
Shortest Path Approaches for the Longest Common
Subsequence of a Set of Strings

Marina Barsky∗, Ulrike Stege∗, Alex Thomo∗, and Chris Upton†
∗Department of Computer Science, University of Victoria, Canada

Email: {mgbarsky,stege,thomo}@cs.uvic.ca
†Department of Biochemistry & Microbiology, University of Victoria, Canada

Email: cupton@uvic.ca

Abstract—We investigate the k-LCS problem that is finding
a longest common subsequence (LCS) for k given input strings.
The problem is known to have practical solutions for k = 2,
but for higher dimensions it is not very well explored. We
consider the algorithms by Miller and Myers as well as Wu
et al. which solve the 2-LCS problem, and shed a new light
on their generalization to higher dimensions. First, we redesign
both algorithms such that the generalization to higher dimensions
becomes natural. Then we present our algorithms for solving
the k-LCS problem. We further propose a new approach to
reduce the algorithms’ space complexity. We demonstrate that
our algorithms are practical as they significantly outperform the
dynamic programming approaches. Our results stand in contrast
to observations made in previous work by Irving and Fraser.

I. INTRODUCTION

The longest common subsequence problem is finding a
longest sequence which is a subsequence of all strings in a
given set of strings. For k strings, the problem is formalized
as follows.

The k-LCS Problem
INPUT: k strings s1, s2, ..., sk over a finite alphabet Σ and of
lengths |s1|, |s2|, ..., |sk| respectively.
OUTPUT: A longest common subsequence (LCS) of the input
strings including

1) the LCS length |LCS|,
2) the actual sequence of characters in the LCS, and
3) the corresponding positions of these characters in the

input strings.
Formulated this way, the LCS problem may serve many prac-
tical purposes, for example the LCS-based multiple alignment
problem [8].

Given two input strings of length N each, a simple dynamic-
programming approach yields a time and space complexity
of O(N2) (cf. [18], [23]). A divide-and-conquer variant by
Hirschenberg yields a linear space algorithm while preserving
the time complexity of O(N2) [9].

For arbitrary k, Maier showed that the problem is NP-
complete even for alphabets of size two [15]. Despite its
intractability, practical solutions for this fundamental problem
are of crucial importance in several fields of computer science
where the problem of string comparison arises, e.g. human
speech recognition [5], information compression and retrieval
[7], codes and error control [23]) and so on. Solving k-LCS is
even more important in the field of biological data mining and

biological sequence analysis. The k-LCS itself is an important
special case of the Multiple Sequence Alignment (MSA),
which is a fundamental problem in bioinformatics (cf. [8],
[24]).

k-LCS is consistently used for the comparison of strings
belonging to the same family [6] or for the computation of
consensus patterns in a set of DNA sequences [4]. Remarkably,
k-LCS is helpful in answering several important questions
related to the common structural configuration of a family of
macromolecules. We also want to mention here some recent
bioinformatics applications using k-LCS as an integral part of
their method.

One such application of k-LCS was shown in the work
of Bereg et al. [3]. The authors investigate the problem of
folding of noncoding RNA (ncRNA)1. Folding of ncRNA into
secondary and tertiary structures can be better understood
if one takes a set of ncRNAs and looks at their common
folding patterns. Notably, Bereg et al. use the solution to k-
LCS to derive these common folding patterns. Another recent
important application of k-LCS was shown by Ning et al. in
[19]. They derive common patterns from a set of biosequences
by using k-LCS and k-SCS (shortest common supersequence).
Both works ([3], [19]) use k-LCS as an input for their methods.
Due to impracticality and expensiveness of existing algorithms
for k-LCS, the authors of these papers use heuristic methods
for computing k-LCS which do not guarantee the output to be
a truly longest common subsequence. Therefore, the results
based on such non-truly longest common subsequences might
be non-reliable and even misleading.

In this paper, we investigate whether better practical so-
lutions for k-LCS can be obtained without sacrificing the
optimality of the result.

For solving k-LCS, a straightforward extension of the
dynamic-programming approach to the case of k ≥ 3 results in
an algorithm of O(Nk) time and space complexity (assuming
input strings of length N). Such an extension was shown to
be impractical for inputs having moderate values of N and k
(cf. [13]).

Several attempts were undertaken by researchers in order
to present a viable solution for the k-LCS problem (k ≥ 3).

1The ncRNA molecules are those RNA molecules that are not translated
into a protein.

Some of the most important works in this direction are [1],
[10], [11], [12].

In such applications as aligning biological sequences of the
same family, the input strings are typically similar. Notably,
for 2-LCS the proposed algorithms by Miller and Myers [16]
and its variant by Wu et al. [25] have a favorable performance
in the case of similar strings. We remark that the latter was
extended for 3-LCS by Irving and Fraser in [12]. However,
they experimentally found that their algorithm outperformed
the standard dynamic programming only when |LCS| is very
close to N (e.g. 90% of N).

In this paper, we reinvestigate the approach by Miller and
Myers. Based on it, as well as on the Wu et al. variant,
we devise algorithms for 3-LCS, and show that they are
easily extendable for k-LCS (k > 3). We further show that
our algorithms for 3-LCS significantly outperform dynamic
programming even when having an |LCS| of only 50% of the
input length. More specifically, the contributions of this paper
are as follows. First, we redesign the 2-LCS algorithms by
Miller and Myers as well as Wu et al., thereby exposing their
potential towards a natural extension for k-LCS. Second, we
propose efficient k-LCS algorithms based on both methods.
Third, we present a new technique to reduce the space com-
plexity of our algorithms by an order of magnitude. Finally,
with experimental results we show that our 3-LCS algorithms
significantly outperform dynamic programming. This sheds a
new light on the practicality of extending the algorithms by
Miller and Myers as well as Wu et al. for the k-LCS problem.
Our results stand in contrast to the observations by Irving and
Fraser in [12], and thus, we reopen the research in finding
feasible optimal solutions to the k-LCS problem.

II. SHORTEST PATH ALGORITHMS FOR THE 2-LCS
PROBLEM

In this section, we redesign the 2-LCS algorithm by Miller
and Myers [16] (MM) and its variation by Wu et al. [25]
(W3M) in a way that allows a natural extension to algorithms
for k-LCS.

A. Basic Concepts

The edit graph for two input strings s1 and s2 is a grid-like
directed graph, where the coordinates of the X- and Y -axes
correspond to the positions of characters in the first and second
string. Each point (x, y) ∈ [0, 1, . . . , |s1|] × [0, 1, . . . , |s2|] in
the plane represents a node of the edit graph. Every node has at
least two outgoing edges (one in the horizontal and one in the
vertical direction). Such an edge corresponds to the deletion of
one character from either s1 (horizontal edge) or s2 (vertical
edge). The horizontal (vertical) edges are directed from left
to right (top to bottom). In addition, a node (x − 1, y − 1)
has a third outgoing (diagonal) edge going in the right-bottom
direction iff s1[x] = s2[y]. (cf. Figure 1 [left] for an example).

Several cost assignments for edit graphs are possible. If we
assign a cost of 0 to both the vertical and horizontal edges,
and a cost of 1 to all diagonal edges, the 2-LCS problem is
reduced to finding a longest path in the edit graph (cf. [8]).

0 1 2 3

1

2

3

A T T

C

A

T

0

0 0

A T T

C

A

T

(0,0) (0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

Fig. 1. [Left] The 2D edit graph for input strings CAT and ATT. The costs
of the horizontal and vertical edges are one, and the three 0-edges correspond
to matches. [Right] The diagonals and their identifiers in the edit graph.

If we instead assign opposite costs to the edges (that is, 0 to
diagonal edges, and 1 to horizontal and vertical edges), the
LCS problem is reduced to the problem of finding a shortest
path from source node (0, 0) to destination node (|s1|, |s2|).
The cost D of this shortest path equals the minimum total
number of deletions necessary to transform the input strings
into the LCS. In this case,

|LCS| = (|s1| + |s2| − D)/2.

B. The algorithm by Miller and Myers (MM)

The latter edge-cost scheme is used by Miller and Myers in
their algorithm (MM), described in [16]. We denote edges of
cost 1 with 1-edges and edges of cost 0 with 0-edges.

Algorithm MM works in a diagonal-wise manner. A di-
agonal in the grid is defined by a sequence of nodes with
coordinates (x, y), (x+1, y+1), . . . , (x+p, y+p). For further
convenient use in k dimensions, we identify each diagonal by
the coordinates of its starting point. Namely, diagonal (0, 0)
is the main diagonal, diagonal (1, 0) is the diagonal starting
at (1, 0), etc.

We define the neighbor diagonals of diagonal (x, y) as the
diagonals (x − 1, y) and (x, y − 1). Whenever we obtain a
negative value for either coordinate of a neighbor diagonal, we
normalize it to get the true diagonal identifier. For example,
the neighbor diagonals for diagonal (3, 0) are (2, 0) and
(3,−1). The latter is normalized to (4, 0).

We perform an initialization and D iterations.

1) In the initialization phase, we build the unique path of
cost 0, starting at source node (0, 0) and following (as
long as possible) 0-edges along the main diagonal.

2) During each iteration I of the algorithm, we extend the
paths built in the previous iteration obtaining all the
paths starting at the source node and having cost d = I .
These paths must end on one of the 2d + 1 diagonals
surrounding (and including) the main diagonal: if a path
ends outside this area then it contains more than d 1-
edges.
More specifically, for a given diagonal (call it the current
diagonal) we do the following.
(a). We consider the two paths which ended (in the
previous iteration) on the two neighbor diagonals. We

extend them by a 1-edge each in order to reach the
current diagonal.
(b). We select the furthest reaching path among them.
(c). We expand this furthest reaching path with all the
possible subsequent 0-edges along the current diagonal.

3) In iteration I = D the destination node is finally
reached, and the path reaching it can be traced back to
obtain the sequence of deletions and therefore an LCS
of s1 and s2.

In fact, only d + 1 diagonals (out of the 2d + 1) are extended
in each iteration. Such a diagonal, say (x, y) with x = 0 or
y = 0, satisfies (x + y) mod 2 = I mod 2 (see [16]).

C. The Algorithm by Wu et al. (W3M)

We describe next the modification of the MM algorithm
by Wu et al. (W3M algorithm) [25], which is based on the
shortest path heuristic proposed by Sedgewick and Vitter [21].
The use of this heuristic puts the W3M algorithm among the
fastest practical algorithms solving the 2-LCS problem [2].

It is hard to see how the W3M algorithm as described in [25]
can be extended to k dimensions. This is due to the asymmetry
introduced by the so called compressed distance (p-value),
which is equivalent to the estimated distance (defined below),
but restricted only to one dimension.

To overcome this, we define the estimated distance e =
ds + dd of a node in the edit graph as the sum of the true
distance of this node from the source (ds) and an optimistic
estimation of the distance from this node to the destination
(dd), which we call heuristic destination distance. Observe
that, in each iteration, we know distance ds from the source
to the end node of each path built so far. The second term, dd,
is defined as the minimum number of vertical and horizontal
edges needed to return to the diagonal of the destination node.
Note that when |s1| = |s2|, the destination node belongs to
diagonal (0, 0). The intuition behind term dd is that in order
to reach the destination node, at least dd 1-edges must be
traversed. This is because in this edit graph there is no other
way of moving from diagonal to diagonal.

The main steps of the W3M algorithm for input strings of
equal lengths can be described as follows.

1) The initialization phase is identical to the one in algo-
rithm MM.

2) During each iteration I of the algorithm, we build all the
paths ending in nodes with estimated distance e = 2I .
These paths must end on one of the 2I + 1 diagonals
surrounding (and including) the main diagonal. If a path
ends outside this area, then the path contains more than I
1-edges and its end node has dd > I . Since also ds > I
the estimated distance of the path’s end node must be
larger than 2I .
In each iteration, when considering an additional di-
agonal increasing so ds by one, we also increase dd
by one. This is true since increasing ds by one means
moving further from the destination diagonal, and this
automatically means that we need one more 1-edge
to reach the destination diagonal. Hence, the estimated

distance of end nodes of the paths is increased by two
in each iteration.
Given a diagonal, a path π ending on this diagonal is
obtained from paths π1 and π2 ending on the two neigh-
bor diagonals. As in algorithm MM, π is an extension of
π1 or π2 whichever yields further when extending to the
current diagonal. In difference to algorithm MM, one of
these two paths, say π1, is built in the same iteration,
while the other one, π2, is built in the previous iteration.
The reason is that we can “trade” dd for ds keeping their
sum e constant. In other words, path π is an extension
of π1 only if the destination distance of π’s end node is
smaller than the one of π1’s end node.

3) Once the destination node is reached in the last iteration
Ilast, it has estimated distance elast = 2Ilast. Since for
the destination node dd = 0, we have that elast = D
(total number of deletions), and

|LCS| = (|s1|+|s2|−elast)/2 = (|s1|+|s2|−2Ilast)/2.

In the case that |s1| �= |s2|, say |s1| < |s2|, the initial-
ization of the algorithm is different. In iteration 0, we build
all the paths which end in nodes with estimated distance
∆ = |s2| − |s1|. The first path in iteration 0 is comprised
of all the consecutive 0-edges from node (0, 0). The end node
of this path has ds = 0 and dd = ∆. The next path we
build ends on diagonal (0, 1), and its end node has ds = 1
and dd = ∆ − 1. The end node of the last path, which ends
on diagonal (0,∆), has ds = ∆ and dd = 0. This means
that, already in the initialization phase, we build all ∆ + 1
paths with estimated distance e = ∆. Next, we perform Ilast

total iterations as described above, until node (|s1|, |s2|) is
reached. This time, the total cost of the best path from source
to destination is:

E = 2Ilast + ∆,

and the length of the LCS is

|LCS| = (|s1| + |s2| − 2Ilast − ∆)/2.

Now we explain the practical performance gain of W3M
in comparison to MM. In each iteration of algorithm MM,
we extend the paths built in the previous iteration. On the
other hand, in algorithm W3M, in each iteration the same
path can be extended several times. In practice, the W3M
algorithm performs faster than the MM algorithm (cf. [2]).
For an example see Figure 2.

III. ALGORITHMS FOR 3-LCS

Now, we can naturally extend the above 2D algorithms into
three dimensions. This also builds the basis for solving k-LCS.

We define the edit graph for three input strings in a way
similar to the edit graph for two input strings. This time we
have three axes, X , Y , and Z, which are labeled with the
positions of the characters in the three input strings. These
axes define a 3D space. Each point in this space represents a
node of the edit graph. Each node has at least three outgoing
edges: an X-edge, a Y -edge and a Z-edge. Also, there is an

-24
-43
532
321
110

W3MMMI

-24
-43
532
321
110

W3MMMI

Fig. 2. Comparative run of algorithms WM [left] and W3M [middle] for 2-
LCS. We show a snapshot after the second iteration. The filled nodes illustrate
the nodes visited during the second iteration, while the hollow ones were
visited before. The paths built so far are shown in bold. The table [right]
illustrates the number of expansion steps executed per iteration in each of the
two algorithms.

Y

Z

X

0

(0,2,1)

(2,2,2)

Fig. 3. The 3D edit graph for strings ACC (X-axis), GGA (Y -axis), and
TAT (Z-axis). For better visibility, only the edges starting at nodes (0,2,1) and
(2,2,2) are shown.

additional edge of cost zero from a node (x− 1, y − 1, z − 1)
to node x, y, z iff there is a match s1[x] = s2[y] = s3[z]. This
edge forms a 45◦ angle with all the three axes (See for an
example Figure 3).

As before, a diagonal in 3D is defined as a sequence of
points with coordinates (x, y, z), (x+1, y+1, z+1), . . . , (x+
p, y + p, z + p). Each diagonal is uniquely identified by the
coordinates of its starting point. The main diagonal is identi-
fied by (0, 0, 0). As another example, the diagonal identified
by (1, 2, 0) starts at plane XY and is parallel to the main
diagonal.

A. MM+: Extending the MM Algorithm to 3D

The main steps are analogous to the 2-LCS algorithm:

1) In the initialization phase, we build the (unique) 0-cost
path, starting at source node (0, 0, 0) and following only
0-edges on the main diagonal (0, 0, 0).

2) Then, during an iteration I of the algorithm, we build all
paths starting at the source node and having cost d = I .
It is easy to see that

Theorem 1: Any path starting at the source node and having
a cost of at most d can only end on one of at most 1 + 3d +
3d(d−1)

2 diagonals.
Corollary 1: The running time of algorithm MM+ is

O(ND2).
Proof. The claimed running time follows from the fact that
the algorithm never considers nodes outside of the area of

size D2N around the main diagonal.

Similarly to the 2D case, due to the special nature of the
graph, in each iteration I only the diagonals (x, y, z) are
considered where (x + y + z) mod 3 = I mod 3.

For each of these diagonals, in iteration I , the algorithm
finds the longest reaching path ending on this (current) diago-
nal. The neighbor diagonals of a current diagonal, say (x, y, z),
are the diagonals (x − 1, y, z), (x, y − 1, z) and (x, y, z − 1).
Whenever we obtain a negative value for either coordinate
of a neighbor diagonal, we normalize to the true diagonal
identifier. For example, the neighbor diagonals for diagonal
(3, 6, 0) are calculated as (2, 6, 0),(3, 5, 0) and (3, 6,−1). The
identifier (3, 6,−1) is normalized to (4, 7, 0).

In each iteration, a path ending on the current diagonal is
built in three steps:

1) We consider the three paths which ended on neighbor
diagonals in the previous iteration. These paths are
extended by one 1-edge each in order to reach the
current diagonal.

2) The furthest reaching path among them is selected.
3) The end of this furthest reaching path is expanded with

all the possible subsequent 0-edges along the current
diagonal.

In iteration I=D the destination node is finally reached, and
the path can be traced back to obtain the sequence of deletions
and therefore an LCS of the three strings, and

|LCS| = (|s1| + |s2| + |s3| − D)/3.

B. W3M+: Extending Algorithm W3M to 3D

The estimated distance e of a node in the 3D edit graph is
defined similarly to the 2D case: e = ds + dd.

Note that in 3D, when one X-edge (Y -edge/Z-edge) is
added to a path increasing the distance from the source by
one, then two additional edges, a Y -edge and a Z-edge (an
X-edge and a Z-edge / an X-edge and a Y -edge), are needed
in order to return to the main diagonal.

Here again, the initialization differs from the one of MM+
for the case of input strings with unequal lengths. Let us
assume that |s1| ≤ |s2| ≤ |s3|, and denote |s2| − |s1|
and |s3| − |s2| by by ∆21 and ∆32 respectively. Then in
the initialization phase, we expand the paths ending on the
following (∆21 + 1) × (∆32 + 1) diagonals:

(0, 1, 0), . . . , (0,∆32, 0)

(0, 1, 1), . . . , (0,∆32, 1)

. . .

(0, 1,∆21), . . . , (0,∆32,∆21).

In order to obtain the performance gain of algorithm W3M+,
in each iteration, for any given pair of neighbor diagonals,
we make sure that we first process the diagonal where the
end node of the corresponding path has greater heuristic
destination distance (cf. Figure 4).

(3,3,0)(3,2,0)(3,1,0)

(2,2,0)

(3,3,0)(3,2,0)(3,1,0)

(2,2,0)

1.1 1.2 1.3

1.1

1.2

1.32.1 2.2

2.1

2.23.1

3.14.1

1.4

2.1

3.2

Fig. 4. Illustration of the processing order for diagonals [starting at plane
XY] in algorithm W3M+. The first number inside the circle shows the order
of outer loop iteration, the second number is the step inside this iteration.
For example, diagonal (3, 2, 0) is processed before diagonal (3, 1, 0), and
diagonal (2, 2, 0) is processed before diagonal (3, 3, 0). This order ensures
that neighbor diagonals are processed in decreasing heuristic destination
distance.

The pseudocode for the W3M+ algorithm for 3-LCS is pre-
sented in Figure 5. We use a structure, “Frontier,” for storing
the end nodes of the paths ending on each diagonal. This
structure contains three 2-dimensional arrays, called XY , XZ,
and Y Z, which store the end points for the diagonals starting
on the corresponding planes. In an iteration I , the algorithm
calls routine buildExtensions, which builds all the paths with
estimated distance 2I . Routine buildExtensions calls routine
bestExtension, which in turn computes the furthest reaching
path on a given diagonal. Structure Frontier is used and
updated by bestExtension. Routine getZeroCostPath starting
from a node in a given diagonal (x, y, z) traverses all the
subsequent 0-edges (on the diagonal) until it reaches a node
without an outgoing 0-edge. The routine returns this last node.

The worst-case running time of our W3M+ algorithm is
also O(ND2). However, in practice we found that the W3M+
algorithm perfoms much better than MM+.

C. The k-LCS Algorithm

Based on the detailed descriptions of the algorithms for the
2D and 3D cases, one can easily generalize for k-LCS.

For the complexity analysis, we generalize our result from
the 3D case and obtain

Theorem 2: All the paths starting from the source node and
having a cost of at most d can only end on one in at most

1 + kd + k d(d−1)
2 + k d(d−1)(d−2)

3 + . . . +

k d(d−1)(d−2)···(d−(k−2))
k−1

diagonals.
Corollary 2: The running time for both algorithms in k

dimensions is O(NDk−1).
So far, in order to recover the sequence of deletions and

therefore an LCS, we need O(NDk−1) space. In the next
section, we disuss how to reduce the space complexity of the
two algorithms to O(kN + Dk−1).

IV. SPACE REDUCTION

We remind the reader on the memory reduction trick by
Hirschenberg that makes it possible to perform standard dy-
namic programming for 2-LCS in linear space (cf. [9]).

We first explain the extension of this idea for standard
dynamic programming in 3D. Here, the search space is divided
into two sub-spaces by the plane x = |s1|/2. Then for
each sub-space the cells are computed (starting from opposite
corners of the table). In every iteration, all cell-values but
the ones of the previous iteration are discarded. Once both
values are computed (in opposite directions) for each cell of
the dividing plane, we select a cell having the minimum sum
of these values. This cell is on a shortest path between source
and destination node. We record its coordinates, say (x, y, z).
We then recursively solve the two subproblems, namely for
substrings s1[0 . . . x], s2[0 . . . y], s3[0 . . . z] and for substrings
s1[(x + 1) . . . |s1|], s2[(y + 1) . . . |s2|], s3[(z + 1) . . . |s3|]. The
recursive calls are performed until the sizes of the sub-spaces
are small enough to be solved using the memory of the
available machine.

For simplicity, let us assume that |s1| = |s2| = |s3| = N .
Then given a minimim-sum cell (x, y, z) in the dividing plane
x = N/2 obtained as above, the divide step cuts the search
space into two sub-spaces of size N

2 (N −y)(N −z) and N
2 yz

respectively. Since [(N − y)(N − z) + yz] ≤ N2, we obtain a
total running time of

N3 +
N

2
N2 +

N

4
N2 + . . . ≤ 2N3 = O(N3).

Unfortunately, this approach alone cannot directly be ap-
plied to algorithms MM+ and W3M+. If we divide the space
of the edit graph into two equal-sized sub-spaces and then
perform one of the above algorithms starting from opposite
corners of the edit graph, the cells containing the end nodes
of the expanded paths may not overlap. Therefore, we are not
always able to choose a cell, which is on the shortest path
betweeen source and destination.

In order to overcome this problem, we combined the idea
above with the bidirectional search technique presented in
[17]. We call this method “divide and conquer by half-cost
points.”

We consider the 3D edit graph as two different edit graphs:
one (called the direct edit graph), which is identical to the
original edit graph, and another one (called the opposite edit
graph), which coincides with the original edit graph with
the exception that the origin and destination of every edge
are swapped. In the opposite edit graph the source node is
(|s1|, |s2|, |s3|) and the destination node is (0, 0, 0).

The main changes are as follows.

1) Each iteration is performed in a synchronized manner in
both the direct and the opposite edit graph.

2) For each 0-edge traversal, routine getZeroCostPath
checks whether for both graphs (the direct and the
opposite edit graph) the computed node corresponds
to the end node of the other graph. The algorithm
terminates whenever the coordinates of those computed
nodes in the two edit graphs coincide. We remark, that
it is sufficient to detect only one such meeting point, say
(x, y, z), which is recorded. This meeting point belongs
to a shortest path from source to destination.

Algorithm W3M

destinationReached:=false,
I=0

while destinationReached=false do
buildExtensions (I)
I = I+1

buildExtensions (I)
for i=I down to 1

for p=0 to i do
if p=i or p=0 then
bestExtension (Frontier, (i,p,0))
bestExtension (Frontier, (i,0,p))
bestExtension (Frontier, (0,i,p))

else
bestExtension (Frontier, (i,p,0))
bestExtension (Frontier, (i,0,p))
bestExtension (Frontier, (0,i,p))
bestExtension (Frontier, (p,i,0))
bestExtension (Frontier, (0,p,i))
bestExtension (Frontier, (p,0,i))

/* main diagonal at last */
bestExtension (Frontier, (0,0,0))

bestExtension (Frontier, x, y,z)
/* In the following we denote by reachFromX, reachFromY, and reachFromZ

the X coordinates of the point on the current diagonal reached by adding
a 1-edge from the three neighbor diagonals. */

if x=0 then
reachFromX= Frontier.YZ[x-1, y, z]+1
reachFromY= Frontier.YZ[x, y-1, z]
reachFromZ= Frontier.YZ[x, y, z-1]

Frontier.YZ[x,y,z] = getZeroCostPath (x,y,z,
max(reachFromX,reachFromY,reachFromZ))

if y=0 then
reachFromX= Frontier.XZ[x-1, y, z]+1
reachFromY= Frontier.XZ[x, y-1, z]
reachFromZ= Frontier.XZ[x, y, z-1]

Frontier.XZ[x,y,z] = getZeroCostPath (x,y,z,
max(reachFromX,reachFromY,reachFromZ))

if z=0 then
reachFromX= Frontier.XY[x-1, y, z]+1
reachFromY= Frontier.XY[x, y-1, z]
reachFromZ= Frontier.XY[x, y, z-1]

Frontier.XY[x,y,z] = getZeroCostPath (x,y,z,
max(reachFromX,reachFromY,reachFromZ)

Fig. 5. [Left] The pseudocode of the W3M+ algorithm in 3D. [Right] The sub-routine bestExtension.

3) Meeting point (x, y, z) divides the search space into two
sub-spaces. We recursively continue for each sub-space
until the entire path from source to destination (of the
direct edit graph) is built.
The base case of the recursion is reached when the cost
of the path between source and destination is zero.

We next show that in each consecutive recursion step the time
complexity is reduced four times: if the running time before
a recursive call is O(ND2), then the running time of the
recursive call of the “divide and conquer by half-cost points”
method is

(N − x)(D/2)2 + x(D/2)2 = N(D/2)2 = (ND2)/4.

Thus, the total running time of the 3D algorithm is

ND2 + N
D2

4
+ N

D2

16
+ . . . ≤ 2ND2 = O(ND2).

Thus, the time complexity remains unchanged, but now in the
first recursion step it is enough to store end vertices of the
paths starting at 3D2 diagonals, and this number is reduced 4
times in each following recursion step. The space complexity
therefore becomes O(D2), and for k strings O(Dk−1). The
total space required by the algorithms is O(kN + Dk−1).

V. EXPERIMENTAL EVALUATION

In this section we present a comparative experimental eval-
uation of all three algorithms, DP, MM+ and W3M+, extended
to the case of three input strings. For all three algorithms we
used the memory reduction technique described above.

As mentioned before, [12] proposed another approach for
extending W3M to 3D. The authors reported that standard
DP outperformed W3M for problem instances where |LCS|

was 50% of the input string length N . For input strings
with an |LCS| = 90%N of their length they obtained some
improvement over DP. However, this improvement was by an
order of magnitude less than our improvement over standard
DP. Results for other degrees of similarity were not reported in
[12]. Our experiments stand in contrast to the results reported
in [12].

We implemented our 3D algorithms in Java 1.5. The algo-
rithms then were tested on a Pentium 4 3GHz processor with
1GB RAM. We generated triplets of random input strings over
an alphabet of size 20. By skewing the random distribution of
characters, we obtained different sets of three input strings
with |LCS| = 50%N, 60%N, 70%N, 80%N .

The running time (in seconds) of the algorithms is presented
in Figure 6. As can be seen from these results, both 3D
implementations outperform the DP 3D algorithm for all the
problem instances considered.

Since the worst-case complexity is the same for both of our
algorithms, MM+ and W3M+, we show experimental results
in 3D for both of them. We observe from Figure 6, that for
example algorithm W3M+ performs about five times better
than DP, for strings of length 1000 with an |LCS| = 50%N .
The W3M+ algorithm performs about 100 times better than
DP, for strings of length 1000 with an |LCS| = 80%N . We
can also see that the W3M+ algorithm outperforms the MM+
algorithm significantly.

REFERENCES

[1] BAEZA–YATES R.A. Searching subsequences. Theoretical Computer
Science 78(2): 363–376, 1992.

[2] BERGROTH L., HAKONEN H., AND RAITA T. A survey of longest
common subsequence algorithms. SPIRE’00: 39–48, 2000.

LCS is 50% of N

43
75

120

175

252

340

174
121

82
52

32 17

67
463022138

500 600 700 800 900 1000

N

Ti
m

e,
 se

c
DP
MM+
W3M+

LCS is 60% of N

43
75

120

175

252

340

16 30
50

78
115

161

5 8 14 22 35 53

500 600 700 800 900 1000
N

Ti
m

e,
 se

c

DP
MM+
W3M+

LCS is 70% of N

43
75

120

175

252

340

118
91

63
392313 181410632

500 600 700 800 900 1000
N

Ti
m

e,
 se

c

DP
MM+
W3M+

LCS is 80% of N

43
75

120

175

252

340

3 5 8 261713 432111

500 600 700 800 900 1000
N

Ti
m

e,
 se

c

DP
MM+
W3M+

Fig. 6. Running time (in seconds) for DP and algorithms MM+, and W3M+
in 3D for different length N of input strings. DP is not influenced by the
similarity of input strings, and so, the running time of DP in all four graphs
is identical.

[3] BEREG S, KUBICA M., WALEN T., ZHU B. RNA multiple structural
alignment with longest common subsequences. Journal of Combinato-
rial Optimization 13(2): 179-188, 2007.

[4] DAY. H. E. W, MCMORRIS F. R. The computation of consensus patterns
in DNA sequences. Mathematical and Computer Modelling 17(10): 49-
52, 1993.

[5] DIXON N. R., MARTIN T. B. Automatic speech and speaker recognition.
IEEE Press, New York., 1979.

[6] ELLOUMI M. Comparison of strings belonging to the same family. Inf.
Sci. 111 (1–4): 49–63, 1998.

[7] FRENCH J., POWELL A., AND SCHULMAN E. Applications of approx-
imate word matching in information retrieval. CIKM’97: 9–15, 1997.

[8] GUSFIELD D. Algorithms on Strings, Trees and Sequences. Cambridge
University Press, 1997.

[9] HIRCHENBERG D.S. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM 18(6): 341–343,
1975.

[10] HAKATA K., IMAI H. The longest common subsequence problem for
small alphabet size between many strings. Algorithms and Computation:
LNCS 650: 469–478, 1992.

[11] HSU W., DU M. Computing a longest common subsequence for a set
of strings. BIT 24:45–59, 1984.

[12] IRVING R.W., FRASER C.B. Two algorithms for the longest common
subsequence of three (or more) strings. CPM, LNCS 644: 214–229,
1992.

[13] ITOGA S.Y. The string merging problem. BIT 21: 20–30, 1981.
[14] KUO S., AND CROSS, G.R. An improved algorithm to find the length

of the longest common subsequence of two strings. ACM SIGIR 23(3):
89–99, 1989.

[15] MAIER D. The complexity of some problems on subsequences and
supersequences. Journal of the ACM 25(2): 322–336, 1978.

[16] MILLER W., MYERS, E.W. A file comparison problem. Softw. Pract.
Exp. 15(11): 1025–1040, 1985.

[17] MYERS, E.W. An O(ND) difference algorithm and its variations.
Algorithmica 1: 251–266, 1986.

[18] NEEDLEMAN S.B., WUNSH C.D. A general method applicable to
the search for similarities in the amino-acid sequence of two proteins.
Journal of Molecular Biology 48: 443–453, 1970.

[19] NING K., KEE NG H., WAI LEONG H. Finding Patterns in Biological
Sequences by Longest Common Subsequences and Shortest Common
Supersequences. BIBE’06: 53–60, 2006.

[20] SANKOFF D., KRUSKAL J.B. (EDS.) Time Warps, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison.
Addison-Wesley, MA, 1983.

[21] SEDGEWICK R., VITTER S. Shortest paths in Euclidean graphs.
Algorithmica 1: 31–48, 1986.

[22] STEPHEN G.A. String Searching Algorithms. World Scientific, Singa-
pore, 1994.

[23] WAGNER R.A., FISHER M.J. The string-to-string correction problem.
Journal of the ACM 21(1) : 168–173, 1974.

[24] WATERMAN, M. S. Introduction to computational biology: maps,
sequences, and genomes. Chapman & Hall/CRC, 1995.

[25] WU S., MANBER U., MYERS, G., MILLER W. An O(NP) sequence
comparison algorithm. Inf. Proc. Lett. 35: 317–323, 1990.

