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Abstract—In this paper we outline important differences
between (1) protein interaction networks and (2) social and
other complex networks, in terms of fine-grained network
community profiles. While these families of networks
present some general similarities, they also have some
stark differences in the way the communities are formed.
Namely, we find that the sizes of the best communities
in such biological networks are an order of magnitude
smaller than in social and other complex networks. We
furthermore find that the generative model describing bio-
logical networks is very different from the model describing
social networks. While for latter the Forest-Fire model
best approximates their network community profile, for
biological networks it is a random rewiring model that
generates networks with the observed profiles. Our study
suggests that these families of networks should be treated
differently when deriving results from network analysis,
and a fine-grained analysis is needed to better understand
their structure.

I. INTRODUCTION

We focus on the structural differences of protein
interaction networks versus social and other complex net-
works. While there are some similarities between them,
there are nevertheless significant differences, mainly in
the community structure of these networks. This is in
contrast to the widely held belief that biological networks
are very similar to social networks and thus tools and in-
sights from the latter can be easily applied to or extended
for the former [4]. We show that best communities are
smaller by an order of magnitude in biological networks
compared to those in social networks.

Community detection is very important not only for
social networks, but also for biological networks. This is
because communities can provide for a better understand-
ing and insight on the fine grained structure of biological
networks and the way their different parts work together.

We compute for our study the network community
profiles (NCPs) of 11 large protein-interaction networks.

NCPs are based on the notion of conductance that
captures the ratio of edges connecting nodes within the
community with nodes outside the community to edges
inside the community. The smaller the conductance of a
set of nodes, the more community-like the set is. Conduc-
tance is extensively used to measure the cohesiveness of
a community and has been shown to have parallels with
the theory of random walks on networks.

Along the lines of [13], we investigate the conduc-
tance of communities over all the possible size scales.
The main question we explore is: What are the best com-
munity sizes and community qualities for each network
family? The network community profile is one of the best
tools to answer this question. Intuitively, NCP extracts
the conductance of the best community as a function of
the size values considered. While NCP is NP-hard to
compute, there are several approximate algorithms that
give satisfactory solutions.

We present the following empirical findings. First,
the conductance of the best communities for each size
scale (k) decreases initially, and the global minimum is
typically achieved for k = 10. This is in contrast to
social networks where the global minimum is reached
for k = 100 or greater, an order of magnitude big-
ger than the global minimum for biological networks.
Second, at the size of about k = 10, the NCP for
biological networks exhibits an uptrend, which means
that the community structure deteriorates as more nodes
are considered in communities. In other words, the
communities start blending with each other and gradually
disappear. And third, differently from social networks,
the generative model explaining this type of behavior is
not Forest Fire ( [11], [12]), but a random rewiring model
[18] conditioned on the same degree distribution as the
original graph.

Knowing that the best communities in biological net-
works are an order of magnitude smaller than communi-



ties in social networks is very important. This is because
community structure can help us to decide which are
the possible missing links to further investigate. Clearly,
there is a higher chance that there is a missing link
between nodes within a community than between nodes
not in the same community. Exploring missing links in
social networks is not particularly expensive. However,
it is quite expensive to do so for biological networks.
Therefore, the smaller the meaningful communities, the
fewer missing links we need to explore in a laboratory
setting. A community profile plot helps in better under-
standing the costs of further investigating missing links
in biological networks.

The rest of the paper is organized as follows. In
Section II, we describe related work. In Section III, we
describe conductance and community profiling. In Sec-
tion IV, we describe the datasets we use. In Section V,
we present our experimental results. In Section VI,
we present the modelling results. In Section VII, we
discuss other differences between families of networks.
Section VIII concludes the paper.

II. RELATED WORKS

We focus on protein interaction networks. They have
been the theme of numerous works in the research
community. Pavlopoulos et al. [20] and Mason et al. [17]
studied how to find the most important nodes in large
protein networks. They utilize such information for bet-
ter determining protein functions and identifying drug
targets.

Barabassi and Oltvai in [4] study the general prop-
erties of the proteins in networks coming from complex
interactions. Using network tools allowed them to see a
different perspective of proteins and genes. They make
the case that with respect to the common measures of
network structure, the proteins in these networks and
people in social networks behave similarly. In this work,
however, we show that this is not always the case.

To understand the biological significance of the sys-
tems, many researchers applied different models, ap-
proaches, and methods to identify motifs or patterns that
indicate common properties. They analyze the networks
in detail using measures like network centralities [9],
[19], network topologies ( [21], [30]), cluster analysis
( [15], [22]), or network models [20].

Cluster (community-detection) algorithms are used
to understand the organization of networks and their
functions through the identification of protein complexes

or functional modules ( [17], [27]). The clustering al-
gorithms typically join proteins in groups (communities)
according to attributes that are shared by the proteins
in the group. They show that identifying and predict-
ing communities also helps identifying important nodes
(proteins) in the network. There are also comparative
analyses of different clustering algorithms to identify
those that are better at predicting relevant communities.
Wang et al. in [27] present a detailed clustering algorithm
comparison for extracting clusters from protein interac-
tion networks. Most of the algorithms focus on protein
complexes and functional modules. Some more recent
works ( [10], [23]) propose improving the prediction of
protein function by utilizing protein community informa-
tion. However, the aforementioned works do not make
use of conductance scores as we do.

Centrality measures help to analyze the different com-
munities and evaluate how a gene or protein is relevant
for its community, other communities or the complete
network [31]. The centrality evaluations give evidence
that there is a close relationship between the centrality
of a node and its essentiality in the network [17]. One
example is presented in Goh et al. [7], where in the bi-
ological networks examined the betweenness and degree
of nodes are significantly correlated. Also, in Girvan and
Newman [6] it is mentioned that when the edges present
high betweenness, there is a high probability that the
communities are highly interconnected-too.

III. CONDUCTANCE AND COMMUNITY PROFILING

We consider the networks to be undirected graphs.
Let G be such a graph with V as set of nodes, and E as
set of edges. The conductance of a set S ⊂ V is

γ(S) =
|{eij ∈ E : vi ∈ S and vj 6∈ S}|
min{

∑
vi∈S d(vi),

∑
vj 6∈S d(vj)}

where d(.) denotes the degree of a node. The conduc-
tance of a set gives a score for the quality of the set as a
community. The higher edges that cross the boundaries
of a set S, the higher the conductance γ(S), and the
lower the community structure of S. Hence, for detecting
good communities, we look for sets of low conductance.
These are sets that are densely connected internally and
sparsely connected with the rest of the graph. In Fig. 1,
we observe three good communities, 1, 2, and 3.

We note that there are many community measures,
however, as noted by several prominent works ( [8],
[25]), the conductance captures the gestalt of commu-
nities [32], and therefore is used frequently to perform
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Fig. 1: A networks and three communities. Communities
1, 2, and 3 are densely connected internally and sparsely
connected with the rest of the graph.

TABLE I: Biological networks

Biological Networks Nodes Edges Reference
Arabidopsis thaliana 7, 050 16, 263 BioGrid [26]
Caenorhabditis elegans 1 3, 895 7, 758 BioGrid [26]
Caenorhabditis elegans 2 2, 528 3, 706 Harvard [2]
Drosophila melanogaster 8, 127 38, 839 BioGrid [26]
Echericha coli 2, 874 11, 538 DIP [29]
H pylo 708 1, 357 DIP [29]
Homo sapiens 1 15, 337 133, 645 BioGrid [26]
Homo sapiens 2 6, 711 17, 348 Mint [14]
Mus musculus 4, 602 9, 841 BioGrid [26]
Saccharomyces cerevisie 5, 376 24, 734 Mint [14]
Schizosaccharomyces pombe 4, 008 55, 362 BioGrid [26]

community detection ( [5], [16], [24]). In community
profiling we select the best community for each size and
plot their conductance scores. In order to find communi-
ties of good conductance, we use the local spectral clus-
tering algorithm of [3] and the bag-of-whiskers clustering
algorithm of [13]. Whiskers are sets of nodes connected
to the rest of the graph by one edge; bag-of-whiskers
are sets of such whiskers. As shown in [13], bags-of-
whiskers give communities with very good conductance
scores.

IV. BIOLOGICAL NETWORKS ANALYZED

We considered many of the reasonable-sized protein
interaction networks 1 available. They amount to about
55 in total, coming from 16 species. Due to space
constraints, we focus here on 11 of them (Table I). The
results for other networks are comparable. The networks
we consider have sizes varying from 708 to 15,337
nodes, and from 1,357 to 133,645 edges. The datasets
were obtained from various sources ( column ’Reference’
in Table I).

1We will refer to these networks as “biological networks”. We note
that there are also other types of biological networks that we plan to
study as part of our future work.

V. NETWORK COMMUNITY PLOT ANALYSIS

As shown in [13] most social networks exhibit the
following community profile structure. Up to a certain
size the slope of NCP is downward: as the size increases
the conductance values decrease. This in turn means that
the best sets become increasing community-like. At size
of 100 or more, the NCP reaches a global minimum. This
implies that the best communities in social networks are
typically of size 100 or more. If larger than that, the NCP
of most social networks is upward sloping over several
orders of magnitude. This means that after a certain
size, typically at least 100, the communities become less
meaningful and they blend more and more with the whole
network. For other networks, such a power-grid net-
works, the NCP is almost always slopping downwards.
This means the more nodes are added to communities
the better they become in terms of conductance.

In Fig. 2 and Fig. 3 we show the community profiles
for biological and social networks and a power-grid
network. We show the conductance scores of the best
communities computed, using the Local Clustering algo-
rithm of [3] and the Bag-of-Whiskers algorithm of [13].
See Table II for statistical data of the networks.

In Fig. 3, we show the community profiles of two
social networks, Twitter and Facebook, as well as the
community profile of a power-grid network. We observe
that the community profiles of the two social networks
have a downward slope up to a certain community size,
and then they trend upward (similar extensive results for
social networks are presented in [13]). Their global mini-
mum is way greater (orders of magnitude) than the global
minimums we observe for biological networks. Also, we
observe that there are no whiskers for the Twitter and
Facebook networks, i.e. there are no communities that
are barely connected to the rest of the network.

Regarding the biological networks, we show their
NCP in Fig. 2. We observe a similar shape of the
NCPs as for social networks. Initially the slope is down-
ward, then upward. However, the global minimum is not
reached at size 100 or greater as for social networks,
but surprisingly at size about 10, an order of magnitude
smaller! Therefore, biological networks present a very
different community structure than social networks; they
have a much more local structure than social networks.
We also observe that whiskers give significantly better
communities than Local Clustering. This means that the
best communities are only barely connected to the rest
of the graph for biological networks.
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Fig. 2: Network community profiles for biological networks computed using the local spectral clustering (red/dark)
and bag-of-whiskers (green/light) algorithms. We have conductance values in axis Y and number of nodes in the
cluster in axis X. Both algorithms give a network community profile that is initially downward slopping, then trending
upwards. The global minimum for both methods, across most of the biological networks, is at about a community
size value of ten. This is in stark contrast to network community profiles for social and other complex networks.
Also, observe that whiskers give significantly better communities than local spectral clustering.

VI. MODELLING RESULTS

A natural question we would like to answer is: What
generative model best fits biological networks? For social
networks, [13] shows that a Forest-Fire model, where
new edges are added via a recursive burning mechanism

in an epidemic-like fashion, generates networks with
network profiles that closely resemble profiles of social
networks.

In contrast, a Forest-Fire model is not the right choice
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Fig. 3: Network community profiles (red/dark) of two social networks and a power-grid network (green/light). (a)
4, 941 nodes [28], (b) 81, 306 nodes [1], and (c) 4, 039 nodes [1]. The NCPs of Twitter and Facebook are first
slopping downward, then after reaching a global minimum, change the slope to be upward. Differently from the
biological networks, the mimimum is achieved for much larger values of community size. On the other hand, the
NCP of the power-grid is always going downward. Another fact we can observe is that there are no whiskers (green)
in the Twitter and Facebook networks. This is very different from what we see in biological networks.

TABLE II: Statistical Data

Networks Average Network Connected Avg.Clustering Average Average
Degree Diameter Components Coefficient Path Length #Triangles

A. thaliana 4.61 14 154 0.16 4.46 2.79
C. elegans 1 3.98 13 86 0.11 4.29 1.86
C. elegans 2 2.93 14 147 0.04 5.32 0.37
D. melanogaster 9.56 10 50 0.12 4.09 22.37
E. coli 1 8.03 12 295 0.15 3.97 19.07
H. pylo 3.83 9 17 0.03 4.13 0.33
H. sapiens 1 17.43 8 57 0.32 2.67 85.47
H. sapiens 2 5.17 11 135 0.11 4.41 1.98
M. musculus 4.28 16 124 0.20 4.34 2.35
S. cerevisie 9.20 10 28 0.13 3.87 11.69
S. pombe 27.63 8 6 0.24 2.80 159.21
Twitter 33.00 5 1 0.57 4.59 160.90
Facebook 43.69 8 1 0.62 3.69 1197.33
Power grid western states 2.67 46 1 0.11 18.99 0.40

for biological networks [13]. Surprisingly, we observed
that a “rewiring” model, proposed by [18]; can generate
networks with a network community profile that closely
resembles profiles of biological networks. The rewiring
model works as follows. Starting with the original net-
work we randomly select pairs of edges and switch their
nodes. By doing this many times, we obtain a random
graph with the same degree sequence as the original one.

We show the NCPs with rewiring in Fig. 4 for
biological networks, and in Fig. 5 for the two social
networks and the power-grid network. We observe that
the NCPs for the rewired networks behave similar to
those for the original biological networks. On the other
hand, the behavior of the NCPs for the rewired social
networks and the power-grid network is quite different
from their original counterparts. This reinforces once

more the fact that the internal structure of communities in
biological networks is very different from that observed
in social and other complex networks.

VII. OTHER DIFFERENCES BETWEEN BIOLOGICAL

AND OTHER NETWORKS

We applied Spearman’s rank correlation to determine
the relation between the centrality measures used in the
biological and social networks. We obtained the Spear-
man’s rank correlation between three centrality measures,
betweenness, closeness, and degree for all the biological
networks, and several social and complex networks.
The correlations for each comparison — betweenness
(Bet)/closeness (Clo), Bet/degree (Deg), and Deg/Clo —
are presented on Table III and IV. We can see that all
networks exhibit a strong correlation between degree and
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Fig. 4: Network community profiles of biological networks (red/dark) and their rewired (green/light) networks. The
profiles of the original networks and their rewired counterparts exhibit a similar nature. This is not the case for social
and other complex networks.

betweenness centrality. However, we observe that the
biological networks show significantly more correlation
between degree and betweenness, and between closeness
and betweenness (Fig. 6). This is quite interesting and
suggests once more that the structure of these two
families of networks is quite different, in contrast to the
often held belief that they are pretty much the same in
terms of structure.

VIII. CONCLUSIONS

We presented an empirical study on the fine-
grained structural differences between biological net-
works (namely protein interaction networks) and social
and other types of networks (around 100 or more).
We revealed surprising differences in terms of the net-
work community profile and correlations of centrality
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Fig. 5: Network community profiles (red/dark) compared to profiles of rewired networks (green/light). The profiles
of the rewired networks are different from those of the original networks. Recall, that for biological networks, we
observe the opposite.
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Fig. 6: Comparison of Spearman’s rank correlations between biological networks and social networks. We observe
that the degree and betweenness correlation is significantly more pronounced for biological networks than for social
networks (a). Regarding the correlation between degree and closeness, both families of networks exhibit a similar
behaviour, with the median for biological networks being slightly higher than the median for social networks (b).
Finally, betweenness and closeness correlation is in general higher for biological networks (c).

TABLE III: Spearman correlation between centrality
measures for biological networks.

Networks Clo/Bet Deg/Bet Deg/Clo
A. thaliana 0.429 0.863 0.318
C. elegans 1 0.484 0.926 0.500
C. elegans 2 0.535 0.963 0.568
D. melanogaster 0.832 0.909 0.865
E. coli 1 0.736 0.916 0.848
H. pylo 0.771 0.969 0.794
H. sapiens 1 0.594 0.852 0.684
H. sapiens 2 0.631 0.864 0.603
M. musculus 0.520 0.861 0.475
S. cerevisie 0.804 0.859 0.799
S. pombe 0.749 0.867 0.790

measures. More specifically, we showed that the best
community size in terms of community conductance is

TABLE IV: Spearman correlation between centrality
measures for social and complex networks.

Networks Clo/Bet Deg/Bet Deg/Clo
Coauthor ships in science 0.382 0.486 0.627
AstroPhysics collaboration 1 0.650 0.714 0.834
AstroPhysics collaboration 2 0.562 0.645 0.748
Energy Physics, Phenomenology 0.523 0.624 0.720
Energy physics, Citation 0.472 0.596 0.828
Energy Physics, Theory 0.615 0.805 0.650
Condense Matter collaboration 0.558 0.721 0.698
R&Quantum Cosmology collab. 0.553 0.676 0.589
Enron email 0.516 0.758 0.506
Social circles: Facebook 0.479 0.788 0.430
Power grid western states 1 0.296 0.804 0.233

at about a size value of ten, and this holds across almost
all the available protein networks of a reasonable size.



Such a community size is an order of magnitude lower
than that for social and other networks.

On the other hand, the shape of NCPs for both
biological and social networks is quite similar; they
initially slope downward, then upward. This behaviour is
different from that of other networks (neither biological
nor social). As future work, we would like to extend
our experiments to biological networks of other types,
and examine a wider range of network measures at fine
levels of granularity.
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