposition 3.

Bp(g, g
′) =

∑

v∈g,u∈g′ Ig′ (v)[u]

|g| · |g′|

=

∑

v∈g′,u∈g Ig(v)[u]

|g| · |g′|

Therefore, the Bp(g, g
′) measure can be viewed as the average of Ig′ (v)[u]’s

or Ig(v)[u]’s.

ZKP Mechanism. Let G = (V,E) be a graph enriched with boolean attributes
as explained above. We would like to determine the value of λ > 0 for the

5 A set of computations that are separately applied on one database and each provides
ZKP in isolation, also provides ZKP for the set.



Lap(λ) distribution which will be used to add random noise to Bp(g, g
′) measures

included in f . For this, first we compute the sample complexity of Bp to be able
to use Proposition 1 and establish an appropriate value for λ.

Let T be a randomized algorithm in aggk, the class of randomized algorithms
that operates on an input graph G. To randomly sample a graph G, algorithm T
would uniformly select k = k(n)/t random nodes from V , read their attributes,
and retrieve all edges6 incident to these k sample nodes.7 Node p is assumed to
be included in the set of randomly selected nodes.

With this sampling, the nodes in the groups of S, the edges between them,
and the edges incident to node p would be randomly sampled as well. Let us
assume that we have a sample of each group and edges between groups and the
size of a sample group g is kg. Then, algorithm T would approximate Bp using
sampled graph data. For the sample complexity of Bp(g, g

′), since we expressed
it as averages, we can use the Hoeffding inequality as follows.

Pr[|T (g, g′)−Bp(g, g
′)| ≤ δ] ≥ 1− 2e−2(kg×kg′ )δ

2

From this and Definition 4, we have thatBp function has
(

δ, 2e−2Kδ2
)

-sample

complexity with respect to aggk, where K = (kg × kg′ ).
Now we make the following substitutions in the formula of Proposition 1:

β = 2e−2Kδ2, ∆(Bp(g, g
′)) = 1/r2, b − a = 1, and m = 1. From this, we have

that mechanism San is

ln

(

e
1/r2+δ

λ + 2e
1
λ−2Kδ2

)

-ZKP

with respect to aggk.
Similarly to DP, we set λ, the Laplace noise scale, to be proportional to “the

error” as can be measured in ZKP method by the sum of the sensitivity and
sampling error, and inversely proportional to the ZKP privacy level.

λ =
∆(Bp) + δ

ǫ
=

1

ǫ

(

1

r2
+

1
3
√
K

)

Regarding δ, we can consider for instance a sample size k(n) =
3
√
n2, and

have δ = 1
3√
K
.

From all the above, the privacy level obtained will be

ln

(

e
1/r2+δ

λ + 2e
1
λ−2Kδ2

)

= ln

(

eǫ + 2e
ǫ

1/r2+1/
3√
K

−2
3√
K
)

≤ ln
(

eǫ + 2e−
3√
K
)

≤ ǫ+ 2e−
3√
K .

6 Clearly, only non-dangling incident edges, whose both end nodes have been sampled,
will be retrieved.

7 For other possible methods of graph sampling see for example [13].



Thus, we have that by adding noise randomly selected from the Lap
(

1
ǫ

(

1
r2

+ 1
3√
K

))

distribution to Bp, San will be
(

ǫ+ 2e−
3√
K
)

-ZKP with respect to aggk.

Example 2. Let graph G be a social graph with ten million participants/nodes
(|V | = n = 10, 000, 000), and g, g′, and g′′ be three node groups in S. Suppose
the requested output vector is

f = 〈Bp(g
′, g′′), Bp(g, g

′′)〉.

and suppose that the minimum group size in S is r = 100.
Assume we would like to have for f a ZKP mechanism expressed with respect

to an acceptable aggk, where

k(n) = 3
√

10, 000, 0002 = 46, 416.

To privately release the first output in f , a randomized algorithm T would
uniformly select

k1 = k(n)/2 = 3
√

10, 000, 0002/2 = 23, 208.

nodes and approximate the value of Bp(g
′, g′′) using sample data.

The actual value of function Bp(g
′, g′′) is computed on G. Suppose that

the size of the sample groups corresponding to g′ and g′′ are kg′ = 500 and
kg′′ = 100, respectively. Therefore, we have K = 50, 000. Let (δ1, β1) be the
sample complexity of Bp(g

′, g′′) where

δ1 =
1

3
√
K

=
1

3
√
50, 000

= 0.0271.

β1 = 2e−2K(δ1)
2

= 2e−2∗(50,000)∗(0.0271)2 = 2.55 ∗ 10−32.

The sensitivity of f is

∆(f) =
1

r2
=

1

1002
= 0.0001.

Now, if we would like to use a mechanism which is 0.1-ZKP, we can add
random noise selected from a Laplace distribution with scale

λ1 =
∆(f) + δ1

ǫ
=

0.0001 + 0.0271

0.1
= 0.272

to the actual value of Bp(g
′, g′′). With this noise scale, the ZKP privacy level of

the mechanism is precisely

ǫ1 ≤
(

ǫ+ 2e−
3√
K
)

=
(

0.1 + 2 ∗ e−37
)

≈ 0.1

with respect to aggk.



6 Evaluation

In our methods, the amount of noise added to the output is independent of the
database, and it only depends on the function we compute and their sensitivities.
Therefore, the following analysis is valid for any database.

6.1 Parameters Affecting Noise Scale

Sampling error δ is an important factor specifying λ based on the formula of

noise scale λ = ∆(f)+δ

ǫ
. The error in turn has reverse connection with the size

of group samples and therefore, with the sample size and size of the database
graph. Recall that throughout the paper we considered the error to be δ = 1

3√
K
,

where K = kg′ ∗ kg′′ .
Fig. 2 illustrates the relationship between the noise scale λ and the parameter

K. In this figure we assumed that the minimum group size is r = 100, and the
ZKP-level ǫ is 0.1. The figure shows that as parameter K (the product of group
sample sizes) decreases from five hundred thousand to one thousand the noise
scale increases non-linearly to the amounts that are not practical in our setting.
Therefore, our proposed ZKP mechanism is perfect for big databases with large
sample sizes. Moreover, even K = 500, 000 implies some sample group sizes,
for example kg′ = 1000 and kg′′ = 500, which are reasonable in social graphs
with only millions of participants (see Example 2). Hence, we conclude that the
proposed ZKP mechanism works well with small as well as large data graphs.
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Fig. 2. Relationship between noise scale and sample group size.

6.2 The Noise

We present the analysis in this section in order to provide a better understanding
of the amount of noise added to outputs. The cumulative distribution function



of Laplace distribution in an interval [−z, z] is computed as follows,

Pr(−z ≤ x ≤ z) =

∫ z

−z

1
2λe

−|x|
λ dx = 1− e

−z
λ .

Let pr = Pr(|x| ≤ z). Value z for a specified cumulative probability pr can
be calculated using the above equation as

z = −λ · ln(1− pr) = −∆(f) + δ

ǫ
· ln(1 − pr).

Figure 3 illustrates the maximum absolute noise z as a function of cumulative
probability pr for three different values of δ when ǫ = 0.1 and ∆(f) = 0.0001.
Each point (pr, z) on the curve for a given δ means that

pr percent of the time the random noise has an absolute value of at most
z.

For example, for δ = 0.02 we have that 50% of the time the absolute value of
noise is at most 0.14, and 75% of the time it is at most 0.28. These values of δ
are practical as our outputs are fractions.
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Fig. 3. Probability vs noise.

7 Conclusions

We addressed zero-knowledge privacy for releasing the bridgeness measure of
graph nodes. The application of our technique is crucial in order to have a
secure public release of graph properties. We introduced methods to compute
the ZKP parameters, specifically the sample complexity. We showed that the
proposed technique is practically useful for large as well as small data graphs.
This is different from the mechanism presented in [34], which is useful only for



very large social graphs. As future work we aim at charting the landscape of
other various graph statistics in order to determine their sample complexity and
see for what sizes of graphs it makes sense to use ZKP from a utility point of
view, i.e. without distorting too much the released statistics.
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