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Abstract—Clique counting is considered to be a challenging
problem in graph mining. The reason is combinatorial explosion;
even moderate graphs with a few million edges could have clique
counts in the order of many billions. In this paper, we propose
a fast and scalable algorithm for approximating 4-clique counts
in a single-pass streaming model. By leveraging a combination
of sampling approaches, we estimate the 4-clique count with
high accuracy. Our algorithm performs well on massive graphs
containing several billions of 4-cliques, and terminates within a
reasonable amount of time.

Index Terms—stream data analysis, clique counting, approxi-
mation, randomized algorithm

I. INTRODUCTION

A clique in a graph is a set of nodes such that there is an
edge between any two distinct nodes in the set. Specifically, a
4-clique is a set of four vertices, all connected to each other.
Many recent works c.f. [1], [2], [3] make use of cliques to
discover emerging dense sub-regions of a network. 4-cliques
have also been shown to provide the foundation for computing
the most practical case of nucleus decomposition of networks
(see [2]). Thus, clique listing and counts are considered to be
very important in social network analysis and network science.

It is commonly thought that cliques, beyond three nodes, are
difficult to enumerate or count since the number of possible
instances grows as O(nk), where k is the order of the clique
and n is the order of the graph. Thus, it is believed that
algorithms that enumerate cliques or compute clique counts
cannot terminate in a reasonable time [4] for large graphs.
The clique counting problem has been studied extensively [5],
[6], [7]. Alon et al. [5] proposed a technique to count given-
length cycles. Bordino et al. [7] extends triangle counting to
subgraphs on three and four vertices in a three-pass streaming
model. Tiered-sampling [8] combines sampling of arbitrary
subgraphs to count 4-cliques and 5-cliques in the one-pass
streaming model. Other solutions, such as Arabesque [9] and
4-PROF-DIST [10] use distributed platforms.

We focus on the problem of estimating the count of 4-
cliques using streaming algorithms. Specifically, we use the
one-pass streaming model in which incoming edges of a graph
are processed and the output updated as they come down a
stream. In essence, once an edge moves down a stream, it
cannot be processed again. Our algorithm processes edges of
a data stream in a single pass. It is worth noting that there have
been plenty of studies on triangle count approximation in the
streaming model. It was found that triangles can be estimated
efficiently using state-of-art techniques such as [3], [11], [12].

When it comes to approximating the number of 4-cliques,
to the best of our knowledge, none of the previous works
(except [8]) can handle the one-pass streaming model. On
the other hand, [8] considers the one-pass streaming model
but has a high computational complexity for processing each
arriving edge, thus rendering it practically noncompetitive. In
this paper, we show that by leveraging a dual sampling of both
edges and triangles we can achieve an accurate and scalable
estimation of 4-cliques in the one-pass streaming model. Our
proposed algorithm achieves a significantly improved run-time
and is able to handle large graphs which other methods either
take much longer to process or fail to complete processing
at all. Moreover, unlike previous works, our solution is the
first scalable approach to work in a fully streaming setting
producing the 4-clique count in only a single pass. Our
contributions are as follows:

1) Using color coding (graph sparsification) and reservoir
sampling, we present a one-pass, fast, and scalable
streaming algorithm to approximate the number of 4-
cliques that significantly improves upon the state-of-art.

2) We provide a detailed analysis and prove that our
estimation is unbiased. Our algorithm works for any type
of edge ordering in a graph.

3) Our algorithm does not need to wait for the entire graph
stream to be processed to provide a 4-clique count.
Rather, it can provide the 4-clique count of the graph
seen so far at any instant of time.

4) We create an efficient implementation of the algorithm
for a single machine. For instance, our algorithm is able
to run on the densest graph we consider, dewiki, of
millions of nodes and edges, within reasonable time and
much more efficiently than other methods.
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Algorithm 1 4CDS (4-CLIQUE DUAL SAMPLER)

Input: Graph stream G
1: global variables: cliqueCount← 0, T ← ∅
2: local variables: S ← ∅, number of colors c
3: for each edge e = (u, v) ∈ G do
4: COUNT4CLIQUE(u, v)
5: colorU ← random int(0, c)
6: colorV ← random int(0, c)
7: if colorU == colorV then
8: Insert edge e in S
9: uSet← N(u, S) . neighbors of u in S

10: vSet← N(v, S) . neighbors of v in S
11: for each t ∈ uSet ∩ vSet do
12: if coin toss(r) == “heads” then
13: Insert triangle (u, v, t) in set T

II. RELATED WORK

Chiba and Nishizeki [13] is a seminal work on clique
enumeration. They split graphs into several subgraphs by using
degeneracy ordering and then recursively list cliques in these
subgraphs. KCLIST is a parallel clique enumeration technique
proposed in [14] which improves on [13] but still could not
scale for large graphs. Moreover, the running time of KCLIST
depends on the ordering of nodes.

Milo et al. [15] analysed frequent subgraph patterns and
called them network motifs. Since then, there have been many
studies on how to find and count small subgraphs within a
graph, including some we have already discussed.

For k-clique counting, randomized techniques such as edge
sampling [16], [17] and color coding [18], [19], [20] have
been extensively used. The recently proposed ordering-based
algorithm TURÁN-SHADOW [21] for estimating k-cliques
(k ≤ 10) (in a non-streaming setting) provides accurate clique
estimates for large graphs. Note that none of the above works
employs a streaming model. Thus they cannot obtain a clique
count at any particular instant in time.

Tiered-sampling [8] approach uses a one-pass setting with
fixed memory size. However, it counts and samples triangles
on each edge insertion, therefore, increasing the computation
time by many folds. In other words, using the tiered-sampling
approach, TS4C1 [8] would take O(|E| · |S|) (where S= set of
edges sampled) extra amount of time on average as compared
to our algorithm, 4CDS, to count the number of 4-cliques in
a graph stream. We were unable to run TS4C1 to completion
on our single machine configuration in reasonable time.

As stated earlier, we consider a fully streaming setting and
are able to efficiently produce an approximate clique count
at any time instant. Our algorithm employs dual sampling
(sampling both edges and triangles) as such sampling tech-
niques have been used with much success as demonstrated in
[22], [23], [24]. Additionally, our algorithm does not take into
account the ordering of nodes unlike [13], [14].

Algorithm 2 COUNT4CLIQUE

Input: Edge e = (u, v)
1: count← 0, scale← c3/r2

2: uSet← N(u, T ), vSet← N(v, T )
3: . neighbors of vertices u and v in T
4: for each common neighbor w ∈ N(u, T ) ∩N(v, T ) do
5: wSet← N(w, T ) . neighbors of w in T
6: cSet← wSet ∩ uSet ∩ vSet
7: count = |cSet|/2
8: if count > 0 then
9: cliqueCount← cliqueCount+ (count ∗ scale)

III. PRELIMINARIES

We consider simple, undirected graphs G = (V,E). Graph
G is a streaming graph in an adjacency stream model,
where the edges are coming in a streaming fashion and their
order is arbitrary. More specifically, G comes as a stream
〈e1, e2, ..., e|E|〉 of edges. Let ei denote the i-th edge in the
stream, n = |V | denote the number of vertices, and m = |E|
denote the number of edges. The set of neighbors of a vertex
v ∈ V is N(v) and the degree is deg(v) = |N(v)|. A 4-clique
is a subgraph of four vertices where each vertex is neighbor of
every other vertex. A 4-clique has 6 edges and four triangles.
Sampling Methods. We use the color-coding technique intro-
duced by Alon et al. [18]. In this method, each vertex v of
G is assigned a color cv , which is a random number in [1, c].
This technique sparsifies G by preserving an edge only if the
colors of its two endpoints are the same.

For sampling triangles, our algorithm uses the technique of
reservoir sampling (with sampling ratio r), which chooses a
random sample, without replacement, of k triangles from the
set of triangles on the preserved edges after the color coding.

TABLE I: Datasets considered for the experiments
Dataset n m dmax 4-cliques

enron 69,244 254,449 1,634 5,001,773
cnr 325,557 2,738,969 18,236 159,814,399
dblp 986,324 3,353,618 979 40,910,658
amazon 735,323 3,523,472 1,077 4,192,682
dewiki 1,532,354 33,093,029 118,246 158,337,013
ljournal 5,363,260 49,514,271 19,432 16,129,080,442

IV. THE ALGORITHM

Our algorithm for 4-clique approximation, denoted by
4CDS, is a sampling algorithm (Algorithm 1) that uses color
coding and reservoir sampling.

Initially, the algorithm sets global variables, cliqueCount =
0 and set T = ∅, and local variables, set S = ∅ and c
(lines 1-2). The preserved edges are stored in set S, and the
sampled triangles in set T . Then, the algorithm iteratively pro-
cesses every incoming edge e in the graph stream G. Firstly,
4CDS invokes sub-procedure COUNT4CLIQUE (Algorithm 2)
to count the number of 4-cliques formed by e with the induced
graph by the sampled triangles in T . By iterating over the
common neighbors of vertices u and v, denoted by w, we
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Fig. 1: Comparison of 4CDS with state-of-the-art algorithms
EDGE SAMPLING, GRAFT, and TURÁN-SHADOW

discover 4-cliques formed by edge e by finding the common
neighborhood between u, v and w (line 6). The count is then
scaled up as shown in line 9 of Algorithm 2. Specifically, to
obtain an unbiased estimate, we scale our count by r2/c3,
which is the probability of discovering a 4-clique (will be
explained further in Section V below).

After counting the 4-cliques formed by edge e, we uni-
formly and randomly assign colors to both endpoints of e
(lines 5-6). Then, 4CDS determines if e is preserved or not
(line 7) by matching the colors of vertices u and v. If they are
a match, edge e is preserved, that is, it is added to the set of
sampled edges S (line 8); else the algorithm continues with
the next incoming edge (line 3). Subsequently, after preserving
e, the algorithm iterates through all triangles formed by e on
the subgraph induced by S (line 11). These triangles are then
sampled uniformly at random using reservoir sampling with
probability r (lines 12, 13).

We note that 4-cliques are discovered (i.e., counted) in line 4
upon arrival of each edge e before e is either sampled or
discarded. The idea behind this is to reduce the estimation
error and make the algorithm more robust by minimizing the
loss of information. In other words, we utilize every edge
regardless of whether it will be preserved or discarded. This
significantly increases the discovery probability of a 4-clique
and reduces the variance of the estimation.

V. ANALYSIS

Theorem V.1. 4CDS (Algorithm 1) provides an unbiased
estimate of the number of 4-cliques in an undirected graph
stream at any time instant.

Proof. Let C be the true 4-clique count in stream G, F be
the 4-clique count in the sub-graph T (induced on sampled
triangles), p = r2/c3 (sampling probability to discover a 4-
clique), and X = F/p = F · (c3/r2). Note that this is the
estimate provided by 4CDS for the number of 4-cliques.

We now show that E[X] = C. Let S = {s1, . . . , sC} be
set of 4-cliques present in the stream in that order. Let Fi

be an indicator variable denoting whether si is discovered
or not. Clique si is discovered if (1) all the four vertices
are assigned the same colour and (2) The first two triangles
of si in the stream are sampled (the other two triangles are

discovered when the sixth edge of si arrives). We now compute
the probabilities of (1) and (2).

Each vertex is assigned a color c chosen uniformly and
randomly (lines 5-6), and the edges are preserved if both end-
points have the same color. For a 4-clique to be discovered, all
four vertices must be assigned the same color. The probability
of such an event happening is 1/c3. This is because we first
need to fix the color of vertex u (we assign color c to vertex
u). Then, we pick the colors for remaining three vertices and
the probability to assign a color c to each vertex is 1/c. Hence,
the probability of all three remaining vertices are assigned the
same color as that of vertex u is 1/c3.

Regarding triangles, we sample the first two triangles of
of clique using reservoir sampling. Each triangle is sampled
uniformly and randomly with a sampling ratio r. Hence, the
probability to sample the first two triangles is r2. Note that
these two events, color coding of vertices and sampling of
triangles, are independent of each other.

Now the number of 4-cliques in graph T is F =∑C
i=1 Fi. Therefore, E[F ] = E[

∑C
i=1 Fi] =

∑C
i=1 E[Fi] =∑C

i=1 r
2/c3 = C · r2/c3. Finally, E[X] = E[F · (c3/r2)] =

(c3/r2)·E[F ] = (c3/r2)·C ·r2/c3 = C. Thus, E[X] = C.

TABLE II: Experimental results for Runtime (in seconds),
Accuracy (in percentage) and Speedups of 4CDS

Graph Tbase T4CDS Speedup Error(%)

enron 12.15 1.81 6.7 1.91
cnr 6.9K 2.40 176 3.78
dblp 22.42 4.56 4.9 3.43
amazon 9.36 2.61 3.6 1.65
dewiki 37K 91.14 400 1.63
ljournal 18K 141.24 130 0.78

VI. EXPERIMENTS

The real world datasets we use are listed in Table I. All
the datasets were downloaded from the Laboratory for Web
Algorithmics [25], [26], http://law.di.unimi.it/datasets.php. We
symmetrized them and removed any self-loops to obtain
simple undirected graphs. We implemented our code in Java
using the Webgraph library [25] for graph streams. We used
a standard intel core i5 machine equipped with 2.5 GHz
processor and 8 GB of RAM. We notice, however, that the
memory usage is less than 1 GB throughout the experiments
except for the dewiki and ljournal graphs. For robustness, we
perform ten trials using distinct random seeds.

In the 4CDS implementation, we can choose two parameters:
the number of colors which can be assigned to a vertex and the
sampling ratio that determines the number of triangle samples.
We performed experimental analysis for different settings of
input parameters. In practice, we saw that setting the count of
colors to 5 provided good estimates for all our datasets.

Evaluation metrics. The experiments measure the key
metrics of accuracy (in terms of percentage error) and running
time as shown in Table II. The accuracy of our algorithm is
measured using formula |C −X|/C (the lower, the better).

http://law.di.unimi.it/datasets.php
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Accuracy. In Table II we see in the last column the relative
errors for each dataset when c = 5 and r = 0.3. The relative
errors, w.r.t. exact counts, are all quite small. They vary from
0.78% to 3.78%. Figure 2 shows the relative errors computed
for different settings of parameter r. The errors decrease fast
as the sampling rate r goes up.

Runtime. In Table II, we present the execution time results
of our algorithm. Note that Tbase, the baseline time required
to perform an exact counting by enumerating all 4-cliques,
does not only depend on the size of the graph, but also on
the numbers of triangles. Interestingly, dewiki requires longer
run-time than ljournal. Even though dewiki is smaller by an
order of magnitude, it is denser and has more 4-cliques. The
amazon dataset, which has relatively small maximum degree
can be processed in only a few seconds. The dewiki dataset
has an enormous number of wedges (open triangles) and large
maximum degree and so the enumeration algorithm took about
10.5 hours to finish the enumeration. However, our 4CDS
algorithm took merely a couple of minutes to estimate the
global 4-clique count with more than 98% efficacy.

Comparison with State-of-the-art. We compare 4CDS with
the following algorithms: Color Coding [18], Edge Sam-
pling [17], GRAFT [16] and TURÁN-SHADOW [21]. The
rationale for this choice of algorithms is because they all
share the idea of randomly sampling sets of edges using a
reservoir. Still we recall that these algorithms do not work in
a fully streaming setting, which is in contrast to our 4CDS
algorithm. GRAFT is infeasible for graphs with more than
10M edges. Therefore, we could not finish executions on
dewiki and ljournal for GRAFT. For edge sampling, we set
the sampling ratio value initially to 0.1 and then increment
it by 0.15 up to 0.40. In terms of accuracy, Color Coding
and Edge Sampling gave the worst estimates. We observe
that even though Edge Sampling is faster, it has very poor
accuracy. The comparison results are shown in Figure 1. The
experiment shows that our algorithm is much faster than its
competitors. More specifically, 4CDS is faster about 2× (on
average) than its competitors. Our analysis shows that for
dense graph networks like cnr, GRAFT has the worst execution
time, however, it does provide competitive results on sparse
graphs. In addition, Figure 1 also demonstrates that for massive
networks like dewiki and ljournal, 4CDS is much faster than

its competitors with comparable accuracies.

VII. CONCLUSIONS

In this paper, we present a randomized approach for ef-
ficiently approximating 4-cliques in a one-pass streaming
model. Our algorithm samples both edges and triangles to pro-
vide accurate estimates. 4CDS achieves significant speedups
along with maintaining 96% accuracy. We are able to process
massive graphs consisting of millions of edges and provide
estimates for billions of 4-cliques in a single run within a
reasonable amount of time. As future work, one direction is
to extend our result to five vertex cliques. Another direction
is to count per-vertex k-cliques.
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