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Abstract— Often graph theory is used to model and 

analyze different behaviors of networks including social 

networks. Nowadays, social networks have become very 

popular and social network providers try to expand their 

networks by encouraging people to stay engaged and 

active. Studies show that engagement and activities of 

people in social networks influence engagement of their 

connections. This behavior has been modeled by the k-core 

problem in graph theory with the assumption that a 

person stays active in the network if he or she has k or 

more connections. In the above model if a person drops 

out, his or her friends can become discouraged and they 

might also drop out. An approach called anchored k-core 

algorithm has been introduced lately that prevents a 

cascade of drop-outs by finding nodes which have the most 

influence on their connections and rewarding them to stay 

in the network. In this work, an efficient implementation 

of the anchored 2-core approach has been proposed. The 

proposed implementation method was applied to a set of 

real world network data that includes very large graphs 

with millions of links. The results show that with only a 

few anchors, it is possible to save hundreds of nodes for 

the 2-core graph. Also, the execution time of our 

implementation is in order of minutes for huge datasets 

which proves the efficiency of our implementation. 

Keywords—social networks; anchored k-core; network 

unraveling 

I. INTRODUCTION 

One of the best ideas in the internet era is the 
development of social networks on World Wide Web. 
People use social network websites to share photos, 
videos, music and other information with either a select 
group of friends or with the public. In the past few years, 
social networks have played an important role in 
connecting people around the world and have become 
one of the most powerful media for communication.  

Everyone’s experience of a social network depends on 
the contents of the contributions of that person’s 
connections. Interesting content and actively contributing 

friends provide an incentive for a user to continue 
logging into the site, and might encourage him or her to 
contribute more content of their own. Therefore, when an 
individual actively contributes to a social network, his or 
her friends become more active and there is a higher 
chance that they stay engaged and do not drop out [1]. 
This effect can propagate among peers and increase the 
connectivity and the number of users in a social network. 
Increasing the connectivity is one of the main goals of 
social network providers and is the key to keeping the 
network alive, growing and profitable. An individual is 
more likely to be engaged if many of his or her friends 
are engaged. This assumption is the main reason to 
consider social networks as one of the applications of 
algorithms that calculate the k-core organization of a 
network [2-5,10].  

Assume that the individuals who have k or more 
engaged friends will stay in the network while others 
who have less active friends will leave the network 
eventually. If a person leaves the network, it influences 
his or her friends and may cause the number of their 
connections to drop below k. Hence, the friends that have 
less than k friends will also leave the network based on 
the above assumption. This effect spreads throughout the 
network and can cause a cascade of drop outs that can 
significantly reduce the number of users. At the end, 
what remains from the network is a subgraph in which 
every node has at least k adjacent nodes. This subgraph is 
called k-core graph of the original network and is unique 
in the sense that it does not depend on the order in which 
the nodes have dropped out of the original graph. k-core 
decomposition is a well-known concept in graph theory 
and has various applications such as in modeling real 
world web networks, protein structures, information 
retrieval, text summarization, etc.  [6-8].  

As described in the k-core model of the social 
networks, user dropouts can cause the network to be 
partitioned and similar effects over time can cause a 
social network’s life to come to an end. In [9], Bhawalkar 



et. al  have introduced a method to prevent unraveling in 
social networks by locating the most valuable nodes, 
called “anchors”, and rewarding those users to stay in the 
network. Anchors are the nodes which have the greatest 
impact on the network connectivity and the number of 
users if they are removed. The paper introduces an 
algorithm that solves the optimization problem of 
maximizing the network connectivity or graph size by 
finding the minimum number of anchors and rewarding 
them to stay engaged in the network.  

The anchored k-core problem has been studied both 
empirically and theoretically by a few other works. The 
authors of [24] showed that the anchored k-core problem 
is W[1]-hard parameterized by the size of the core p. This 
improves the result of [9] which shows W[2]-hardness 
parameterized by b. The work in [25] extends the 
anchored k-core problem to directed graphs and provides 
new algorithmic and complexity results. There have been 
some empirical studies of the problem across multiple 
online social networks [26, 27]. These works have 
studied different factors that can contribute to the 
resilience of the social networks. The authors of [28] 
proposed a variation of the anchored k-core problem 
called peeling process in which the goal is to minimize 
the size of k-core. They show that the problem is NP-
complete for all 𝑘 ≥ 2.  

The approach that was introduced in [9] is a complex 
algorithm that requires a lot of computation cycles. The 
authors of [9] did not provide any details on possible 
implementation approaches for the proposed unraveling 
algorithms. Considering the complexity of the anchored 
k-core algorithm, the question is if it is viable to run it on 
a single consumer-grade PC. This work presents an 
efficient approach towards implementation of the 
anchored 2-core algorithm that makes it possible to run 
the algorithm on a single machine in reasonable time. 
The proposed approach utilizes fast algorithms and a 
chaining hash map to store the interim search results. It 
also uses an efficient implementation of the k-core 
algorithm, presented in [4], to compute the k-core 
decomposition at every iteration. For the graph database 
in our efficient implementation, we used Webgraph 
[11,12], which is a highly efficient graph compression 
framework. Due to the efficiency of Webgraph, it was 
used by other works to solve similar large scale problems 
on a single machine [21-23]. To prove the performance 
and scalability of the presented approach, experiments 
were run on a variety of real-world graph datasets 
ranging from a few thousands to billions of edges in size. 
All the experiments were performed on a single 
consumer-grade PC and the results showed that even for 
massive graphs with billions of edges, the elapsed time 
was in the order of minutes.  

The remainder of this paper is structured as follows. 
Section II provides the basic concepts in graph theory 
that are required to understand the discussions in this 
paper. Section III discusses unraveling in social networks 
and introduces the anchored k-core approach to prevent it 
as was proposed in [9]. Section IV shows the details of 
our efficient implementation of the anchored 2-core 
algorithm [9]. The experimental results of applying our 
efficient approach on a set of large graphs on a single 
machine are shown in Section V. Section VI  concludes 
the discussion and provides directions for possible future 
work. 

II. BASIC CONCEPTS 

Consider an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 is 
the set of vertices and 𝐸 is the set of edges. Note that for 
the purpose of this paper, wherever we refer to a graph 
we mean an undirected graph. The number of vertices is 
denoted by |𝑉| = 𝑛  and the number of edges will be 
represented by |𝐸| = 𝑚. Vertices 𝑣 and 𝑤 are adjacent if 
there exists an edge (𝑣, 𝑤) ∈ 𝐸 between 𝑣 and 𝑤. In this 
case, 𝑣 and 𝑤 are called neighbors. For a given vertex 𝑣 
in graph 𝐺, the set of all the neighbors of 𝑣 is shown as 
𝑁𝐺(𝑣) = {𝑢 ∶ (𝑢, 𝑣) ∈ 𝐸} . The number of all the 
neighbors of 𝑣 is called the degree of vertex 𝑣  and is 
shown by 𝑑𝐺(𝑣) = |𝑁𝐺  (𝑣)|. The maximum degree of a 
graph 𝐺 is shown by ∆(𝐺) = 𝑚𝑎𝑥 {𝑑𝐺  (𝑣)  ∶ 𝑣 ∈ 𝑉}. The 
minimum degree of graph 𝐺  is denoted by 𝛿(𝐺) =
𝑚𝑖𝑛{𝑑𝐺(𝑣)  ∶ 𝑣 ∈ 𝑉}. 

Let 𝑆 ⊆ 𝑉  be a subset of the vertices of the graph 
𝐺 = (𝑉, 𝐸) . The subgraph  𝐶 = (𝑆, 𝐸𝑆) is called the 
subgraph of 𝐺 that is induced by 𝑆 where 𝐸𝑆 = {(𝑢, 𝑣) ∈
𝐸 ∶  𝑢, 𝑣 ∈ 𝑆}. 

Definition 2.1. For a given 𝑘 ∈ {0, … , ∆(𝐺)} , a 
subgraph 𝐶 = (𝑆, 𝐸𝑆)  of 𝐺 = (𝑉, 𝐸) induced by the set 
𝑆 ⊆ 𝑉 is called a k-core (or core of order k) of 𝐺 if and 
only if the degree of every vertex 𝑣 ∈ 𝑆  is equal or 
greater than k, i.e. {∀𝑣 ∈ 𝑆: 𝑑𝐶(𝑣) ≥ 𝑘}  or 𝛿(𝐶) ≥ 𝑘 , 
and 𝐶  is a maximal induced subgraph of 𝐺 with this 
property. We denote the k-core subgraph of 𝐺 as 𝐶𝑘(𝐺). 

Every node in a k-core subgraph has at least k 
neighbors. Since k-core is the maximal subgraph of 𝐺 
that holds the conditions of Definition 2.1, it is unique 
and for every graph 𝐺 and for a given value of k, there 
exists exactly one k-core subgraph. Note that the k-core 
subgraph can be empty i.e. 𝐶𝑘(𝐺) = ∅ depending on the 
value of k. The k-core will be empty for all the values of 
𝑘 > ∆(𝐺). Any graph 𝐺 is also its own k-core, 𝐶𝑘(𝐺) =
𝐺, for 0 ≤ 𝑘 ≤ 𝛿(𝐺). For example, 𝐶0(𝐺) = 𝐺. 𝐶1(𝐺) is 
a subgraph of 𝐺  that is achieved by deleting all the 
isolated vertices in 𝐺. 



 

Fig. 1. (a) graph G with 26 nodes, (b) 2-core of graph G in solid 
lines 

 

Definition 2.2. For a given vertex 𝑣 ∈ 𝐺 , the core 
number or coreness of 𝑣 is the largest value for k such 
that  𝑣 ∈ 𝐶𝑘(𝐺). 

The maximum core number of a graph 𝐺  is the 
maximum coreness of the vertices of 𝐺. The cores of a 
graph are nested which means for any 𝑖 < 𝑘, 𝐶𝑘(𝐺) ⊆
𝐶𝑖(𝐺). Likewise, the generalization of this property is 
shown in the following equation. 

𝐶∆(𝐺)(𝐺) ⊆ 𝐶∆(𝐺)−1(𝐺) ⊆ ⋯ ⊆ 𝐶𝛿(𝐺)(𝐺)           (1) 

Note that the k-core subgraph of a graph 𝐺  is not 
necessarily a connected graph. For example, consider the 
graph 𝐺 that is shown in Fig. 1(a). To extract the 2-core 
subgraph of 𝐺  we need to eliminate nodes that have a 
degree less than 2. The result is illustrated in Fig. 1(b).  

 

III. ANCHORED K-CORE PROBLEM  

In the k-core model of social networks, it is assumed 
that the threshold at which users will become disengaged 
is at the point where they have less than k friends. Hence 
when a person drops out, all of his or her connections 
who have exactly k friends will become disengaged 
because the number of their connections will drop below 
k. This effect can spread throughout the network and 
cause a cascade of withdrawals which is very unpleasant 
for the social network providers.   

Depending on the location of the node in the network 
topology and the number and topology of his or her 
friends, the dropout cascade effect can be small or 
dramatic. The nodes, for whom leaving the network is 
very expensive in terms of reduction in the network 
connectivity and size, will have greater value in the 
network and it is to the benefit of the network provider to 
keep them engaged. These nodes are called anchors in [9] 
and it is shown how it is possible to locate the anchors in 
a network in the most efficient way. 

For an undirected graph 𝐺 = (𝑉, 𝐸)  with size 𝑛 , 
assume that values k and b are given where k, 0 < 𝑘 ≤
∆(𝐺) , represents the maximum degree threshold for 
staying engaged and b, 𝑏 ∈ {1,2, … , 𝑛} , denotes some 
kind of budget that a social network provider has to offer. 
The anchored k-core problem is to find a set S of at most 
b nodes among all possible subsets of size b, where 
𝑆 ⊆ 𝑉  and |𝑆| ≤ 𝑏 , such that keeping those nodes 
regardless of their degrees while calculating the k-core 
graph results in a k-core with the maximum possible 
number of nodes. In other words, the problem is to find a 
subset of at most b nodes, which are the most valuable 
vertices and are called anchors, and give them incentive 
to stay in the network. This way, the social network 
provider maximizes the size of the k-core, subject to 
budget b. The incentive can be any type of benefit 
including offering rewards, waving premiums, or giving 
some sort of rebates or points, etc.  

In [9], the authors showed that the anchored k-core 
problem for 𝑘 = 2 can be solved in polynomial time and 
for 𝑘 ≥  3, it is NP-hard to distinguish between instances 
in which 𝛺(𝑛) vertices are in the optimal anchored k-
core, and those in which the optimal anchored k-core has 
size only 𝑂(𝑏). Also, for every k ≥  3, the problem is 
W[2]-hard with respect to the budget parameter b. 

A. RemoveCore Subgraph 

To compute the anchored k-core of graph 𝐺 , a 
subgraph of 𝐺 , called 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) is computed as 
described below. 

 Definition 3.1. For graph 𝐺 and a given k, let 𝐶𝑘 be 
the set of vertices of the k-core of 𝐺. Removing all edges 
between all pairs of vertices 𝑢, 𝑣 ∈  𝐶𝑘  will result in a 
graph that is called RemoveCore(G) [9].  

For 𝑘 = 2  the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺)  subgraph of 𝐺  is a 
forest where each tree in the forest contains at most one 
vertex from the 2-core.  

Definition 3.2. Each tree in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) 
graph of 𝐺 is called rooted if it contains a node from the 
k-core graph. Otherwise, it is called non-rooted. The sets 
of rooted and non-rooted trees are denoted by 𝑅 and 𝑆 
respectively [9]. 

To find the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺), we first run the k-core 
algorithm for 𝑘 = 2 and compute the set 𝐶𝑘 of vertices of 
the 2-core of 𝐺. Then, we assume that the 2-core vertices 
shape a single virtual vertex named 𝑟. Note that 𝐶𝑘 can 
be disjoint and hence r can include disjoint graphs. What 
remains is a single tree that has the vertex r, and zero or 
more other trees. The single tree that contains r is the 
aggregate of all the rooted trees assuming their roots fall 
on a single node. The rest of the trees represent the non-
rooted trees.  

 
(a)                                                      (b) 



Definition 3.3. An anchor is a vertex that is assigned 
a budget to be included in the k-core regardless of its 
degree.  

Placing an anchor on vertex v will increase the degree 
of its neighbors by one and may cause their degrees to 
reach k. The nodes that are added to the k-core by 
assigning an anchor to v are considered to be saved by 
anchor v. 

We can think of the 𝐶𝑘  vertices as already being 
anchored because each vertex in the k-core subgraph 
would remain in the graph without the assistance of any 
anchors. Therefore, the anchored 2-core problem is 
reduced to finding a solution for the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) 
graph with an anchor placed on r for free. 

B. Anchored 2-Core Algorithm 

The anchored 2-core approach presented in [9] is 
exact in that it guarantees to find an anchored 2-core of 
the maximum size for a given budget. The first step of 
the algorithm is to find a vertex 𝑣1 ∈ ℛ, where ℛ is the 
set of rooted trees as described in Definition 3.2, such 
that placing an anchor on 𝑣1 maximizes the number of 
vertices saved across all placements of a single anchor in 
ℛ . Also, another vertex 𝑣2 ∈ ℛ  is found in a similar 
manner assuming an anchor has already been placed on 
𝑣1 . In other words, considering the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺) 
with the virtual vertex r on the 2-core nodes, 𝑣1 will be 
the farthest vertex from r, and 𝑣2  will be the second 
farthest vertex from r after 𝑣1 has been selected and all 
the vertices on the 𝑟 − 𝑣1 path have been contracted into 
r. Next, two other vertices 𝑣3, 𝑣4 ∈ 𝑆 are found, where 𝑆 
is the set of non-rooted trees, such that placing two 
anchors at 𝑣3 and 𝑣4  simultaneously maximizes the 
number of vertices saved across all placements of the two 
anchors in 𝑆 . In other words, 𝑣3 and 𝑣4  are on the 
endpoints of the longest path across all the trees in 𝑆. 

Assume 𝐶ℛ(𝑣1)  and 𝐶ℛ(𝑣2)  are the number of 
vertices saved by placing anchors 𝑣1 and 𝑣2 respectively. 
Similarly, let 𝐶𝑆(𝑣3, 𝑣4) be the number of vertices saved 
by placing two anchors on 𝑣3 and 𝑣4 simultaneously. If 
𝐶ℛ(𝑣1) + 𝐶ℛ(𝑣2) > 𝐶𝑆(𝑣3, 𝑣4) or 𝑏 = 1, an anchor will 
be placed on 𝑣1 and the budget b will be reduced by 1. If 
𝐶ℛ(𝑣1) + 𝐶ℛ(𝑣2) ≤ 𝐶𝑆(𝑣3, 𝑣4) , two anchors will be 
placed on at on 𝑣3  and 𝑣4 , and the budget b will be 
decreased by 2. After the anchor placement, the saved 
vertices are added to the 2-core and the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺)  is calculated again. This process 
repeats until the budget is completely used 𝑏 = 0. 

IV. EFFICIENT IMPLEMENTATION OF ANCHORED 2-CORE 

ALGORITHM 

The purpose of this work is to propose an efficient 
approach towards the implementation of the anchored 2-
core algorithm. As mentioned before, one of the 
applications of this algorithm can be in studying 
unraveling and preventing it in social networks. Online 
social network graphs tend to be large with millions of 
nodes and connections. Hence, the question is if it is 
viable to run the anchored 2-core algorithm on real world 
network data on a single consumer-grade machine.  

Studying web graphs is often difficult due to their 
large size. WebGraph is a framework for graph based 
databases that was designed to facilitate studying of web 
graphs [11]. Webgraph provides efficient usage of 
memory by utilizing compression techniques such as gap 
compression [15], referentiation [16] and intervalisation. 
It also provides a fast API for randomly accessing graph 
nodes and vertices [11,12]. The WebGraph framework 
also contains data sets for very large graphs with billions 
of links [13] which were either gathered from public 
sources [17] or obtained with UbiCrawler [18,19]. These 
features make Webgraph a suitable choice for dealing 
with large graph based databases and hence it was used 
for our implementations in this work.  

In the anchored 2-core algorithm, to find the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 subgraph of a graph 𝐺, first the k-core of 
graph 𝐺 needs to be extracted. Different variations of k-
core algorithm have been proposed so far [2,4,5,10, 14]. 
In this work, we used an efficient implementation of the 
Batagelj and Zaversnik (BZ) algorithm [14] that was 
proposed in [4]. This implementation is referred to as 
WG_BZ and uses WebGraph as the graph database 
framework. The main idea of WG_BZ [4] is to flatten the 
set of vertices of BZ into a few arrays, which make it 
significantly faster than other k-core algorithms. 

To store the longest paths that are computed at each 
iteration of the anchored 2-core algorithm for rooted and 
non-rooted trees, the SequentialSearchST and 
SeparateChainingHashST structures [20] were used. The 
SeparateChainingHashST table maintains an array of 
SequentialSearchST objects that are accessible by using a 
hash function. SequentialSearchST is an unordered list of 
key-value pairs that uses sequential search. As will be 
shown below, we used the SeparateChainingHashST 
structure to implement the 𝑆𝐶_ℎ𝑎𝑠ℎ table that we used in 
our implementation of the algorithm. 



Algorithm 4.1 Anchored 2-core Algorithm 

1.  function anchored_2-cores (Graph G, Integer budget) 

2.  𝑑, 𝑏, 𝐷 ← compute K-Core(G)     

3.  while (𝑏𝑢𝑑𝑔𝑒𝑡 >  0) 

4.      initialize (𝑆, 𝑅) 

5.      𝑅 ← compute 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒(𝐺, 𝐷, 𝑏, 𝑅, 2) 

6.      if 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑅 >  0 then  

7.           initialize (𝑆𝐶_ℎ𝑎𝑠ℎ) 

8.           for all 𝑖 = 0 𝑡𝑜 𝑠𝑖𝑧𝑒(𝑅) where 𝑑[𝑅[𝑖]] == 1 

9.              𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑅[𝑖], 𝑖, 0)  // builds 𝑆𝐶_ℎ𝑎𝑠ℎ 

10.         end for 

11.         using SC_hash find: 

12.              𝑣1 ← farthest vertex from core on a rooted tree 

13.              𝑣2 ← second farthest from core on a rooted tree  

14.            (𝑣3, 𝑣4 ) ← endpoints of the longest path across  

all non-rooted trees 

15.         if 𝐶ℛ(𝑣1) + 𝐶ℛ(𝑣2) > 𝐶𝑆(𝑣3, 𝑣4) then 

16.              𝑑[𝑣1] = ∆(𝐺), budget = budget – 1 

17.              𝑑, 𝑏, 𝐷 ← compute K-Core(G) 

18.          else  

19.             𝑑[𝑣3] = ∆(𝐺), 𝑑[𝑣4] = ∆(𝐺), budget = budget – 2 

20.             𝑑, 𝑏, 𝐷 ← compute K-Core(G) 

21.          end if 

22.      else go to end 

23.      end if     // size R>0 

24.  end while 

 25.  end 

 

 

The following data structures were used in our 
implementation of anchored 2-core algorithm. 

 Arrays d, D, p, and b, that were used in the 
WG_BZ k-core algorithm [4]. 

 Array 𝑅  stores the set of vertices which are 
removed from a given graph to create the 2-core 
graph. In other words, 𝑅 stores the vertices that are 
in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 of graph G. 

 Array 𝑆  holds the status of each vertex in the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph which can be either rooted or 
non-rooted. 

 Table 𝑆𝐶_ℎ𝑎𝑠ℎ stores a hash table of vertices in 
the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph. It is composed of a list of 
linked lists that store the longest paths on rooted 
and non-rooted trees. Each entry in the linked lists 
is a (key,value) pair where key is the index of the 
vertex and value is the distance of vertex from the 
vertex at the head of the corresponding linked list.  

Algorithm 4.1 shows the implementation details of 
the anchored 2-core algorithm. The input of the algorithm 
is a graph, 𝐺, and the maximum available budget. In the 

first step of the algorithm (line 2), WG_BZ algorithm is 
used to compute the 2-core of graph 𝐺 , which is 
effectively defined by arrays 𝐷 and 𝑏. The main loop of 
the algorithm iteratively finds anchors and assigns 
budgets to them until it runs out of budget.  

After the initialization of the S and R arrays, the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 of 𝐺  is computed for 𝑘 = 2 (line 5). The 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 , 𝑅 , is computed by simply copying the 
first bucket of vertices from 𝐷  to 𝑅  i.e. indices 0 to 
𝑏[𝑘] − 1 . If 𝑅  is non-empty, a SeparateChainingHash, 
𝑆𝐶_ℎ𝑎𝑠ℎ, is initialized based on the vertices in R. A list 
of pointers is created in the 𝑆𝐶_ℎ𝑎𝑠ℎ  such that each 
pointer corresponds to a leaf vertex in R and points to the 
head of an empty linked list.  Note that we only compute 
the longest paths from the leaves as shown in lines 8 and 
9 of the algorithm.  

The 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑢) method at line 9 fills up 
the SeparateChainingHash table and array S. Algorithm 
4.2 shows a detailed explanation of this function. The 
𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒 function recursively searches the tree 
where 𝑢 is located and persists each node and its distance 
from 𝑢 in 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖] where 𝑢 = 𝑅[𝑖]. If a root (a node 
on the 2-core) is found, then the tree is marked as rooted 
and the distance of root will be set to 0 (line 14 of 
Algorithm 4.2). At this point another recursive function 
is called to update the distances of all nodes to be from 
the root rather than 𝑢 (line 16). This second function is 
called 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. Note that there is at most one 
root on each tree as otherwise all the nodes on the path 
between the two or more roots would be on the 2-core 
and could not be in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph. 

In Algorithm 4.1, after the 𝑆𝐶_ℎ𝑎𝑠ℎ is filled, it is easy 
to find the most valuable nodes in the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 
graph. The first two nodes which are on two separate 
rooted trees and have the longest distance to the root are 
selected ( 𝑣1  and 𝑣2  at line 12-13 of Algorithm 4.1). 
Then, the two endpoints of the longest path among all 
non-rooted trees are identified, 𝑣3  and 𝑣4  (line 14). If 
assigning anchors to 𝑣1  and 𝑣2  saves more nodes, an 
anchor is assigned to 𝑣1 , and again the 2-core is 
calculated to update 𝐷  (lines 16-17). Otherwise, two 
anchors are assigned to 𝑣3 and 𝑣4 and the 2-core is called 
again (lines 19-20).  

Note that to simulate the impact of budget on the 
nodes, the degree of the anchored nodes is assigned to the 
maximum degree of graph 𝐺. This guarantees that the 2-
core algorithm will not place these nodes amongst the 1-
core nodes or first bin in 𝐷. The loop continues finding 
anchors and assigning budget until it runs out of budget, 
or if there are no more vertices left to save in the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 graph. 



 

V. EXPERIMENTAL RESULTS 

This section, provides the implementation results of 
examining the proposed approach on real world network 
data ranging from small to large networks with millions 
of links. All the implementations were done using the 
Java programming language and WebGraph framework. 
The experiments were run on a system with a 64-bit 
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and 12 GB 
RAM. The evaluation was performed by applying the 
proposed implementation on a set of twelve test suites. 
The execution time proves the efficiency and speed of the 
proposed implementation methods. 

Table I shows the result of applying our anchored 2-
core implementation on twelve datasets ranging from 
small to large networks with budget b=5. The first 
column shows the name of test suits and the second 
column shows the number of nodes for each network. 
The size of the 2-core graph in each network is shown in 
column 3. Column 4 shows the number of nodes that 
have been saved by finding the three most valuable 
anchors and assigning the budget to them. The last 
column shows the execution time of the algorithm in 
seconds.  

As shown in the fourth column, the number of nodes 
that are saved by placing three anchors can vary based on 
the network topology not network size. For example, the 
number of nodes which were saved in 
data7_web_berk_stan is much higher than the number of 

nodes which were saved in data12_uk-2005-edgeList 
while uk-2005 is significantly larger than web_berk_stan. 
On the other hand, in the graph of network 
data5_soc_slashdot, the number of nodes that are saved is 
the same as the number of anchors that are assigned to 
them. 

The results of running the anchored 2-core algorithm 
with budget 10 on the same set of networks are shown in 
Table II. As it is shown in Table II, adding more budget 
leads to saving more nodes. For example, 2633 nodes 
were saved by assigning 10 anchors to the 
web_berk_stan graph. Adding more budget, linearly 
increases the iteration cycles in the algorithm which 
increases the execution time as illustrated in Table II. 

TABLE I.   RESULTS OF OUR 2-CORE IMPLEMENTATION WITH B=5 

Data set # of nodes 2-core size 

# of 

nodes 

saved 

Execution 

time (s) 

data1_astrocnet 133,280 17,440 12 0.209 

data2_condmatcnet 108,300 20,613 16 0.136 

data3_p2pgnutella 62,586 33,816 11 0.307 

data4_soc_sign_slashdot 82,144 52,103 18 0.96 

data5_soc_slashdot 82,168 80,365 5 1.125 

data6_amazon 403,394 390,938 21 3.352 

data7_web_berk_stan 685,231 629,459 1663 16.959 

data8_wiki_talk 2,394,385 622,999 15 1435.891 

data9_soc-LiveJournal 4,847,571 3,784,309 21 60.391 

data10_roadnet_tx 1,393,383 1,093,520 56 2.686 

data11_roadnet_ca 1,971,281 1,591,795 137 5.93 

data12_uk-2005-edgeList 39,459,923 35,580,606 41 805.293 

TABLE II.  RESULTS OF OUR 2-CORE IMPLEMENTATION WITH B=10 

Data set # of nodes 2-core size 

# of 

nodes 

saved 

Execution 

time (s) 

data1_astrocnet 133,280 17,440 22 0.366 

data2_condmatcnet 108,300 20,613 27 0.252 

data3_p2pgnutella 62,586 33,816 22 0.747 

data4_soc_sign_slashdot 82,144 52,103 28 1.768 

data5_soc_slashdot 82,168 80,365 10 1.587 

data6_amazon 403,394 390,938 41 5.898 

data7_web_berk_stan 685,231 629,459 2633 26.322 

data8_wiki_talk 2,394,385 622,999 24 2196.921 

data9_soc-LiveJournal 4,847,571 3,784,309 39 109.137 

data10_roadnet_tx 1,393,383 1,093,520 128 6.067 

data11_roadnet_ca 1,971,281 1,591,795 201 8.682 

data12_uk-2005-edgeList 39,459,923 35,580,606 76 2359.54 

 

𝑆[𝑢] = "𝑛𝑜𝑛 − 𝑟𝑜𝑜𝑡𝑒𝑑” 

 

Algorithm 4.2 Fill up the SeparateChainingHash table 

1.  function 𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑢, 𝑖, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

2.  if 𝑢 ∈ 𝑅 and u is not visited 

3.        if 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖] does not contain u 

4.          𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖]. 𝑝𝑢𝑡(𝑢, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒),  

5.        mark u as visited 

6.        for each neighbor v of u 

7.             if 𝑣 is not visited and 𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖] does not contain v 

8.                      𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖]. 𝑝𝑢𝑡(𝑣, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1) 

9.                      𝑆[𝑣] = "𝑛𝑜𝑛 − 𝑟𝑜𝑜𝑡𝑒𝑑" 

10.           end if 

11.              if 𝑣 ∈ 𝑅 then 

12.                    𝑐ℎ𝑒𝑐𝑘𝑅𝑜𝑜𝑡𝑒𝑑𝑇𝑟𝑒𝑒(𝑣, 𝑖, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1) 

13.              else 

14.                    𝑆[𝑣] = ”𝑟𝑜𝑜𝑡𝑒𝑑”, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 

15.                    𝑆𝐶_ℎ𝑎𝑠ℎ[𝑖]. 𝑝𝑢𝑡(𝑣, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

16.                  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑖, 0) 

17.                 go to end    //line 21 

18.          end if 

19.       end for 

20.  end if 

21.  end 



 

Fig. 2. Number of nodes saved by assigning budget b 

 

For dataset data8, the execution time is higher than 
data12 for b=5 and more comparable for b=10, which 
shows the impact of the 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 topology on the 
execution time. Note that although data8 is much smaller 
than data12, its 𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 size is almost half of the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒 size in data12 (i.e. 1.8 million compared to 
3.8 million). The high execution time in data8 is because 
of trees with a large number of branches in the 
𝑅𝑒𝑚𝑜𝑣𝑒𝐶𝑜𝑟𝑒  of data8. Assigning more budget breaks 
down these trees into smaller pieces and reduces the 
number of backtrackings. For example, the execution 
time becomes more comparable to data12 for b=10. 

Fig. 2 illustrates the number of nodes saved by 3, 5, 
and 10 anchors in the above datasets. Data7 is not shown 
because of difference in order of magnitude. As it is 
shown in Fig. 2, the number of nodes that were saved is 
not a function of the size of the network, but rather it 
depends on the topology of the network. Also, there is no 
linear relation between the number of saved nodes and 
the assigned budget because it is heavily dependent on 
the network topology. However, the impact of using only 
a few anchors is impressive.  

To illustrate the execution times, the results were 
divided into three data sets of similar ranges for better 
viewing. The charts are shown in Fig. 3, 4, and 5. As it is 
shown in Fig. 3, for graphs of size 50k to 150k the 
execution time is in order of a few seconds. For the larger 
graphs shown in Fig. 4 with up to 4.8 million nodes, the 
execution time is in order of a few minutes. For our 
largest dataset with 39.5 million nodes, the execution 
time is 39 minutes for budget 10. Note that the execution 
time is not directly a function of the graph size, but it 
depends on the topology of the graph as well. For 
example, for data11_roadnet_ca with almost 2 million 
nodes the execution time is 8.7 seconds which is almost 
one third of the execution time of data7_web_berk_stan 
with 685k nodes. 

 

Fig. 3. Execution times of Algorithm 4.1 on data set 1 

 

 
Fig. 4. Execution times of Algorithm 4.1 on data set 2 

 

 
Fig. 5. Execution times of Algorithm 4.1 on data set 3 

 

As mentioned earlier and can be seen in the charts, 
adding more budget linearly increases the iteration cycles 
of the algorithm, but the increase in the execution time is 
less than linear growth. The results prove that our 
implementation scales very well considering the size and 
complexity of these graphs and the reasonable execution 
times. 
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VI. CONCLUSION 

Unraveling in social networks can happen due to 
losing connections between different network partitions. 
It is to the benefit of the social network provider to 
encourage the nodes connecting network partitions to 
stay in the network. The anchored k-core algorithm of [9] 
introduces a mechanism to model unraveling in social 
networks. Also, it provides an approach to tackle this 
problem by locating the valuable nodes, called anchors, 
and rewarding them to stay active in the network.  

An exact algorithm was proposed in [9] for 𝑘 = 2 that 
guarantees finding the most valuable nodes which save 
the most number of vertices by staying engaged. In this 
work, we proposed an efficient approach for 
implementation of the anchored 2-core algorithm of [9]. 
Our goal was to present an efficient approach that could 
process large datasets on a single consumer-grade 
machine in a reasonable time. We ran our 
implementation on a set of large graphs with millions of 
connections. The results proved that our approach is fast 
and despite the complexity of the algorithm, the 
execution time was in order of minutes even for the 
larger circuits with millions of connections for budget 10 
or less. Increasing the budget will increase the execution 
time as it adds to the iteration cycles.  

The results show that assigning a few budgets can 
save significant number of nodes in the network. These 
networks did not have examples of long chains with 
smaller degrees to prove the significant impact that this 
approach could have on saving the social network from 
falling apart. The future work will be studying the 
anchored 3-core problem and investigating the possible 
approximation approaches for solving the 3-core 
problem. This problem cannot be solved in polynomial 
time for k>2; however, heuristics can be used to find 
optimized solutions. 

Source Code: https://github.com/btootoonchi/Anchored_2-Core/ 
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