
Efficient Implementation of Anchored 2-core

Algorithm

Babak Tootoonchi

University of Victoria

Victoria, BC, Canada

babakt@uvic.ca

Venkatesh Srinivasan

University of Victoria

Victoria, BC, Canada

srinivas@uvic.ca

Alex Thomo

University of Victoria

Victoria, BC, Canada

thomo@uvic.ca

Abstract— Often graph theory is used to model and

analyze different behaviors of networks including social

networks. Nowadays, social networks have become very

popular and social network providers try to expand their

networks by encouraging people to stay engaged and

active. Studies show that engagement and activities of

people in social networks influence engagement of their

connections. This behavior has been modeled by the k-core

problem in graph theory with the assumption that a

person stays active in the network if he or she has k or

more connections. In the above model if a person drops

out, his or her friends can become discouraged and they

might also drop out. An approach called anchored k-core

algorithm has been introduced lately that prevents a

cascade of drop-outs by finding nodes which have the most

influence on their connections and rewarding them to stay

in the network. In this work, an efficient implementation

of the anchored 2-core approach has been proposed. The

proposed implementation method was applied to a set of

real world network data that includes very large graphs

with millions of links. The results show that with only a

few anchors, it is possible to save hundreds of nodes for

the 2-core graph. Also, the execution time of our

implementation is in order of minutes for huge datasets

which proves the efficiency of our implementation.

Keywords—social networks; anchored k-core; network

unraveling

I. INTRODUCTION

One of the best ideas in the internet era is the
development of social networks on World Wide Web.
People use social network websites to share photos,
videos, music and other information with either a select
group of friends or with the public. In the past few years,
social networks have played an important role in
connecting people around the world and have become
one of the most powerful media for communication.

Everyone’s experience of a social network depends on
the contents of the contributions of that person’s
connections. Interesting content and actively contributing

friends provide an incentive for a user to continue
logging into the site, and might encourage him or her to
contribute more content of their own. Therefore, when an
individual actively contributes to a social network, his or
her friends become more active and there is a higher
chance that they stay engaged and do not drop out [1].
This effect can propagate among peers and increase the
connectivity and the number of users in a social network.
Increasing the connectivity is one of the main goals of
social network providers and is the key to keeping the
network alive, growing and profitable. An individual is
more likely to be engaged if many of his or her friends
are engaged. This assumption is the main reason to
consider social networks as one of the applications of
algorithms that calculate the k-core organization of a
network [2-5,10].

Assume that the individuals who have k or more
engaged friends will stay in the network while others
who have less active friends will leave the network
eventually. If a person leaves the network, it influences
his or her friends and may cause the number of their
connections to drop below k. Hence, the friends that have
less than k friends will also leave the network based on
the above assumption. This effect spreads throughout the
network and can cause a cascade of drop outs that can
significantly reduce the number of users. At the end,
what remains from the network is a subgraph in which
every node has at least k adjacent nodes. This subgraph is
called k-core graph of the original network and is unique
in the sense that it does not depend on the order in which
the nodes have dropped out of the original graph. k-core
decomposition is a well-known concept in graph theory
and has various applications such as in modeling real
world web networks, protein structures, information
retrieval, text summarization, etc. [6-8].

As described in the k-core model of the social
networks, user dropouts can cause the network to be
partitioned and similar effects over time can cause a
social network’s life to come to an end. In [9], Bhawalkar

et. al have introduced a method to prevent unraveling in
social networks by locating the most valuable nodes,
called “anchors”, and rewarding those users to stay in the
network. Anchors are the nodes which have the greatest
impact on the network connectivity and the number of
users if they are removed. The paper introduces an
algorithm that solves the optimization problem of
maximizing the network connectivity or graph size by
finding the minimum number of anchors and rewarding
them to stay engaged in the network.

The anchored k-core problem has been studied both
empirically and theoretically by a few other works. The
authors of [24] showed that the anchored k-core problem
is W[1]-hard parameterized by the size of the core p. This
improves the result of [9] which shows W[2]-hardness
parameterized by b. The work in [25] extends the
anchored k-core problem to directed graphs and provides
new algorithmic and complexity results. There have been
some empirical studies of the problem across multiple
online social networks [26, 27]. These works have
studied different factors that can contribute to the
resilience of the social networks. The authors of [28]
proposed a variation of the anchored k-core problem
called peeling process in which the goal is to minimize
the size of k-core. They show that the problem is NP-
complete for all 𝑘 ≥ 2.

The approach that was introduced in [9] is a complex
algorithm that requires a lot of computation cycles. The
authors of [9] did not provide any details on possible
implementation approaches for the proposed unraveling
algorithms. Considering the complexity of the anchored
k-core algorithm, the question is if it is viable to run it on
a single consumer-grade PC. This work presents an
efficient approach towards implementation of the
anchored 2-core algorithm that makes it possible to run
the algorithm on a single machine in reasonable time.
The proposed approach utilizes fast algorithms and a
chaining hash map to store the interim search results. It
also uses an efficient implementation of the k-core
algorithm, presented in [4], to compute the k-core
decomposition at every iteration. For the graph database
in our efficient implementation, we used Webgraph
[11,12], which is a highly efficient graph compression
framework. Due to the efficiency of Webgraph, it was
used by other works to solve similar large scale problems
on a single machine [21-23]. To prove the performance
and scalability of the presented approach, experiments
were run on a variety of real-world graph datasets
ranging from a few thousands to billions of edges in size.
All the experiments were performed on a single
consumer-grade PC and the results showed that even for
massive graphs with billions of edges, the elapsed time
was in the order of minutes.

The remainder of this paper is structured as follows.
Section II provides the basic concepts in graph theory
that are required to understand the discussions in this
paper. Section III discusses unraveling in social networks
and introduces the anchored k-core approach to prevent it
as was proposed in [9]. Section IV shows the details of
our efficient implementation of the anchored 2-core
algorithm [9]. The experimental results of applying our
efficient approach on a set of large graphs on a single
machine are shown in Section V. Section VI concludes
the discussion and provides directions for possible future
work.

II. BASIC CONCEPTS

Consider an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 is
the set of vertices and 𝐸 is the set of edges. Note that for
the purpose of this paper, wherever we refer to a graph
we mean an undirected graph. The number of vertices is
denoted by |𝑉| = 𝑛 and the number of edges will be
represented by |𝐸| = 𝑚. Vertices 𝑣 and 𝑤 are adjacent if
there exists an edge (𝑣, 𝑤) ∈ 𝐸 between 𝑣 and 𝑤. In this
case, 𝑣 and 𝑤 are called neighbors. For a given vertex 𝑣
in graph 𝐺, the set of all the neighbors of 𝑣 is shown as
𝑁𝐺(𝑣) = {𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸} . The number of all the
neighbors of 𝑣 is called the degree of vertex 𝑣 and is
shown by 𝑑𝐺(𝑣) = |𝑁𝐺 (𝑣)|. The maximum degree of a
graph 𝐺 is shown by ∆(𝐺) = 𝑚𝑎𝑥 {𝑑𝐺 (𝑣) ∶ 𝑣 ∈ 𝑉}. The
minimum degree of graph 𝐺 is denoted by 𝛿(𝐺) =
𝑚𝑖𝑛{𝑑𝐺(𝑣) ∶ 𝑣 ∈ 𝑉}.

Let 𝑆 ⊆ 𝑉 be a subset of the vertices of the graph
𝐺 = (𝑉, 𝐸) . The subgraph 𝐶 = (𝑆, 𝐸𝑆) is called the
subgraph of 𝐺 that is induced by 𝑆 where 𝐸𝑆 = {(𝑢, 𝑣) ∈
𝐸 ∶ 𝑢, 𝑣 ∈ 𝑆}.

Definition 2.1. For a given 𝑘 ∈ {0, … , ∆(𝐺)} , a
subgraph 𝐶 = (𝑆, 𝐸𝑆) of 𝐺 = (𝑉, 𝐸) induced by the set
𝑆 ⊆ 𝑉 is called a k-core (or core of order k) of 𝐺 if and
only if the degree of every vertex 𝑣 ∈ 𝑆 is equal or
greater than k, i.e. {∀𝑣 ∈ 𝑆: 𝑑𝐶(𝑣) ≥ 𝑘} or 𝛿(𝐶) ≥ 𝑘 ,
and 𝐶 is a maximal induced subgraph of 𝐺 with this
property. We denote the k-core subgraph of 𝐺 as 𝐶𝑘(𝐺).

Every node in a k-core subgraph has at least k
neighbors. Since k-core is the maximal subgraph of 𝐺
that holds the conditions of Definition 2.1, it is unique
and for every graph 𝐺 and for a given value of k, there
exists exactly one k-core subgraph. Note that the k-core
subgraph can be empty i.e. 𝐶𝑘(𝐺) = ∅ depending on the
value of k. The k-core will be empty for all the values of
𝑘 > ∆(𝐺). Any graph 𝐺 is also its own k-core, 𝐶𝑘(𝐺) =
𝐺, for 0 ≤ 𝑘 ≤ 𝛿(𝐺). For example, 𝐶0(𝐺) = 𝐺. 𝐶1(𝐺) is
a subgraph of 𝐺 that is achieved by deleting all the
isolated vertices in 𝐺.

Fig. 1. (a) graph G with 26 nodes, (b) 2-core of graph G in solid
lines

Definition 2.2. For a given vertex 𝑣 ∈ 𝐺 , the core
number or coreness of 𝑣 is the largest value for k such
that 𝑣 ∈ 𝐶𝑘(𝐺).

The maximum core number of a graph 𝐺 is the
maximum coreness of the vertices of 𝐺. The cores of a
graph are nested which means for any 𝑖 < 𝑘, 𝐶𝑘(𝐺) ⊆
𝐶𝑖(𝐺). Likewise, the generalization of this property is
shown in the following equation.

𝐶∆(𝐺)(𝐺) ⊆ 𝐶∆(𝐺)−1(𝐺) ⊆ ⋯ ⊆ 𝐶𝛿(𝐺)(𝐺) (1)

Note that the k-core subgraph of a graph 𝐺 is not
necessarily a connected graph. For example, consider the
graph 𝐺 that is shown in Fig. 1(a). To extract the 2-core
subgraph of 𝐺 we need to eliminate nodes that have a
degree less than 2. The result is illustrated in Fig. 1(b).

III. ANCHORED K-CORE PROBLEM

In the k-core model of social networks, it is assumed
that the threshold at which users will become disengaged
is at the point where they have less than k friends. Hence
when a person drops out, all of his or her connections
who have exactly k friends will become disengaged
because the number of their connections will drop below
k. This effect can spread throughout the network and
cause a cascade of withdrawals which is very unpleasant
for the social network providers.

Depending on the location of the node in the network
topology and the number and topology of his or her
friends, the dropout cascade effect can be small or
dramatic. The nodes, for whom leaving the network is
very expensive in terms of reduction in the network
connectivity and size, will have greater value in the
network and it is to the benefit of the network provider to
keep them engaged. These nodes are called anchors in [9]
and it is shown how it is possible to locate the anchors in
a network in the most efficient way.

For an undirected graph 𝐺 = (𝑉, 𝐸) with size 𝑛 ,
assume that values k and b are given where k, 0 < 𝑘 ≤
∆(𝐺) , represents the maximum degree threshold for
staying engaged and b, 𝑏 ∈ {1,2, … , 𝑛} , denotes some
kind of budget that a social network provider has to offer.
The anchored k-core problem is to find a set S of at most
b nodes among all possible subsets of size b, where
𝑆 ⊆ 𝑉 and |𝑆| ≤ 𝑏 , such that keeping those nodes
regardless of their degrees while calculating the k-core
graph results in a k-core with the maximum possible
number of nodes. In other words, the problem is to find a
subset of at most b nodes, which are the most valuable
vertices and are called anchors, and give them incentive
to stay in the network. This way, the social network
provider maximizes the size of the k-core, subject to
budget b. The incentive can be any type of benefit
including offering rewards, waving premiums, or giving
some sort of rebates or points, etc.

In [9], the authors showed that the anchored k-core
problem for 𝑘 = 2 can be solved in polynomial time and
for 𝑘 ≥ 3, it is NP-hard to distinguish between instances
in which 𝛺(𝑛) vertices are in the optimal anchored k-
core, and those in which the optimal anchored k-core has
size only 𝑂(𝑏). Also, for every k ≥ 3, the problem is
W[2]-hard with respect to the budget parameter b.

A. RemoveCore Subgraph

To compute the anchored k-core of graph 𝐺 , a
subgraph of 𝐺 , called 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) is computed as
described below.

 Definition 3.1. For graph 𝐺 and a given k, let 𝐶𝑘 be
the set of vertices of the k-core of 𝐺. Removing all edges
between all pairs of vertices 𝑢, 𝑣 ∈ 𝐶𝑘 will result in a
graph that is called RemoveCore(G) [9].

For 𝑘 = 2 the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) subgraph of 𝐺 is a
forest where each tree in the forest contains at most one
vertex from the 2-core.

Definition 3.2. Each tree in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺)
graph of 𝐺 is called rooted if it contains a node from the
k-core graph. Otherwise, it is called non-rooted. The sets
of rooted and non-rooted trees are denoted by 𝑅 and 𝑆
respectively [9].

To find the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺), we first run the k-core
algorithm for 𝑘 = 2 and compute the set 𝐶𝑘 of vertices of
the 2-core of 𝐺. Then, we assume that the 2-core vertices
shape a single virtual vertex named 𝑟. Note that 𝐶𝑘 can
be disjoint and hence r can include disjoint graphs. What
remains is a single tree that has the vertex r, and zero or
more other trees. The single tree that contains r is the
aggregate of all the rooted trees assuming their roots fall
on a single node. The rest of the trees represent the non-
rooted trees.

(a) (b)

Definition 3.3. An anchor is a vertex that is assigned
a budget to be included in the k-core regardless of its
degree.

Placing an anchor on vertex v will increase the degree
of its neighbors by one and may cause their degrees to
reach k. The nodes that are added to the k-core by
assigning an anchor to v are considered to be saved by
anchor v.

We can think of the 𝐶𝑘 vertices as already being
anchored because each vertex in the k-core subgraph
would remain in the graph without the assistance of any
anchors. Therefore, the anchored 2-core problem is
reduced to finding a solution for the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺)
graph with an anchor placed on r for free.

B. Anchored 2-Core Algorithm

The anchored 2-core approach presented in [9] is
exact in that it guarantees to find an anchored 2-core of
the maximum size for a given budget. The first step of
the algorithm is to find a vertex 𝑣1 ∈ ℛ, where ℛ is the
set of rooted trees as described in Definition 3.2, such
that placing an anchor on 𝑣1 maximizes the number of
vertices saved across all placements of a single anchor in
ℛ . Also, another vertex 𝑣2 ∈ ℛ is found in a similar
manner assuming an anchor has already been placed on
𝑣1 . In other words, considering the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺)
with the virtual vertex r on the 2-core nodes, 𝑣1 will be
the farthest vertex from r, and 𝑣2 will be the second
farthest vertex from r after 𝑣1 has been selected and all
the vertices on the 𝑟 − 𝑣1 path have been contracted into
r. Next, two other vertices 𝑣3, 𝑣4 ∈ 𝑆 are found, where 𝑆
is the set of non-rooted trees, such that placing two
anchors at 𝑣3 and 𝑣4 simultaneously maximizes the
number of vertices saved across all placements of the two
anchors in 𝑆 . In other words, 𝑣3 and 𝑣4 are on the
endpoints of the longest path across all the trees in 𝑆.

Assume 𝐶ℛ(𝑣1) and 𝐶ℛ(𝑣2) are the number of
vertices saved by placing anchors 𝑣1 and 𝑣2 respectively.
Similarly, let 𝐶𝑆(𝑣3, 𝑣4) be the number of vertices saved
by placing two anchors on 𝑣3 and 𝑣4 simultaneously. If
𝐶ℛ(𝑣1) + 𝐶ℛ(𝑣2) > 𝐶𝑆(𝑣3, 𝑣4) or 𝑏 = 1, an anchor will
be placed on 𝑣1 and the budget b will be reduced by 1. If
𝐶ℛ(𝑣1) + 𝐶ℛ(𝑣2) ≤ 𝐶𝑆(𝑣3, 𝑣4) , two anchors will be
placed on at on 𝑣3 and 𝑣4 , and the budget b will be
decreased by 2. After the anchor placement, the saved
vertices are added to the 2-core and the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) is calculated again. This process
repeats until the budget is completely used 𝑏 = 0.

IV. EFFICIENT IMPLEMENTATION OF ANCHORED 2-CORE

ALGORITHM

The purpose of this work is to propose an efficient
approach towards the implementation of the anchored 2-
core algorithm. As mentioned before, one of the
applications of this algorithm can be in studying
unraveling and preventing it in social networks. Online
social network graphs tend to be large with millions of
nodes and connections. Hence, the question is if it is
viable to run the anchored 2-core algorithm on real world
network data on a single consumer-grade machine.

Studying web graphs is often difficult due to their
large size. WebGraph is a framework for graph based
databases that was designed to facilitate studying of web
graphs [11]. Webgraph provides efficient usage of
memory by utilizing compression techniques such as gap
compression [15], referentiation [16] and intervalisation.
It also provides a fast API for randomly accessing graph
nodes and vertices [11,12]. The WebGraph framework
also contains data sets for very large graphs with billions
of links [13] which were either gathered from public
sources [17] or obtained with UbiCrawler [18,19]. These
features make Webgraph a suitable choice for dealing
with large graph based databases and hence it was used
for our implementations in this work.

In the anchored 2-core algorithm, to find the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 subgraph of a graph 𝐺, first the k-core of
graph 𝐺 needs to be extracted. Different variations of k-
core algorithm have been proposed so far [2,4,5,10, 14].
In this work, we used an efficient implementation of the
Batagelj and Zaversnik (BZ) algorithm [14] that was
proposed in [4]. This implementation is referred to as
WG_BZ and uses WebGraph as the graph database
framework. The main idea of WG_BZ [4] is to flatten the
set of vertices of BZ into a few arrays, which make it
significantly faster than other k-core algorithms.

To store the longest paths that are computed at each
iteration of the anchored 2-core algorithm for rooted and
non-rooted trees, the SequentialSearchST and
SeparateChainingHashST structures [20] were used. The
SeparateChainingHashST table maintains an array of
SequentialSearchST objects that are accessible by using a
hash function. SequentialSearchST is an unordered list of
key-value pairs that uses sequential search. As will be
shown below, we used the SeparateChainingHashST
structure to implement the 𝑆𝐶_ℎ𝑎𝑠ℎ table that we used in
our implementation of the algorithm.

Algorithm 4.1 Anchored 2-core Algorithm

1. function anchored_2-cores (Graph G, Integer budget)

2. 𝑑, 𝑏, 𝐷 ← compute K-Core(G)

3. while (𝑏𝑢𝑑𝑔𝑒𝑡 > 0)

4. initialize (𝑆, 𝑅)

5. 𝑅 ← compute 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺, 𝐷, 𝑏, 𝑅, 2)

6. if 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑅 > 0 then

7. initialize (𝑆𝐶_ℎ𝑎𝑠ℎ)

8. for all 𝑖 = 0 𝑡𝑜 𝑠𝑖𝑧𝑒(𝑅) where 𝑑[𝑅[𝑖]] == 1

9. 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑅[𝑖], 𝑖, 0) // builds 𝑆𝐶_ℎ𝑎𝑠ℎ

10. end for

11. using SC_hash find:

12. 𝑣1 ← farthest vertex from core on a rooted tree

13. 𝑣2 ← second farthest from core on a rooted tree

14. (𝑣3, 𝑣4) ← endpoints of the longest path across

all non-rooted trees

15. if 𝐶ℛ(𝑣1) + 𝐶ℛ(𝑣2) > 𝐶𝑆(𝑣3, 𝑣4) then

16. 𝑑[𝑣1] = ∆(𝐺), budget = budget – 1

17. 𝑑, 𝑏, 𝐷 ← compute K-Core(G)

18. else

19. 𝑑[𝑣3] = ∆(𝐺), 𝑑[𝑣4] = ∆(𝐺), budget = budget – 2

20. 𝑑, 𝑏, 𝐷 ← compute K-Core(G)

21. end if

22. else go to end

23. end if // size R>0

24. end while

 25. end

The following data structures were used in our
implementation of anchored 2-core algorithm.

 Arrays d, D, p, and b, that were used in the
WG_BZ k-core algorithm [4].

 Array 𝑅 stores the set of vertices which are
removed from a given graph to create the 2-core
graph. In other words, 𝑅 stores the vertices that are
in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 of graph G.

 Array 𝑆 holds the status of each vertex in the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph which can be either rooted or
non-rooted.

 Table 𝑆𝐶_ℎ𝑎𝑠ℎ stores a hash table of vertices in
the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph. It is composed of a list of
linked lists that store the longest paths on rooted
and non-rooted trees. Each entry in the linked lists
is a (key,value) pair where key is the index of the
vertex and value is the distance of vertex from the
vertex at the head of the corresponding linked list.

Algorithm 4.1 shows the implementation details of
the anchored 2-core algorithm. The input of the algorithm
is a graph, 𝐺, and the maximum available budget. In the

first step of the algorithm (line 2), WG_BZ algorithm is
used to compute the 2-core of graph 𝐺 , which is
effectively defined by arrays 𝐷 and 𝑏. The main loop of
the algorithm iteratively finds anchors and assigns
budgets to them until it runs out of budget.

After the initialization of the S and R arrays, the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 of 𝐺 is computed for 𝑘 = 2 (line 5). The
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 , 𝑅 , is computed by simply copying the
first bucket of vertices from 𝐷 to 𝑅 i.e. indices 0 to
𝑏[𝑘] − 1 . If 𝑅 is non-empty, a SeparateChainingHash,
𝑆𝐶_ℎ𝑎𝑠ℎ, is initialized based on the vertices in R. A list
of pointers is created in the 𝑆𝐶_ℎ𝑎𝑠ℎ such that each
pointer corresponds to a leaf vertex in R and points to the
head of an empty linked list. Note that we only compute
the longest paths from the leaves as shown in lines 8 and
9 of the algorithm.

The 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑢) method at line 9 fills up
the SeparateChainingHash table and array S. Algorithm
4.2 shows a detailed explanation of this function. The
𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒 function recursively searches the tree
where 𝑢 is located and persists each node and its distance
from 𝑢 in 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖] where 𝑢 = 𝑅[𝑖]. If a root (a node
on the 2-core) is found, then the tree is marked as rooted
and the distance of root will be set to 0 (line 14 of
Algorithm 4.2). At this point another recursive function
is called to update the distances of all nodes to be from
the root rather than 𝑢 (line 16). This second function is
called 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. Note that there is at most one
root on each tree as otherwise all the nodes on the path
between the two or more roots would be on the 2-core
and could not be in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph.

In Algorithm 4.1, after the 𝑆𝐶_ℎ𝑎𝑠ℎ is filled, it is easy
to find the most valuable nodes in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒
graph. The first two nodes which are on two separate
rooted trees and have the longest distance to the root are
selected (𝑣1 and 𝑣2 at line 12-13 of Algorithm 4.1).
Then, the two endpoints of the longest path among all
non-rooted trees are identified, 𝑣3 and 𝑣4 (line 14). If
assigning anchors to 𝑣1 and 𝑣2 saves more nodes, an
anchor is assigned to 𝑣1 , and again the 2-core is
calculated to update 𝐷 (lines 16-17). Otherwise, two
anchors are assigned to 𝑣3 and 𝑣4 and the 2-core is called
again (lines 19-20).

Note that to simulate the impact of budget on the
nodes, the degree of the anchored nodes is assigned to the
maximum degree of graph 𝐺. This guarantees that the 2-
core algorithm will not place these nodes amongst the 1-
core nodes or first bin in 𝐷. The loop continues finding
anchors and assigning budget until it runs out of budget,
or if there are no more vertices left to save in the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph.

V. EXPERIMENTAL RESULTS

This section, provides the implementation results of
examining the proposed approach on real world network
data ranging from small to large networks with millions
of links. All the implementations were done using the
Java programming language and WebGraph framework.
The experiments were run on a system with a 64-bit
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and 12 GB
RAM. The evaluation was performed by applying the
proposed implementation on a set of twelve test suites.
The execution time proves the efficiency and speed of the
proposed implementation methods.

Table I shows the result of applying our anchored 2-
core implementation on twelve datasets ranging from
small to large networks with budget b=5. The first
column shows the name of test suits and the second
column shows the number of nodes for each network.
The size of the 2-core graph in each network is shown in
column 3. Column 4 shows the number of nodes that
have been saved by finding the three most valuable
anchors and assigning the budget to them. The last
column shows the execution time of the algorithm in
seconds.

As shown in the fourth column, the number of nodes
that are saved by placing three anchors can vary based on
the network topology not network size. For example, the
number of nodes which were saved in
data7_web_berk_stan is much higher than the number of

nodes which were saved in data12_uk-2005-edgeList
while uk-2005 is significantly larger than web_berk_stan.
On the other hand, in the graph of network
data5_soc_slashdot, the number of nodes that are saved is
the same as the number of anchors that are assigned to
them.

The results of running the anchored 2-core algorithm
with budget 10 on the same set of networks are shown in
Table II. As it is shown in Table II, adding more budget
leads to saving more nodes. For example, 2633 nodes
were saved by assigning 10 anchors to the
web_berk_stan graph. Adding more budget, linearly
increases the iteration cycles in the algorithm which
increases the execution time as illustrated in Table II.

TABLE I. RESULTS OF OUR 2-CORE IMPLEMENTATION WITH B=5

Data set # of nodes 2-core size

of

nodes

saved

Execution

time (s)

data1_astrocnet 133,280 17,440 12 0.209

data2_condmatcnet 108,300 20,613 16 0.136

data3_p2pgnutella 62,586 33,816 11 0.307

data4_soc_sign_slashdot 82,144 52,103 18 0.96

data5_soc_slashdot 82,168 80,365 5 1.125

data6_amazon 403,394 390,938 21 3.352

data7_web_berk_stan 685,231 629,459 1663 16.959

data8_wiki_talk 2,394,385 622,999 15 1435.891

data9_soc-LiveJournal 4,847,571 3,784,309 21 60.391

data10_roadnet_tx 1,393,383 1,093,520 56 2.686

data11_roadnet_ca 1,971,281 1,591,795 137 5.93

data12_uk-2005-edgeList 39,459,923 35,580,606 41 805.293

TABLE II. RESULTS OF OUR 2-CORE IMPLEMENTATION WITH B=10

Data set # of nodes 2-core size

of

nodes

saved

Execution

time (s)

data1_astrocnet 133,280 17,440 22 0.366

data2_condmatcnet 108,300 20,613 27 0.252

data3_p2pgnutella 62,586 33,816 22 0.747

data4_soc_sign_slashdot 82,144 52,103 28 1.768

data5_soc_slashdot 82,168 80,365 10 1.587

data6_amazon 403,394 390,938 41 5.898

data7_web_berk_stan 685,231 629,459 2633 26.322

data8_wiki_talk 2,394,385 622,999 24 2196.921

data9_soc-LiveJournal 4,847,571 3,784,309 39 109.137

data10_roadnet_tx 1,393,383 1,093,520 128 6.067

data11_roadnet_ca 1,971,281 1,591,795 201 8.682

data12_uk-2005-edgeList 39,459,923 35,580,606 76 2359.54

𝑆[𝑢] = "𝑛𝑜𝑛 − 𝑟𝑜𝑜𝑡𝑒𝑑”

Algorithm 4.2 Fill up the SeparateChainingHash table

1. function 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑢, 𝑖, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

2. if 𝑢 ∈ 𝑅 and u is not visited

3. if 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖] does not contain u

4. 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖]. 𝑝𝑢𝑡(𝑢, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒),

5. mark u as visited

6. for each neighbor v of u

7. if 𝑣 is not visited and 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖] does not contain v

8. 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖]. 𝑝𝑢𝑡(𝑣, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1)

9. 𝑆[𝑣] = "𝑛𝑜𝑛 − 𝑟𝑜𝑜𝑡𝑒𝑑"

10. end if

11. if 𝑣 ∈ 𝑅 then

12. 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑣, 𝑖, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1)

13. else

14. 𝑆[𝑣] = ”𝑟𝑜𝑜𝑡𝑒𝑑”, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0

15. 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖]. 𝑝𝑢𝑡(𝑣, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

16. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑖, 0)

17. go to end //line 21

18. end if

19. end for

20. end if

21. end

Fig. 2. Number of nodes saved by assigning budget b

For dataset data8, the execution time is higher than
data12 for b=5 and more comparable for b=10, which
shows the impact of the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 topology on the
execution time. Note that although data8 is much smaller
than data12, its 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 size is almost half of the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 size in data12 (i.e. 1.8 million compared to
3.8 million). The high execution time in data8 is because
of trees with a large number of branches in the
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 of data8. Assigning more budget breaks
down these trees into smaller pieces and reduces the
number of backtrackings. For example, the execution
time becomes more comparable to data12 for b=10.

Fig. 2 illustrates the number of nodes saved by 3, 5,
and 10 anchors in the above datasets. Data7 is not shown
because of difference in order of magnitude. As it is
shown in Fig. 2, the number of nodes that were saved is
not a function of the size of the network, but rather it
depends on the topology of the network. Also, there is no
linear relation between the number of saved nodes and
the assigned budget because it is heavily dependent on
the network topology. However, the impact of using only
a few anchors is impressive.

To illustrate the execution times, the results were
divided into three data sets of similar ranges for better
viewing. The charts are shown in Fig. 3, 4, and 5. As it is
shown in Fig. 3, for graphs of size 50k to 150k the
execution time is in order of a few seconds. For the larger
graphs shown in Fig. 4 with up to 4.8 million nodes, the
execution time is in order of a few minutes. For our
largest dataset with 39.5 million nodes, the execution
time is 39 minutes for budget 10. Note that the execution
time is not directly a function of the graph size, but it
depends on the topology of the graph as well. For
example, for data11_roadnet_ca with almost 2 million
nodes the execution time is 8.7 seconds which is almost
one third of the execution time of data7_web_berk_stan
with 685k nodes.

Fig. 3. Execution times of Algorithm 4.1 on data set 1

Fig. 4. Execution times of Algorithm 4.1 on data set 2

Fig. 5. Execution times of Algorithm 4.1 on data set 3

As mentioned earlier and can be seen in the charts,
adding more budget linearly increases the iteration cycles
of the algorithm, but the increase in the execution time is
less than linear growth. The results prove that our
implementation scales very well considering the size and
complexity of these graphs and the reasonable execution
times.

0
20
40
60
80

100
120
140
160
180
200

Number of nodes saved by budget b b=3
b=5
b=10

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

T
im

e
(s

)

Execution time for budget b

b=3

b=5

b=10

0
10
20
30
40
50
60
70
80
90

100
110

T
im

e
(s

)

Execution time for budget b

b=3

b=5

b=10

data8_wiki_talk data12_uk-2005-edgeList

0

5

10

15

20

25

30

35

40

T
im

e
(m

in
)

Execution time for budget b

b=3

b=5

b=10

VI. CONCLUSION

Unraveling in social networks can happen due to
losing connections between different network partitions.
It is to the benefit of the social network provider to
encourage the nodes connecting network partitions to
stay in the network. The anchored k-core algorithm of [9]
introduces a mechanism to model unraveling in social
networks. Also, it provides an approach to tackle this
problem by locating the valuable nodes, called anchors,
and rewarding them to stay active in the network.

An exact algorithm was proposed in [9] for 𝑘 = 2 that
guarantees finding the most valuable nodes which save
the most number of vertices by staying engaged. In this
work, we proposed an efficient approach for
implementation of the anchored 2-core algorithm of [9].
Our goal was to present an efficient approach that could
process large datasets on a single consumer-grade
machine in a reasonable time. We ran our
implementation on a set of large graphs with millions of
connections. The results proved that our approach is fast
and despite the complexity of the algorithm, the
execution time was in order of minutes even for the
larger circuits with millions of connections for budget 10
or less. Increasing the budget will increase the execution
time as it adds to the iteration cycles.

The results show that assigning a few budgets can
save significant number of nodes in the network. These
networks did not have examples of long chains with
smaller degrees to prove the significant impact that this
approach could have on saving the social network from
falling apart. The future work will be studying the
anchored 3-core problem and investigating the possible
approximation approaches for solving the 3-core
problem. This problem cannot be solved in polynomial
time for k>2; however, heuristics can be used to find
optimized solutions.

Source Code: https://github.com/btootoonchi/Anchored_2-Core/

REFERENCES

[1] M. Burke, C. Marlow, T. Lento, “Feed me: motivating newcomer
contribution in social network sites,” In CHI, 2009.

[2] S. N. Dorogovtsev, A. V. Goltsev, and J. Mendes, “K-core organization
of complex networks,” Physical review letters, Vol 96, No. 4, 2006.

[3] A. V. Goltsev, S. N. Dorogovtsev, and J. Mendes, “k-core (bootstrap)
percolation on complex networks: Critical phenomena and nonlocal
effects,” Physical Review E, Vol. 73, No. 5, 2006.

[4] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core
decomposition of large networks on a single PC,” In Proceedings of the
VLDB Endowment, Vol. 9, No. 1, pages 13-23, 2015.

[5] F. Bonchi, F. Gullo, A. Kaltenbrunner, andY. Volkovich, “Core
decomposition of uncertain graphs,” In Proceedings of the 20th ACM
international conference on Knowledge discovery and data mining,
pages 1316-1325, 2014.

[6] J. I. Alvarez-Hamelin, L. Dall´Asta, A. Barrat, and A. Vespignani, “K-
core decomposition of Internet graphs: hierarchies, self-similarity and
measurement biases,” Networks and Heterogeneous Media, Vol. 3, No.
2, pages 371-393, 2008.

[7] S. Wuchty, and E. Almaas, “Evolutionary cores of domain co-
occurrence networks,” BMC Evolutionary Biology, Vol. 5, No.4, 2005.

[8] L. Antiqueira, O. N. Oliveira, L. da Fontoura Costa, and M. d. G. V.
Nunes, “A complex network approach to text summarization,”
Information Sciences, Vol. 179, No. 5, pages 584-599, 2009.

[9] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma,
“Preventing Unraveling in Social Networks: The Anchored k-Core
Problem,” Automata, Languages, and Programming (ICALP), Vol.
7392, pages 440-451, 2012.

[10] Allan Bickle , “The k-Cores of a Graph,” PhD dissertation, Western
Michigan University, 2010.

[11] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression
Techniques,” In Proceedings of the 13th International World Wide Web
Conference (WWW), pages 595-601, 2004.

[12] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label
Propagation: A MultiResolution Coordinate-Free Ordering for
Compressing Social Networks.” In Proceedings of the 20th International
World Wide Web Conference (WWW), pages 587-596, 2011.

[13] P. Boldi and S. Vigna, “WebGraph Framework”, [Online]. Available:
http://webgraph.di.unimi.it/. [Accessed: 05-Jan-2017].

[14] V. Batagelj and M. Zaversnik, “An O(m) Algorithm for Cores
Decomposition of Networks,” Advances in Data Analysis and
Classification, Vol. 5, No. 2, pages 129-145, 2011.

[15] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S.
Venkatasubramanian, “The Connectivity Server: Fast access to linkage
information on the Web,” In Proceedings of the 7th International World
Wide Web Conference (WWW), pages 469–477, 1998.

[16] K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener, “The LINK
database: Fast access to graphs of the Web,” Research Report 175,
Compaq Systems Research Center, 2001.

[17] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke, “WebBase: A
repository of Web pages,” In Proceedings of the 9th International World
Wide Web Conference (WWW), Pages 277-293, 2000.

[18] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A
scalable fully distributed Web crawler,” Software: Practice &
Experience, Vol. 34, No. 8, pages 711-726, 2004.

[19] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler:
Scalability and fault-tolerance issues,” In Poster Proceedings of the 11th
International World Wide Web Conference (WWW), 2002.

[20] R. Sedgewick and K. Wayne, “Algorithms, 4th Edition,” Section 3.4,
[Online]. Available: http://algs4.cs.princeton.edu/34hash/, [Accessed:
05-Jan-2017].

[21] S. Chen, R. Wei, D. Popova, and A. Thomo, “Efficient Computation of
Importance Based Communities in Web-Scale Networks Using a Single
Machine,” In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, pages 1553-1562, 2016.

[22] M. Simpson, V. Srinivasan, and A. Thomo, “Efficient Computation of
Feedback Arc Set at Web-Scale,” In Proceedings of the VLDB
Endowment, Vol 10, No. 3, pages 133-144, 2016.

[23] M. Simpson, V. Srinivasan, and A. Thomo, “Clearing Contamination in
Large Networks,” IEEE Transactions on Knowledge and Data
Engineering, Vol 28, No. 6, pages 1435-1448, 2016.

[24] R. Chitnis, F. V. Fomin, and P. A. Golovach, “Preventing unraveling in
social networks gets harder,” In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, pages 1085-1091, 2013.

[25] R. Chitnis, F.V. Fomin, and P. A. Golovach, “Parameterized complexity
of the anchored k-core problem for directed graphs,” Information and
Computation Journal, Vol. 247, No. C, pages 11-22, 2016.

[26] D. Garcia, P. Mavrodiev, and F. Schweitzer, “Social resilience in online
communities: the autopsy of Friendster,” In Proceedings of the first
ACM conference on Online social networks, pages 39-50, 2013.

[27] S. Wu, A. D. Sarma, A. Fabrikant, S. Lattanzi, and A. Tomkins, “Arrival
and departure dynamics in social networks,” In Proceedings of the 6th
ACM international conference on Web search and data mining, pages
233-242, 2013.

[28] M. Mitzenmacher, and V. Nathan, “Hardness of peeling with stashes,”
Information Processing Letters, Vol. 116, No. 11, pages 682-688, 2016.

https://github.com/btootoonchi/Anchored_2-Core/

