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Abstract—We present two new models that take into account
the information available in user-created “favorites” lists for en-
hancing the quality of item recommendation. The first model uses
the popularity and ratings of items in the lists to predict ratings
for new items to users that have rated some items on the lists. The
second model is a matrix factorization model that incorporates
lists as implicit feedback in ratings prediction. We compare our
two approaches against another work for utilizing favorites lists,
as well as the popular Singular Value Decomposition (SVD) on
two large Amazon datasets and show that utilizing favorites lists
gives significant improvements, especially in cold-start cases.

I. INTRODUCTION

Over the last few years, many e-commerce and entertain-
ment websites have employed Recommender Systems (RS) to
give personalized suggestions to their users about items of
potential interest. The number of items in these websites is
typically very large, therefore, it is hard for users to manually
search for items that are relevant to them. Many RS try to
generate a set of items that a user might be interested in
by using explicit and/or implicit feedback produced by the
website’s users [1]. RS have proven to be very effective in
helping users find items that are most valuable to them and
have been a research topic for many years.

Lately, many websites have enabled users to create lists
of preferred items. For example, YouTube, a popular video-
sharing website, allows users to create a playlist of videos
they like. These playlists usually group items around a certain
topic or theme for easier and organized access. Amazon, an
online retail store, has also implemented a similar service
called Listmania, which allows users to create their own lists
that can be viewed by other users and be voted on. The voting
on these lists is binary in which a “yes” vote indicates that
the list is relevant or likeable, and “no” as not. One can view
these lists as external information that can be valuable when
used in a RS. CIRC [2], for example, utilizes list information
(items and in particular votes) for enhancing the quality of
recommendations to users.

In essence, the process of a user creating a list of items
around a certain theme is just as letting the user deliberately
and voluntarily choose items that fall under the list theme.
From a different perspective, this idea can also be seen as
the process of users recommending items to themselves and
categorizing them under different themes. This, as a result,
gives valuable insight into the association of items and what
theme they fall under, which can be of great benefit to RS.

Lately, Amazon has removed the list voting function, thus

users can no longer vote on a specific list.1 This might be
because items that appear in lists of low likeability (i.e. many
“no” votes on the list) might get less sales than what Amazon
has expected. Other websites, such as YouTube, considers the
favorites lists private by default, so there is no option to vote on
(or even see) them. The unavailability of the voting function,
unfortunately renders approaches like CIRC [2] inapplicable.
In this paper, we remedy the lack of votes on user-created
lists by introducing two new algorithms FLARES2 and SVD-
FLARES. The idea for FLARES is to weigh each user-created
list by the popularity and the quality of its items. We achieve
this by averaging the lower bound of the Wilson score of
each item on a list to obtain a weight for the list. Then
we appropriately aggregate these weights to produce rating
predictions for users that have rated at least one item on one
of the lists.

Our second algorithm, SVD-FLARES, extends the Singular
Value Decomposition (SVD) algorithm. Because of the success
SVD has demonstrated in the Netflix challenge [3], the method
has gained a lot of popularity and has been incorporated into
different RS [4], [5], [6]. More specifically, SVD-FLARES is
a matrix factorization model that is similar in spirit to the
SVD++ paradigm advocated by Koren and Bell (c.f. [7]).

Using two large Amazon datasets, we compare FLARES
and SVD-FLARES, along with CIRC, against the popular
SVD approach, and show that utilizing favorites lists gives
significant improvements, especially in cold-start cases.

The contributions of this work are as follows:

1) We propose a new algorithm, FLARES, that does
not consider the list-votes information but instead
incorporates the popularity and the quality of items
to determine the importance weight of the lists.

2) We propose a second algorithm, SVD-FLARES, that
incorporates the information contained in the lists as
implicit feedback in a matrix factorization model.

3) We provide an extensive evaluation over two Amazon
datasets collected in two different time periods. The
datasets have been split into different categories to
demonstrate the performance of each approach under
categories where the “cold-start” problem holds.

The rest of the paper is organized as follows. In Section II,
we describe related work. In Section III, we describe our first
algorithm, FLARES. In Section 3, we describe our second
algorithm, SVD-FLARES. In Section V, we present our ex-
perimental evaluation. Finally, Section VI concludes the paper.

1The number of old votes can still be found.
2Acronym for Favourite List BAsed REcommender System



II. RELATED WORK

The quest for utilizing more information beyond the ex-
plicit user-provided ratings is ubiquitous in many works on
recommender systems. Among them are works utilizing trust
(c.f. [8], [9], [10], [11], [12], [13], [14], [15], [16]), time
(c.f. [17], [18], [19], [20]), location (c.f. [21], [22], [23]), and
context (c.f. [24], [25], [26], [27], [28]). An overview is given
in [29].

Surprisingly, to the best of our knowledge, utilizing user-
created lists has not received a lot of attention despite the fact
that such lists are present in many important sites, such as
Amazon, Netflix, and YouTube. In fact, we are aware of only
[2], which is based upon the work of one co-author, that has
studied the usability of user-created, favorites lists in improv-
ing the quality of recommender systems. The results of [2] are
quite impressive especially for cold-start users. However, [2]
is inapplicable in cases when there is no possibility to collect
user votes on the lists. The current work focuses on filling this
gap by remedying the lack of votes using other measures we
can collect from the items on the lists.

III. FLARES

The FLARES algorithm harnesses the information found
in lists to determine an association between items and users.
Since users usually group items of a certain topic to create a
list, these items are most likely to be relevant to other users
who are interested in the same topic. A user that gives high
ratings to items of a certain topic may indicate that he is
interested in new items that fall under the same topic as well.
These new items, along with the items that the user has already
rated, most likely share the same lists or appear in other similar
lists. However, not all lists are created equal. Lists that contain
popular and good quality items should be weighed higher than
other lists that do not. FLARES determines how “interested” a
user is in a topic by looking at what items the user has rated,
the ratings of these items, and what lists did these items appear
in. FLARES uses this information to determine the “strength”
of lists and to predict the ratings of unknown items to users.

A. Preliminaries

Figure 1 illustrates the proposed graphical model that
incorporates lists, items, and users. We denote the set of users
by U = {u1, . . . , u|U|}, the set of items by I = {i1, . . . , i|I|},
the set of lists by L = {l1, . . . , l|L|}, the set of items that has
been rated by a specific user u by Ru, the set of items in a
list l by Il and the set of lists that contain item i by Li.

We represent users, items, and lists as nodes in a graph G
of relationships. An edge connecting an item i with a user u is
denoted by a triple (u, i, ru,i), where ru,i is the known rating
that user u has given to item i. There is also an unweighted
edge connecting a list l to an item i, if l contains i. The set
of edges is denoted by E. Finally, we generate the list-weight
set

L = {(l1, w1), . . . , (lf , wf )}

where the weights describe the extent of how popular and
good quality items each list contains. The exact method of
computing the weights of the lists is given in the next section.
These weights are represented as node labels in our graph.

Fig. 1: The graphical model of FLARES, comprising of User-
Item-Rating and Item-List relationships. Each item can occur
in zero or many lists. The list weight indicates the list’s
”strength”, and is based on the items that the list contains.

B. Item Scores

Consider the fraction of positive ratings (FPR) for an item i

FPR(i) =
Number of positive ratings for i

Total number of ratings for i
.

The problem with FPR can be illustrated by the following
example. Let us consider a positive rating to be ≥ 4 (in a
1 to 5 scale). Assume we have items i1 and i2 and i1 has
been given a rating of 5 by one user out of one user, and i2
has been given a rating of 5 by ten users out of ten users.
Using the above formula we have FPR(i1) = 1/1 = 1, and
FPR(i2) = 10/10 = 1. This as a result would assign the score
of both items to be equal ignoring the fact that ten users have
agreed on i2 to be of good quality, while only one user has
considered i1 to be of good quality. A similar argument can
be made for cases where there are many negative ratings and
few positive ratings of an item.

In statistics, a confidence interval allows us to estimate
the “true” value of an observation by providing an upper and
lower bound of estimated values. In our case, we are given
the ratings of items by multiple users and we need to estimate
the confidence interval for the true value of the item’s FPR.
In other words, we need to determine how certain we are that
an item is of good quality.

There are different methods to calculating confidence in-
tervals. We consider the Wilson’s score interval. Given an
observation p̂i for FPR for item i, we need to determine the
confidence interval for p̂i with respect to the true fraction pi.
This can be done using the Wilson’s score to determine the
interval p−i ≤ pi ≤ p+i ([30]). Since we want to determine
how least confident we are, we only consider the lower bound



of the interval
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where p̂i = positive ratings/total ratings for i, ni is the total
number of ratings for i, and zα/2 is the (1 − α) quantile of
the stranded normal distribution. We pick a typical α value of
0.95 for a 95% confidence level.

C. List Weights

A list l containing popular and good quality items should
be weighed higher than other lists that do not. Using the lower
bound of the Wilson’s score interval, we calculate the weight
of the list as follows:

wl =

∑
i∈Il p

−
i

|Il|
.

In other words, we compute the average of the lower bounds of
the Wilson scores of the items on the list. Thus, the weight of
the list would give us a good gauge for the overall popularity
and quality of the list’s items. This would be useful for
predicting a rating that a user would give to an unknown item
that appears on a list.

1) Rating Prediction: The exact rating prediction is pro-
vided in Algorithm 1, which generates a prediction for rating
of item i by user u. The main idea of the algorithm is to look
for items j, rated by user u, that appear in lists that contain
the unknown item i, and multiply the given rating ru,j by
the weight of the list that item j and i appear in. The result is
then averaged by the sum of those lists weights. As mentioned
earlier, lists of popular and good quality items have a larger
weight, thus this method will contribute to a larger predicted
rating for items that appear in such lists, yet still controlled by
the ratings user u has given. We show an example in Figure 2.

Algorithm 1: Predicts rating of item i by user u
Input: A user-item-list graph G, user u, and item i
Output: Predicted rating r̂u,i

1 Let Li ⊆ L be the set of lists that contain i;
2 Initialize variables, nom, denom = 0;
3 for item j in Ru do
4 for list l in Lj do
5 if l ∈ Li then
6 nom + = wl × ru,j ;
7 denom + = wl;

8 if denom 6= 0 then
9 return nom/denom;

10 return 0;

Put differently, the list weight can be seen as a collaborative
technique to collect the opinions of many users on how they
feel about the list’s items, which we use to derive some insight
from the list as a whole. Moreover, when predicting a rating
of an unknown item to a user, we need to consider how the
user feels about items of a similar topic, thus we take into
account the user ratings of items that share the same list as
the unknown item.

i2 i3i1 i4

u

0.989 0.047 0.537 0.634
l4l3l1 l2

5 4 3

r̂u,i4 =
(5)(0.989) + (4)(0.989) + (4)(0.634)

0.989 + 0.989 + 0.634
= 4.3786

Fig. 2: The graphical model of Algorithm 1. The item in red,
i4, is the unknown item that we need to predict a rating for.
The blue items, i1,i2, and i3 are items user u has already rated
and appear in lists that contains i4. The calculation of r̂u,i4 is
done by computing the weighted average of the blue items.

IV. SVD-FLARES

SVD is a matrix factorization method that has gained a lot
of popularity following its wide success in the Netflix Prize
competition. The approach is used to map both users and items
to a joint latent factor space of f dimensions, such that the
estimate of an unknown rating for item i for user u would be
computed as the inner-products of factors.

The SVD approach described by Koren and Bell in [7]
is added to the baseline µ + bi + bu predictors to compute a
prediction for unknown items, as follows:

r̂u,i = µ+ bi + bu + qT
i · pu

where the terms are

Term Definition
µ Training overall average rating
bi Deviation of item i from the average
bu Deviation of user u from the average
qi Vector of latent factors for item i
pu Vector of latent factors for user u

In order to determine the model parameters, bi, bu, qi, and
pu, stochastic gradient descent (SGD), a common parameter
estimation algorithm, can be applied to minimize the squared
error e2u,i = (ru,i − r̂u,i)2. The SGD algorithm loops through
the training set for a number of iterations and updates the
parameters at each iteration. Error eu,i is used to learn the
parameters by a magnitude of γ, the learning step size,
yielding:

bu ← bu + γ(eu,i − λ1bu) (1)

bi ← bi + γ(eu,i − λ2bi) (2)



pu ← pu + γ(eu,iqi − λ3pu) (3)

qi ← qi + γ(eu,ipu − λ4qi) (4)

where λ1, λ2, λ3, and λ4 are regularization parameters.
SVD works well for quantifying the user’s preference level
when given a dataset that directly reflects the user preference
(i.e. explicit feedback), but can also be modified to consider
indirect information (i.e. implicit feedback), as in SVD++ [7],
which takes into account the particular set of items that a user
has already rated.

Our SVD-FLARES algorithm takes advantage of the sim-
ilarity of items in lists, along with the interests of the user to
produce the final predicted rating for the unknown item. The
algorithm finds the extent of similarity of the unknown item to
other items of the same theme and adds in the interest value of
the user to that theme. We believe that adding the user’s interest
value to a particular theme gives a more accurate prediction,
as the more interested a user to a theme, the more likely that
he will like the item that fall under that theme. Similarly, a
user that dislikes a certain theme is more likely to give a low
rating to the item.

SVD-FLARES updates the µ , bi, bu, qi, pu parameters
the same way SVD does (usually using the SGD method),
but differs on how it computes the final predicted value r̂u,i.
Namely, SVD-FLARES adds in the model the list information
to predict the final rating r̂u,i. The exact formula for the model
is as follows

r̂u,i = µ+ bi + bu + (qT
i · pu) + (lTi · pu) + ‖li‖

where the new vector li is the sum of all latent factor vectors
of items that co-appear with item i in different lists, divided by
the number of lists item i appears in. We experimented with
the same equation but dividing by the total number of items
in these lists to get li, however, we found that the contribution
of li in this way was too small to make a difference in the
final r̂u,i. We therefore choose the proposed method as it
contributes more to the final predicted rating r̂u,i. Since the
latent factor vector of an item is extracted from the ratings
matrix, and li sums the latent factor vectors of items that fall
under the same theme as item i (i.e. similar items to i), the
‖li‖ term can be seen as a broad representation of how the
community feels about the item. Note that li is initially a zero
vector of length equal to the number of factors f . By doing
this, SVD-FLARES disallows items that do not appear in any
list to contribute anything more to the computation. Figure 3
shows the graphical model of how SVD-FLARES uses list
information.

V. EXPERIMENTAL EVALUATION

We compared our algorithms, FLARES and SVD-FLARES
versus CIRC ([2]) and SVD ([7]). The CIRC algorithm utilizes
user-created lists to improve recommendation quality, however,
it employs the number of votes on the lists to come up with
importance scores for the lists. This approach is inapplicable
for sites, such as Amazon, that have lately disabled the ability
to vote on the lists. Nevertheless, we compare with CIRC on
an Amazon dataset that was collected before the voting was
disabled.
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Fig. 3: The graphical model of how SVD-FLARES integrates
list information. The item which we need to predict a rating
for can occur in zero or many lists. SVD-FLARES sums the
vectors of latent factors of items that appear in such lists and
averages the sum by the number of lists. In this case, the
number of lists item i1 appears in is three, so we divide the
factors by 3 to obtain the final vector of latent factors li. We
then dot product pu by li to get the user interest towards items
similar to i1.

For SVD and SVD-FLARES, in our experiment, we used
a factor dimension f = 35 and set γ = 0.005, λ1 = 0.02,
λ2 = 0.02, λ3 = 0.05, and λ4 = 0.05. These parameters were
tuned as suggested by [7].

A. Datasets

We conduct our experiments on two Amazon book rat-
ings datasets which were collected in two periods3. Our first
dataset was collected in 2009 using Amazon Web Services
(AWS) and contains User-Item-Rating, List-Item, and List-
Votes information, back when Amazon allowed voting on the
lists themselves. The second dataset is a subset of User-Item-
Rating dataset from [31] and spans a period from 1995 to 2013.
Since Amazon’s API no longer provides direct calls to get list
information, we crawled around 38,000 random list pages and
got the List-Item information. Table I shows some statistics on
the two datasets.

B. Methods of evaluation

In addition to evaluating the Mean Average Error (MAE),
we also use the common metrics of precision, recall, F-measure

3The two datasets (with the list data) are available upon request.



Data type Dataset 1 Dataset 2
Items (Books) 405,238 1,475,420
Users 530,160 906,937
Lists 58,618 38,546
Ratings 1,188,435 1,488,083
(list,item) pairs 1,056,932 339,328

TABLE I: Statistics on both datasets

and accuracy with respect to a threshold of 3.5 to classify
positive and negative ratings (in a 1-5 scale).

The two datasets have been divided into five categories (see
Table II) based on the number of items a user has rated. The
reason we divide the dataset is to measure the performance
of the models under different situations, such as “cold-start”
cases, or on cases when users have rated a large number of
items. Categories one and two are those that fall the most
under the “cold-start” case, as they contain users that have
not rated many items. The “cold-start” case is very common
in many domains and is considered a difficult challenge in
RS (c.f [32], [33]). Table II shows some statistics on the total
number of items and the population of each category of both
datasets.

Category # of ratings (R) Population
Dataset 1 Dataset 2

C1 R <5 497,664 876,975
C2 5 ≤ R <10 16383 19,923
C3 10 ≤ R <50 9834 9085
C4 50 ≤ R <500 1442 945
C5 R ≥ 500 28 9

Total number of ratings per category
Dataset 1 Dataset 2

C1 687,079 1,081,872
C2 132,818 124,899
C3 179,973 164,723
C4 158,994 92,356
C5 29,571 11,569

TABLE II: Statistics on the population and the number of rated
items in each category

C. Results and discussions

For our evaluation of the four models, CIRC, FLARES,
SVD-FLARES, and SVD, we use 5-fold cross-validation. Each
model has been evaluated with the same test sets of user-
item-ratings. In this section, we describe Figures 4-9 and the
conclusions drawn from them. Note that CIRC has not been
evaluated on dataset 2 because the model requires the list-vote
information, which Amazon no longer provides.

1) The MAE values of the four models are shown in
Figure 4. The less the MAE value (i.e the shorter
the bar), the better the recommendation quality. We
can see that CIRC and FLARES preform significantly
better in categories C1 and C2 of the first dataset.
Namely, CIRC and FLARES are about 40% better
than SVD for these categories. We consider this to be
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Fig. 4: MAE for the four models on the two datasets. The
numbers in the horizontal axis correspond to categories C1 to
C5. CIRC is inapplicable for Dataset 2 as there are no votes for
the lists. Observe that on Dataset 1, where we can compare
FLARES with CIRC, FLARES does as well as CIRC, but
without using votes.

important as it is these categories where the ”cold-
start” problem occurs. Although SVD-FLARES does
not preform as good as CIRC and FLARES, it still
produces more accurate predictions than SVD in
categories C1, C2, and C3. We also observe that our
new model, FLARES, performs as good as CIRC, but
without using any list-votes information that CIRC
needs. This result shows that it is possible to still
achieve good prediction accuracy without using the
user votes data on these list, but instead, using the
information of items that appear in a list to deter-
mine the “strength” of a list. The proposed model,
FLARES, is less restrictive in term of the dataset it
needs than CIRC, as it does not require any votes on
the lists, thus making FLARES more applicable to
other domains.
Regardless of their prediction error, it is interesting
to see that CIRC and FLARES outperform the matrix
factorization models SVD-FLARES and SVD in both
datasets. In the case of dataset 2, where newer ratings
and newer lists are provided, FLARES still performs
significantly better in categories C1, C2. As shown in
Table I in section 4.1, the number of pairs (list, item)
in dataset 2 is significantly less than the number of
pairs in dataset 1. Since FLARES depends heavily on
this information, as shown in Figure 2, we believe
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Fig. 5: MAE percentage improvement over SVD. Observe
that on Dataset 1, FLARES and CIRC do about 40% better
than SVD for C1 (cold-start users). The performance of
FLARES is similar to CIRC, even though FLARES does not
use list-votes. FLARES also shows significant improvement
for Dataset 2, albeit less pronounced. SVD-FLARES does
better than SVD in all catagories of both Datasets, but C4
of Dataset 1.

that the more (list, item) pairs data provided, the
more accurate predictions FLARES would make.
In terms of the matrix factorization models, SVD-
FLARES overall predictions are either the same or
more accurate than SVD in both datasets.

2) Figure 5 shows the improvement percentage over
SVD. As shown, the improvement of the CIRC
and FLARES are much more significant than SVD-
FLARES over SVD. For dataset 1, the prediction
error of both CIRC and FLARES in C1 has a 40%
improvement. We also notice that the improvement
of CIRC and FLARES is significant in all categories
of dataset 1, where we have a 27% improvement
in category C2 and 15% percent improvement for
CIRC and FLARES in category C5. Both CIRC and
FLARES outperform SVD-FLARES in all categories
of dataset 1 in terms of their improvements. Also,
SVD-FLARES performs better than SVD in all cate-
gories except C4 for dataset 1. We see similar results
for dataset 2, albeit less pronounced than those for
dataset 1.

3) The precision values of the four models are shown in
Figure 6. It is clear that the precision values of the list
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Fig. 6: Precision of the four models on the two datasets.
Observe that CIRC and FLARES do better than matrix-
factorization models. FLARES is about 8% better than SVD.

based models are better than the matrix factorization
models. For example, for C1 (cold-start) in dataset 1,
the precision of FLARES is about 8% better than the
precision of SVD. SVD-FLARES precision is very
similar to SVD, but SVD’s precision is slightly higher
than SVD-FLARES.

4) The recall values of the four models are shown in
Figure 7. We notice that SVD-FLARES and SVD
perform better in terms of recall than FLARES and
CIRC. SVD-FLARES has higher recall than all mod-
els regardless of dataset used.

5) The F-Measure values of the four models are shown
in Figure 8. Category C5 scores the highest values,
with values higher than 0.93 for all models, regardless
of which dataset is used. SVD-FLARES and SVD
perform very similarly across all categories of the
two datasets. The same argument is true for CIRC
and FLARES.

6) The accuracy values of the four models are shown
in Figure 9. Our experiment shows that the accuracy
values of all models are in the 0.8 range or above,
regardless of which category or dataset is used. We
observe that the values of all models are quite similar
to each other in both datasets.

VI. CONCLUSIONS

In this paper, we presented two new models, a list based
model and a matrix factorization model, that take advantage
of the list data available to predict more accurate ratings.
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Fig. 7: Recall of the four models on the two datasets. Ob-
serve that it is Recall where the matrix-factorization methods
outperform CIRC and FLARES. The SVD-FLARES model,
while close to SVD, outperforms the latter in all categories
for both datasets.

The FLARES and SVD-FLARES are less restrictive on their
dataset requirement than CIRC because they do not require
list-vote data as CIRC does. We compared FLARES and SVD-
FLARES versus CIRC and SVD using different evaluation
metrics. Our evaluation results for two different Amazon
datasets, collected in two different time periods, show that
FLARES performs similarly to (and sometimes better than)
CIRC even though it uses more restricted information. Both
FLARES and CIRC outperform SVD-FLARES and SVD in
terms of MAE and precision, while the latter (two) outperform
the former (two) in terms of recall. The benefit of using
FLARES and CIRC is especially pronounced for cold-start
users. In general, we observe that the list-based models, CIRC,
FLARES, and SVD-FLARES have better quality than SVD.
We believe that organizations that allow users to create their
own favorites lists would benefit from using the valuable
information found in those lists towards improving their RS.
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