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Abstract—Autism Spectrum Disorder (ASD) is extensively
studied by medical practitioners, health researchers, and edu-
cators. ASD symptoms appear in early childhood, within the
first two years of life, but diagnosing it remains challenging due
to its complex and diverse nature. Nevertheless, early diagnosis
is crucial for effective intervention. Traditional methods rely
on behavioral observations, while modern approaches involve
applying machine learning (ML) to brain networks derived from
fMRI scans. Limited explainability of these advanced techniques
poses a significant challenge in gaining clinicians trust.

This paper builds on recent works that design explainable
approaches for ASD diagnosis from fMRI data preprocessed as
graphs. Our research makes three key contributions. Firstly, we
demonstrate that a simple approach based on viewing graphs
as tables and using tabular data classifiers can achieve the
same performance as state-of-art, explainable graph theoretic
methods. Secondly, we provide evidence that by adding higher-
order connectivity information as attributes does not improve
their performance. Most importantly, we show why classification
of brain networks is challenging by demonstrating the similarity
between graphs belonging to individuals with ASD and those
without, using a novel k-core based approach.

Index Terms—Autism Spectrum Disorder, ASD, ADHD, brain
networks, fMRI, Hamming Distance, K-Cores, Jaccard Similarity

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a developmental disor-
der caused by abnormal brain development, and encompasses a
wide range of symptoms and severity levels, varying from mild
to severe [1]. Individuals with ASD may have co-occurring
conditions such as Attention Deficit Hyperactivity Disorder
(ADHD), anxiety, or depression, which need to be addressed
for comprehensive support [2]. They also face challenges in
social interactions, exhibit repetitive behaviors and often have
heightened sensitivity (hypersensitivity) or reduced sensitivity
(hyposensitivity) to stimuli like light, touch, taste, or smell [3].
Despite this, they also possess remarkable strengths, such as
visual thinking and problem-solving abilities.

The exact cause of ASD is not fully understood, but research
suggests that it results from a complex interplay of genetic
and environmental factors [3]–[6]. ASD Symptoms typically
emerge in early childhood affecting approximately 1 in 36
children, with boys being diagnosed four times higher than
girls. It occurs across different racial, ethnic, and socioeco-
nomic backgrounds without specific limitations [7]. Although
there is no cure for ASD, early intervention, specialized

services, and parental support improve a child’s growth and
development [8].

Diagnosing ASD requires a comprehensive specialist eval-
uation [9] and a detailed clinical assessment based on specific
criteria outlined in diagnostic manuals like the DSM-5 [10].
Nevertheless, this traditional diagnostic approach lacks defini-
tive laboratory tests and relies heavily on clinical judgment and
behavioral observations. Therefore, it is important to employ
reliable methods to improve ASD diagnosis for all ages.

The discovery of Functional MRI (fMRI), a modern brain
imaging technique, has enabled researchers to identify and
partition the brain into regions of interest (ROIs) based on their
specific functions. By constructing a graph from a fMRI scan,
with ROIs as vertices and edges representing the co-activation
of these regions, researchers can employ graph classification
techniques to effectively classify fMRI scans [11]. Several
techniques have been proposed for general graph classification
such as kernel methods [12], graph embeddings [13], and
deep learning [14]. Metrics such as accuracy, precision, and
recall are essential for evaluating any such classifier [15], and
it has been shown that some of these methods can achieve
impressively high scores for the various metrics.

However, a drawback of these techniques is their complex-
ity, large number of parameters, and black-box nature making
it challenging to understand their predictions. Recently, there
is a growing focus on explainability within the AI domain
[16], [17]. In critical sectors like healthcare, decision-makers
are hesitant to adopt prediction models solely based on the
high reported accuracy without comprehending their decision-
making processes [18]. This cautious approach is especially
crucial in healthcare, where explainability is vital for gaining
the trust of medical practitioners [19].

In response to the need for explainability, Lanciano et
al. [20] used contrast subgraph method for diagnosing ASD.
The goal is to find subgraphs in brain connectivity data that
display dense connections among individuals with ASD while
being sparse in neurotypical individuals, or vice versa. This
approach aims to create an interpretable classification method
revealing unique brain connectivity patterns in individuals
with ASD. However, computing contrast subgraphs is complex
and computationally intensive. In a recent study, Enns et
al. [21] proposed a simpler discriminative edges method,
which identifies the most important edges or connections
that help distinguish individuals with ASD from neurotypical



individuals. As shown in [21], both these methods obtained
a mean accuracy of 60% on larger datasets of individuals
with ASD. In light of these results, Enns et al. [21] poses
the following question: Can brain imaging data lead to more
accurate ASD diagnoses while maintaining explainability? If
not, can we determine the reasons behind this limitation?

In our research, we seek to address this question by ex-
ploring an alternative pathway for explainable ASD diagnosis
methods, complementing the findings of Lanciano et al. [20]
and Enns et al. [21]. Our work views graphs as tables and
focuses on demonstrating the effectiveness of simple and ex-
plainable tabular ML methods as alternatives to the graph tech-
niques utilized in prior studies (e.g., [20], [21]). Furthermore,
with the goal of improving the accuracy of our method, we
explore the possibility of adding higher-order information as
attributes to aid classification. While the methods we propose
are simple and explainable, we observe that they did not
achieve high accuracy though they matched the performance of
the previous methods. Therefore, we investigate the potential
barriers that hinder the achievement of strong performance
metrics, aiming to provide insights into the question raised by
[21]. Our main contributions are as follows:

1) Converting the brain network data into a tabular format
and using explainable classifiers yield comparable re-
sults to graph-theoretic techniques used in prior works.

2) Incorporating higher-order connectivity patterns, the
number of triangles in a node’s neighbourhood, as
attributes does not improve the classifier performance.

3) Studying similarities between brain networks of individ-
uals with and without ASD, using similarity measures
such as Jaccard similarity of k-cores and Hamming dis-
tance reveals the underlying barriers to ASD prediction.

II. RELATED WORK

Over the years, there has been extensive research on the
classification of ASD [22]–[27] using fMRI data. Several stud-
ies have explored diverse approaches to address this complex
problem.

The traditional approach involves utilizing behavioral and
family history information for ASD diagnosis. Misman et
al. [28] have claimed impressive accuracy rates of up to
99% by employing Deep Neural Networks (DNNs) on ASD
datasets that incorporate comprehensive behavioral and family
history data. In an effort to improve the accessibility of these
diagnosis techniques, Abbas et al. [29] developed mobile
applications that coupled with machine learning techniques,
show potential in aiding ASD diagnosis. However, it is im-
portant to note that relying solely on behavioral information
may not provide an early and accurate diagnosis, as behavioral
symptoms associated with ASD may not manifest until later in
a child’s development. Therefore, alternative methods focusing
on biologically-based markers derived from fMRI scans are
being explored.

Machine learning approaches have been widely employed
in ASD classification using fMRI data [30], [31]. Researchers
have utilized correlation matrices and deep learning models to

achieve accurate classifications. For example, Liu et al. [30]
have used Extra Trees algorithm to select relevant features
from correlation matrices derived from fMRI data, resulting
in an accuracy of 72% on the ABIDE dataset. Deep Learning
models, such as Dense Neural Networks (DNNs), have also
shown promise in achieving high accuracy of 88%, often
surpassing classical machine learning models [32]. Feature
selection techniques, such as sparse auto-encoders, have been
employed to enhance classification performance and obtain
accuracies above 90% [14].

However, it is important to consider the limitations of
studies conducted on small datasets, as they may overfit
the models and limit their generalizability to new datasets.
Additionally, there is ongoing research to strike a balance be-
tween model performance and interpretability, as deep learning
models are often considered “black-box” classifiers. Efforts are
being made to develop explainable classification methods [16],
[17], [33], allowing researchers and neuroscientists to gain
insights and trust the predictions made by these models. These
methods, such as [34], often involve deriving explanations for
the model’s decisions, such as SHAP values.

The present study is inspired by the work of Lanciano et
al. [20]. They prioritized interpretable and simple features to
aid neuroscientists’ understanding, rather than solely aiming
for high accuracy. In a similar vein, Coupette et al. [35]
developed an algorithm to identify characteristic subgraphs
with common and contrasting structures in graph groups,
and illustrated their technique using brain networks from
adolescents in the ABIDE dataset. Finally, Enns et al. [21]
proposed the discriminative edges method with the goal of
identifying a set of important edges that can separate the two
classes. All these studies aim to uncover meaningful patterns
in brain networks to enhance our understanding of ASD.

III. DATASETS AND METHODS

In this section, we will first describe the datasets we use and
the preprocessing steps involved in generating brain networks.
Then, we will outline the methodologies employed for the
classification and comparison of these brain networks.

A. Dataset Description

1) ASD Dataset: The study described in Section IV-A
utilizes the ASD dataset obtained from Lanciano et
al. [20] (https://github.com/tlancian/contrast-subgraph), which
was originally released by the Autism Brain Imaging Data
Exchange (ABIDE) project [36]. The dataset consists of
neuroimaging data from 1112 individuals, comprising 573
Typically Developed (TD) individuals and 539 individuals
diagnosed with Autism Spectrum Disorder (ASD). Typically
Developed (TD) individuals have normal brain function with-
out neurological disorders whereas Autism Spectrum Disor-
der (ASD) individuals face autism-related challenges. Each
individual in the dataset is represented by an undirected
unweighted graph containing 116 vertices, where each vertex
corresponds to a Region of Interest (ROI). The presence of
an edge in the graph indicates strong a correlation in the
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activity between the two ROIs. The graphs are represented
by an adjacency matrix of size 116 × 116.

Lanciano et al. created four distinct datasets from the
original ABIDE source [36]. These datasets were curated by
selecting individuals based on shared characteristics, such as
age, gender, and scan conditions (e.g., eyes closed or male),
as shown in Table I. Each of the dataset are divided into two
classes namely TD and ASD and the dataset’s description
reflects shared phenotypic features among the observations.
For instance, the ”Children” dataset comprises individuals
aged 9 years or younger, the ”Adolescents” dataset includes
individuals aged between 15 and 20 years, the ”EyesClosed”
dataset consists of individuals who underwent fMRI scans with
their eyes closed, and the ”Male” dataset exclusively includes
male individuals.

Dataset Description TD ASD
Children Age ≤ 9 52 49

Adolescents Age in [15,20] 121 116
EyesClosed During scanning eyes are closed 158 136

Male Male individuals 418 420

Table I
ASD DATASET - LANCIANO et al.

2) ADHD Dataset: In our experiments, as described in
Section IV-B, we also used an ADHD dataset, which is
another neurodevelopmental disorder impacting individuals
of various age groups. ADHD is characterized by attention
difficulties and impulsivity. Like ASD, the exact causes of
ADHD remain unclear, and there is presently no cure for
either condition. Nevertheless, treatments such as behavioral
therapy and medication aid in symptom management and
improving daily functioning [37]. By incorporating the ADHD
dataset into our experiments, we gain valuable insights into the
applicability of our techniques and results for ASD to other
related disorders like ADHD.

Dataset Description TD ADHD
ALL ALL 330 190

Table II
ADHD DATASET - ABRATE et al.

This study uses the ADHD dataset from [38] (https://github.
com/carlo-abrate/CounterfactualGraphs) which includes 330
individuals with typical development (TD) (normal brain
function) and 190 individuals diagnosed with ADHD, as
summarized in Table II. Similarly to the ASD dataset in
Section III-A1, the ADHD dataset also portrays each indi-
vidual with an undirected unweighted graph of 190 vertices,
representing regions of interest (ROIs). The presence of an
edge in the graph signifies a substantial correlation in the
activity between the two ROIs, resulting in a adjacency matrix
of size of 190 × 190.

For the parcellation of the brain the authors of [20] used the
AAL atlas for the ASD dataset (|V | = 116) and the authors
of [38] used Craddock 200 (CC200) for the ADHD dataset
|V | = 190).

B. Data Preprocessing

In our work, we use the ASD and ADHD graph datasets
as provided by the authors of [20], [38], without requiring
any additional preprocessing. However, for completeness, we
briefly outline the preprocessing steps needed to convert fMRI
scans into graphs.

Resting state fMRI is a neuroimaging technique that works
by measuring the blood-oxygen-level-dependent (BOLD) sig-
nals in the brain. When a region of the brain becomes active,
there is an increased demand for oxygenated blood to support
the active neurons in that region. Therefore, the body responds
by increasing the flow of oxygenated blood to that region.
fMRI takes advantage of this body response to measure brain
activity indirectly via BOLD signal intensities in different
regions. The choice of the size of each region, and hence the
number of such regions, is done using a brain atlas (AAL
atlas, CC200). These regions are referred to as regions of
interest (ROI). In summary, the output of an fMRI scan is
a 3-dimensional image of the BOLD signal intensities in
different ROIs of the brain measured over time.After obtaining
the BOLD time series for each Region of Interest (ROI),
the process of transforming it into graph data involves three
essential steps:

1) Analyze Patterns. The communication pattern between
different brain regions is examined by comparing their
BOLD time series. The underlying premise is that the
level of functional connections between two regions
can be determined by assessing the correlation in their
BOLD time series. The higher the correlation, the higher
the functional connectedness.

2) Calculate Pearson correlation coefficients (PCC).
Pairwise PCC is calculated between the BOLD time se-
ries for every pair of ROIs. This step yields a correlation
matrix of size 116 × 116 (for ASD) or 190 × 190 (for
ADHD), containing values in the range [-1, +1]. The
correlation matrix acts as a weighted adjacency matrix,
with ROIs as nodes and correlation coefficients as edge
weights.

3) Apply threshold. Thresholding retains only the
strongest connections, creating an undirected, un-
weighted graph like the ASD and ADHD datasets.

C. Classification Methods of Brain Networks

Graphs as tables. Recall that brain networks are simple,
undirected graphs on 116 vertices in which each vertex has a
unique id between 1 and 116. In order to convert a collection
of such vertex-labeled brain networks into a table, we create a
table with

(
116
2

)
= 6670 columns so that the table has one

column for each possible edge in the graph. We can then
represent any brain network G as a binary vector, T (G), of
length 6670 such that a bit location labeled (i, j) stores a 1
if the edge (i, j) is present in G and 0 otherwise. We assume
that the edges are listed in the lexicographic order.

Example. For the graph G shown in Fig. 1(a), the binary
vector corresponding to G, T (G), is [101001110110101].

https://github.com/carlo-abrate/CounterfactualGraphs
https://github.com/carlo-abrate/CounterfactualGraphs


Tabular Classifiers. Transforming graph data into tables
enables organized and structured analysis. Tables provide
a tabular representation that allows for easier data manip-
ulation, sorting, filtering, and statistical analysis compared
to the graphical representation of the graph data. In this
study, we utilize various tabular classifiers, including SVM,
Linear Regression, Random Forest, XGBoost, AdaBoost, and
Perceptrons. We evaluate performance using the four metrics:
Accuracy, Precision, Recall. and F1-score. While all metrics
are important, we present the top-3 classifiers selected based
on their accuracy in Section IV. Our emphasis on accuracy
aligns with previous works [20], [21].
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Figure 1. a) Graph G, b) 2-core of G, c) 3-core and Max-Core of G.

Local Clustering Coefficient. Informally, the local clustering
coefficient of a node i, Ci, in a graph measures the likelihood
that the neighbours of i are also connected. Formally,

Ci =
|{(j, k) | j, k ∈ Ni, (j, k) ∈ E}|(|Ni|

2

)
where Ni is the set of neighbours of node i. For each brain
network, we will compute a tuple of size 116 containing the
local clustering coefficient of its vertices.

Example. For the graph G in Fig. 1(a), the local clustering
coefficient of vertex 0 is C0 = 1

(22)
= 1 while C1 = 1

(42)
= 4/6.

The local clustering coefficient is a measure introduced
by Watts and Strogatz to study small world theory in social
networks. As it measures interconnectedness among neighbors
by counting triangles (a small graph pattern) centered at a node
in essence, adding it as an additional attribute provides extra
information about the graph and helps with ML tasks.

D. Comparison Methods of Brain Networks

We use different tools to compare the collection of brain
networks belonging to the two classes, ASD and TD: local
clustering coefficient, Hamming distance, and k-core decom-
position.

k-Core of a Graph. For a graph G on n vertices and an integer
k, 1 ≤ k ≤ n, the k-core of G is the maximal subgraph H
of G such that the induced degree of every vertex in H is at
least k.

Note that, by the above definition, the k + 1-core of G
is a subset of the k-core of G, and hence the set of k-cores,
1 ≤ k ≤ n, as k increases from 1 to n form a nested structure.
This nested structure is referred to as k-core decomposition in
the literature [39].

Example. Fig. 1(b) is the 2-core of the graph G in Fig. 1(a).
In Fig. 1(b), each vertex is connected to at least 2 other vertices
and it is also the maximal subgraph with that property. Note
that 1-core of G is G.

The study of k-cores offers valuable insights into the
structure, resilience, and communities of complex networks,
making it a popular topic in large-scale network analysis.

Max-Core of a Graph G. Let m, 1 ≤ k ≤ n be the integer
such that the m-core of G is non-empty but its m+1-core is
empty. If so, we refer to the m-core of G as its max-core.

Example. Fig. 1(c) is the 3-core of graph G in Fig. 1(a). In
Fig. 1(c), each vertex is connected to at least 3 other vertices
and it is also the maximal subgraph with that property such
that this is the max-core as the 4-core of G is empty.

To compare max-cores of two different graphs G1 and G2,
we will use the notion of Jaccard similarity. Let V1 and V2

denote the set of vertices of G1 and G2. We use this property
to understand the similarity two graphs G1 and G2 based on
vertices.

Jaccard Similarity. Given two sets V1 and V2, we define their
Jaccard similarity, JS(V1, V2) as:

JS(V1, V2) =
|V1 ∩ V2|
|V1 ∪ V2|

Example. Fig. 1(c) is the max-core G1 of graph G and has
vertices V1 = {1, 2, 3, 4}. Lets assume G2 is the max-core
of another graph and has vertices V2 = {1, 2, 7, 8, 9}, Jaccard
similarity is computed as: JS(V1, V2) =

2
7

Another notion that is useful to compare how close two
graphs G and G′ are based on their edges is the notion of
Hamming distance.

1 2

3 4

0

5

Figure 2. Graph G′

Hamming Distance. Given two graphs G and G′ on n vertices,
the Hamming distance between G and G′ is the minimum
number of edge insertions and deletions needed to convert G
to G′. Equivalently, the Hamming distance between G and G′
is the number of bit positions in which the two binary strings
T (G) and T (G′) differ.

Example. Consider G and G′ in Fig.1(a) and Fig.2. We need
to add edges (1, 4) and (2, 3) and delete the edge (2, 5) to
convert G to G′. Hence, the Hamming distance is 3.



IV. RESULTS AND DISCUSSION

In this section, we present the results we obtained from
analyzing the ASD and ADHD datasets. The code and charts
for our results can be found at https://github.com/sowbalas/
HIBIBI2023.git.

A. Insights on ASD Dataset

The first research question of this study focuses on exploring
the possibility of achieving explainability through a simple
alternate pathway: the conversion of a graph into a table.

RQ1: How do well-known tabular classifiers perform on
brain networks in tabular format?

By converting the graph dataset into tabular form, as
described in Section III, we can employ a wide array of
well-known tabular classifiers for flattened brain networks.
Figure 3 presents our results (using ten-fold cross-validation),
showing SVM (with a linear kernel) and Linear Regression
(LR) consistently ranking among the top-3 classifiers across all
four ASD datasets. These classifiers achieve a mean accuracy
of close to 60% on larger datasets, like Male. The balanced
nature of the ASD datasets sets the baseline accuracy at 50%.

The strong performance of SVM and LR classifiers, espe-
cially on larger datasets, indicate their potential significance
in ASD diagnosis. Interestingly, these classifiers are highly
explainable, and their accuracy closely matches that of sophis-
ticated graph-theoretic methods from [21]. Enns et al. aimed
to replicate Lanciano et al. work to comprehend the reported
high accuracy. However, their results differed from the original
study, demonstrating mean accuracies of 73.5% for Children,
60.8% for Adolescents, 58.5% for EyesClosed, and 59.3% for
Male on the ASD dataset (Enns et al., Table 4.2 in [21]).
Our RQ1 results demonstrates a simple, alternate strategy to
achieve explainability in ASD diagnosis using brain networks.

Our second question stems from the knowledge that graph
classifiers can benefit from additional attributes beyond node
and edge information as shown in [40].

RQ2: Can incorporating higher-order connectivity patterns,
such as triangles, as attributes improve the performance of
tabular classifiers?

To address this question, we created an augmented table by
adding 116 new attributes, namely local clustering coefficients,
to the table used for RQ1. However, the performance metrics
(using ten-fold cross-validation) did not significantly improve.
The top three classifiers on the ASD male dataset achieved a
mean accuracy of 60%, as shown in Table III.

Accuracy SVM LR NN
RQ2-Augmented table 0.60 0.60 0.60

RQ2-Clustering Coeff. only 0.55 0.55 0.54

Table III
RQ2 TOP-3 CLASSIFIERS : ASD MALE DATASET

In a related experiment, we further explored the classifiers
performance when provided solely with higher order connec-
tivity patterns. For this purpose, we created a tabular dataset

with each row representing a brain network and 116 columns
containing the local clustering coefficients of the nodes within
the brain network. Table III displays the top three classifiers
results in this scenario. SVM and LR, the most successful
classifiers, achieved a lower mean accuracy of 55%.

To summarize, our findings for RQ1 and RQ2 reveal that
tabular classifiers achieve a mean accuracy of around 60%.
Despite attempting to enhance performance by incorporating
higher-order information, such as local clustering coefficients,
we did not observe notable improvements. This leads us to
question whether there is a fundamental reason underlying
this phenomenon. We further explore this inquiry through the
concept of similarity measures.

RQ3: Can we provide evidence showing that the two classes
of networks (ASD and TD) are quite similar?

We explore the presence of similarities between ASD and
TD networks, through Hamming distance and Jaccard similar-
ity of k-cores. The first approach, Hamming distance, focuses
on edge-based similarity, while the second approach, Jaccard
Similarity, centers on vertex-based similarity [41], [42].

Similarity based on Hamming distance.

Our first approach examines the similarity between the
two categories of brain networks (TD and ASD) using the
Hamming distance metric. We consider datasets from RQ1,
where each brain network is represented as a binary string
of length 6670. Each bit in the string represents a possible
edge, with its value indicating the presence or absence of that
edge. The Hamming distance between two brain networks is
the minimum number of edge flips required to transform one
network into the other, as defined in Section III-D.

Algorithm 1 Similarity based on Hamming distance
1: Input: A Dataset D = {G1, G2, . . . , Gm} consisting of

two classes, ASD and TD files
2: Output: fASD and fTD (the fraction of good ASD and

TD files based on Hamming distance)
3: for each Gi ∈ D do
4: class← class(Gi)
5: k ← argmini ̸=j HD(Gi, Gj)
6: if Gk is in the same class as Gi then
7: countclass++; goodclass++
8: else
9: countclass++

10: end if
11: return goodASD/countASD and goodTD/countTD

For each of the four datasets, we do the following (See
Algorithm 1): For each brain network Gi in the dataset D
containing ASD and TD files, we compute its Hamming
distance to every other brain network Gj , i ̸= j, in D. Using
this information, we identify the brain network Gk that is
closest to Gi in terms of Hamming distance (Lines 3 to 5
of Algorithm 1). That is, the brain network Gk requires the
fewest number of edge additions and deletions to convert to

https://github.com/sowbalas/HIBIBI2023.git
https://github.com/sowbalas/HIBIBI2023.git


(a) Children (b) EyesClosed

(c) Male (d) Adolescent

Figure 3. RQ1 - Performance Metrics of Top-3 Classfiers

Gi. Gi is a good file if Gk is in the same class as Gi and bad
file if Gk is not in the same class as Gi (Lines 6 to 10).

As shown in Figure 4, in the Adolescent dataset, we ob-
served that both the ASD and TD classes have approximately
40% of good files (in green), indicating that around 60%
are bad files (in red). This finding is significant since it
demonstrates that for the majority of brain networks, the most
similar network belongs to the opposite class, not its own.
Similar results across the other three datasets reinforce the
conclusion that the widely used similarity measure fails to
effectively distinguish between the two classes.

Figure 4. ASD Dataset: % of good and bad files using Hamming Distance

Jaccard Similarity based on k-cores.

Our approach involves employing the k-core as a “glocal”
similarity measure, which combines aspects of both local and

global metrics. This approach overcomes limitations found in
traditional local (e.g., Hamming distance) and global (e.g.,
random walk-based) measures. Notably, prior research has
recognized the importance of such glocal similarity measures,
as discussed in [41], [42].

More specifically, we use the max-core of a brain net-
work, as described in Section III-D. The primary objective
is to assess whether the max-core of a given brain network
resembles that of a typical ASD network or a TD network,
using the Jaccard similarity metric. The max-core of a brain
network comprises a set of ROIs where each ROI’s time
series exhibits strong correlations with at least k other ROIs.
However, it’s worth noting that computing the max-core is
computationally intensive compared to the Hamming distance
metric. To address this computational challenge, we have
devised a more efficient procedure, drawing inspiration from
ideas presented in [20] (see Algorithm 2).

1) Given a dataset, we partition the ASD files in that dataset
into two sets, SASD and TASD using a 80:20 split.
Similarly, we partition the TD files into two sets, STD

and TTD using a 80:20 split (Line 3 of Algorithm 2).
2) Using the files in SASD, we create a single graph,

SGASD, that we call the ASD summary graph. This
graph is a graph on 116 vertices. It contains an edge
(i, j) if and only if more than 75% of the graphs in
SASD contain that edge. Similarly, we create the TD
summary graph SGTD (Line 4).

3) We compute the max cores of the two summary graphs,
SGASD and SGTD (Line 5).

4) Now, for each file in TASD, we compute its max-core



Algorithm 2 Jaccard similarity of Max-Core
1: Input: A Dataset D = {G1, G2, . . . , Gm} consisting of

two classes, ASD and TD files
2: Output: fASD and fTD (the fraction of good ASD and

TD files based on Jaccard similarity of max-core)
3: Partition D into four sets SASD, TASD, STD, and TTD

using 80:20 split.
4: Compute SGASD and SGTD using 75% threshold.
5: Compute their max-cores, MCASD and MCTD

6: for each Gi ∈ TASD do
7: Compute max-core MCi of Gi

8: if JS(MCi,MCASD) > JS(MCi,MCTD) then
9: countASD++; goodASD++

10: else
11: countASD++
12: end if
13: for each Gi ∈ TTD do
14: Compute max-core MCi of Gi

15: if JS(MCi,MCTD) > JS(MCi,MCASD) then
16: countTD++; goodTD++
17: else
18: countTD++
19: end if
20: return goodASD/countASD and goodTD/countTD

and check if it closer to the max-core of SGASD or the
max-core of SGTD using Jaccard similarity. We say that
it is good if it is closer to the max-core of SGASD and
bad otherwise. Compute the percentage of good ASD
files (Lines 6-12).

5) Repeat the previous step for TD files (Lines 13-19).

Figure 5 illustrates the results of our approach, representing
mean percentages over ten runs. Taking the Adolescent dataset
as an example, we observed that both the ASD and TD classes
have approximately 40% and 60% of good files (displayed
in green), respectively. This implies that the percentage of
bad files is approximately 60% and 40% for ASD and TD,
respectively. The noteworthy aspect of this observation is that
for nearly half of the brain networks, the most similar network
based on max-core comes from the opposite class, not its own.
We found similar results for the other three datasets as well.
This finding suggests that the Jaccard similarity of max-cores
fails to differentiate between the two classes effectively.

To summarize, the results obtained using the two approaches
in RQ3 provide robust and persuasive evidence of a high
degree of similarity between the graphs in the two categories:
ASD and TD. This explains the challenges faced by our
classification methods and graph theoretic techniques used in
prior research (e.g., contrast subgraph or discriminative edges
method) in achieving strong performance metrics.

Run-time. All experiments were run on a Windows machine
with Intel i5 CPU and 8 GB RAM. We report here the run
times of our algorithms for RQ3. On the largest dataset (Male),
a run of Algorithm 1 took 110 minutes to finish and on

Figure 5. ASD Dataset: % of good and bad files using Jaccard Similarity

the smallest (Children), it took 75 seconds. This is because
Algorithm 1 computes the Hamming distance between every
pair of brain networks in the dataset. Algorithm 2 was much
faster and required only 92 seconds on the Male dataset and
16 seconds on the Children dataset for one run as it only
compared the max-core of 20% of the networks with the two
summaries computed from the rest. A more detailed run-time
analysis is deferred to the full version of the paper.

B. Insights on ADHD Dataset

Our results for RQ1-RQ3 prompt the question of whether
these outcomes are specific to the ASD dataset we studied. We
are interested in understanding whether our approach could
yield different results when applied to a dataset focused on
a different but closely related health condition. To address
this, we conduct an investigation using the ADHD dataset and
apply the same methodology as described for the ASD dataet.
We noted that, for this dataset, the top-3 tabular classifiers
achieved an accuracy of 63% for RQ1 and did not perform
much better than the baseline classifier.

When we compared the two classes, ADHD and TD, for
RQ3, the average percentages of good files remains around
50% for Jaccard similarity and 35% for Hamming distance,
(refer to Figure 6). These results indicate that our findings for
ASD datasets extend to the ADHD dataset as well.

Figure 6. ADHD Dataset: % of good and bad files using Jaccard Similarity
& Hamming Distance



V. CONCLUSIONS

Early diagnosis of ASD or other related developmental
disorders is crucial for providing individuals with the medical
services and social support needed. Given our lack of under-
standing about its causes and cure, new techniques are needed
to improve diagnosis. This work investigates the potential
of biomarkers obtained from fMRI scans in the diagnosis
of ASD and ADHD. It shows that tabular classifiers can
achieve performance comparable to the best-known graph-
theoretic methods that are explainable. At the same time,
it demonstrates the challenges in classifying brain networks
using two similarity measures, Hamming distance and Jaccard
similarity of max-cores on available datasets. Our results imply
further research using larger fMRI datasets could alleviate the
current challenges and thus lead to further progress.
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