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Abstract—Graphs have become increasingly popular for mod-
eling data in a wide variety of applications, and graph sum-
marization is a useful technique to analyze information from
large graphs. Privacy preserving mechanisms are vital to pro-
tect the privacy of individuals or institutions when releasing
aggregate numbers, such as those in graph summarization. We
propose privacy-aware release of graph summarization using
zero-knowledge privacy (ZKP), a recently proposed privacy
framework that is more effective than differential privacy (DP)
for graph and social network databases. We first define group-
based graph summaries. Next, we present techniques to compute
the parameters required to design ZKP methods for each type of
aggregate data. Then, we present an approach to achieve ZKP
for probabilistic graphs.

I. INTRODUCTION

Nowadays, the graphs of many real world datasets are very
large. For example, Facebook, the most well-known social
network, contains data for over 900 million users and their rela-
tionships. Therefore, effective summarization methods need to
be employed in order to make the analysis of such large graphs
possible. We focus on graph summarization based on attribute
groups. For instance, the nodes of a social graph can be
grouped by attributes age and profession, and statistics about
the number of cross-group edges can be recorded. Statistics
can reveal interesting facts about a graph. For instance, they
could show surprising strong connections between groups of
people in different age and profession groups. As such, group-
based graph summarization (GGS) is a ubiquitous operation
in virtually all the graph/social network software products (cf.
[4], [3], [1], [2], etc) The result of GGS is a smaller summary
graph, where each node summarizes a group of nodes in the
original graph.

The problem is that, as with other aggregations, the sum-
mary graphs are often released to other parties for further
research purposes, and this brings up the matter of privacy.
Aggregate data included in a summary graph can reveal
sensitive and private information about the nodes (participants)
of the underlying graph (network).

Privacy-preserving data release has become one of the most
important problems today. ϵ-Differential Privacy [13], [11],
[12] (DP for short) has been one of the leading privacy mech-
anisms in recent years. DP provides privacy for an individual
of interest (IOI) by adding random noise to numerical outputs.

Some recent studies (cf. [14], [19]), however, have high-
lighted situations in which DP might not provide sufficient
privacy protection. This is especially pronounced in social net-
works where different types of auxiliary information, including
the structure of network or the groups the individuals belong
in, are often readily available to the public (cf. [14]).

More specifically, whereas the goal of DP is to protect
the participation of an individual (or relationship) in a dataset,
in social networks we also need to protect the evidence of
participation (cf. [19]). To see this we present the following
example. Suppose there are two groups g1 and g2 and we want
to publish the number of edges between them. Bob, a member
of g1, has an edge to Alice, a member of g2. As a consequence
of this connection, some friends of Bob introduce edges to
Alice. What we want to protect is Bob’s edge to Alice. DP
works in this case by ensuring that for any true answer, c or
c − 1, the sanitized answer would be pretty much the same.
However, this is not strong enough; the existence of Bob’s
edge changes the true answer not just by 1, but by a bigger
number as it causes more edges to be created between the two
groups.

Going beyond differential privacy, Gehrke, Lui, and Pass
proposed “zero-knowledge privacy” (ZKP) in [14], which
provides stronger privacy, especially for social graphs. The
definition of ZKP is based on classes of aggregate functions.
ZKP guarantees that an attacker cannot discover any personal
information more than what can be inferred from some aggre-
gate on a sample of a database with IOI removed. The sample
complexity defines the level of privacy tolerance in ZKP. For
instance, suppose in the Bob’s example above the network size
is 10000 and the sample size is

√
10000 = 100. With such a

sampling rate of 0.01 the evidence provided by say 10 more
edges caused by Bob’s edge will essentially be protected; with
a high probability, none of these 10 edges will be in the sample.

In this paper, we use ZKP to provide individual privacy
in graph summarization. We address connection measures
for groups in social graphs and present ZKP mechanisms
for private release of such aggregate outputs. To the best
of our knowledge, we are the first to use ZKP for group-
based graph summarizations, which are ubiquitous in analyzing
social graphs.

As ZKP inherently depends on the precise characterization
of sample complexity, we propose methods to compute the
sample complexity of our aggregate functions. In order to
achieve this, we present techniques to express the aggregate
functions as averages of specially designed, synthetic attributes
on the nodes of the graph. Then we derive precise prescriptions
on how to construct ZKP mechanisms for the aggregate
functions we consider.

More specifically, our contributions in this paper are as
follows.

• We define group connection measures for graph sum-
marization and consider different scenarios for zero-
knowledge private release of summary graphs based



on the type of personal information that is to be pro-
tected. We introduce synthetic attributes that simplify
the construction and analysis of ZKP-mechanisms for
graph summarization.

• We present detailed examples and numeric evaluations
of our ZKP mechanisms in terms of the parameters
involved. These evaluations are valid for any case and
illustrate the trade offs involved when building ZKP
mechanisms for graph summarization.

• We also present summarization measures for proba-
bilistic graphs. This is especially important in social
networks having edges of different influence captured
by probabilities assigned on the edges.

II. RELATED WORK

Graph summarization is a ubiquitous method for analyzing
large graphs. Virtually all the graph/social network products
(cf. [4], [3], [1], [2], etc) create summaries in the form of
smaller graphs by grouping the nodes based on attributes.

The common goal of privacy preserving methods is to
learn from data while protecting sensitive information of the
individuals. k-anonymity for social graphs (cf. [22], [8], [9])
provides privacy by ensuring that combinations of identifying
attributes appear at least k times in the dataset. The prob-
lem with k-anonymity and other related approaches, e.g. l-
diversity [23], is that they assume the adversary has limited
auxiliary knowledge. Narayanan and Shmatikov [25] present
a de-anonymization algorithm and claim that k-anonymity can
defeated by their method using auxiliary data accessible by the
adversary.

Among a multitude of different techniques, differential
privacy (DP) [6], [10], [13], [11] has become one of the leading
methods to provide individual privacy. Various differentially
private algorithms have since been developed for different
domains, including social networks [16], [26]. However as
already shown, DP can suffer in social networks where specific
auxiliary information, such as graph structures and friendship
data, is easily available to the adversary. Important works
showing the shortcomings of DP are [19], [20].

Gehrke, Lui, and Pass in [14] present the notion of zero-
knowledge privacy which is appealing for achieving privacy
in social networks. Zero-knowledge privacy (ZKP) guarantees
that what can be learned from a dataset including an indi-
vidual is not more than what is learned from sampling-based
aggregates computed on the dataset without that individual.

III. GRAPH SUMMARIZATION

We denote a graph as G = (V,E), where V is the set of
nodes and E ⊆ V ×V is the set of edges connecting the nodes.
We consider S ⊂ 2V to be a set of disjoint node groups of
size r or more that a social network wants to release statistics
about.

Definition 1: The S-graph of G is GG,S = (S, ES), where

ES = {(g′, g′′) : g′, g′′ ∈ S and ∃v′ ∈ g′ and ∃v′′ ∈ g′′

such that (v′, v′′) ∈ E}.

g’
g’ ’

(a)

g’ g’ ’
( .75,.33,1)

(b)

.4 .6

Fig. 1. A graph and its summarization.

This definition says that two groups g′ and g′′ in S are
connected through an edge in GG,S if there exists at least one
edge in G that connects a node in g′ to a node in g′′.

Definition 2: The S-graph summarization (S-GS) is a
function

w1 : S −→ [0, 1]

w2 : ES −→ [0, 1]× [0, 1]× [0, 1]

w1(g) =
|g|
|V |

w2(g
′, g′′) = (x, y, z), where

x =
|{v′ ∈ g′ : ∃v′′ ∈ g′′, s.t. (v′, v′′) ∈ E}|

|g′|

z =
|{v′′ ∈ g′′ : ∃v′ ∈ g′, s.t. (v′, v′′) ∈ E}|

|g′′|

y =
|{(v′, v′′) : v′ ∈ g′, v′′ ∈ g′′, (v′, v′′) ∈ E}|

|g′| · |g′′|
.

Throughout the paper, we will refer to the elements of
w2 as w2(g

′, g′′)[x], w2(g
′, g′′)[y], and w2(g

′, g′′)[z], or w2[x],
w2[y], w2[z], whenever g′ and g′′ are clear from the context.
We will also use w2[.] to refer to any of three elements x, y,
or z.

Example 1: Fig.1 (a) shows a simple graph G, and S
consisting of two groups g′ and g′′. Group g′ has four nodes
and group g′′ has six nodes. There are several edges (eight of
them) connecting members of g′ to members of g′′.

Fig.1 (b) shows how g′ and g′′ are represented by a node
each in GG,S . The nodes and the edge connecting them in GG,S

are labeled by w1 and w2 measures, respectively, as described
above. Specifically, we have w1(g

′) = 4
4+6 = .4 and w1(g

′′) =
6

4+6 = .6. Since three out of four nodes in g′ and all the six
nodes in g′′ are connected with some nodes in the other group,
we have w2(g

′, g′′) = ( 34 ,
8

4×6 ,
6
6 ) = (.75, .33, 1).

IV. BACKGROUND ON
ϵ-ZERO-KNOWLEDGE PRIVACY

Zero-Knowledge Privacy (ZKP) introduced by [14] is a
privacy framework that is stronger than Differential Privacy
(DP). ZKP is especially desirable in social networks where we
need to protect not only the participation of a connection, but
also easy to find evidence of the participation, as for example,
the evidence given by other connections that were influenced
by the connection.



ZKP is defined in relation with classes of sampling-based
aggregate information. The class of sampling-based aggrega-
tion represents our tolerance for information release. For ex-
ample, we can say that we are only comfortable to release the
average age of a population computed on a

√
n random sample.

ZKP uses the notion of a simulator from zero-knowledge, and
says that a simulator with the acceptable aggregate information
can essentially compute whatever an adversary can compute by
accessing the result of the mechanism ([14]). We describe ZKP
in the following using a setting of graphs.

Let G be a graph. We denote by G−∗ a graph obtained
from G by removing a piece of information (for example an
edge). G and G−∗ are called neighboring graphs.

Let San be a mechanism that operates on a graph G (the
complete database), and computes a sanitized answer to a
query. The adversary’s goal in a privacy scenario is to gain
information about private matters of individuals (nodes) or
connections (edges) in G using this released sanitized answer.
Let Adv(San(G), z) denote the output of the algorithm that
an adversary employs to breach privacy. The adversary can
interact with mechanism San and may have access to some
auxiliary information z. The information in z is considered to
be general, and easily accessible, e.g. information about the
structure of the network (graph) or the groups that individuals
belong in.

Let agg be a class of randomized algorithms that first select
k = k(n) random samples (nodes) without replacement from
G−∗, and then compute some aggregate information. Such
algorithms output an approximate answer to the query.

Let Sim, “the simulator,” be an algorithm. We denote by
Sim(T (G−∗), z) the information that the simulator can com-
pute given the aggregate information computed by a T ∈ aggk.
In plain language, imagine Sim to be a person who can be
“extremely smart and capable (ESC)” and who has access to
aggregates computed by the algorithms of class agg on the
database where the sensitive information has been removed.
Also, assume that the simulator also has access to background
information z.

On the other hand, imagine the adversary to be a person
who is also ESC, and has access to San(G) as well as
background information z. ZKP assures an individual that
the participation in the network does not jeopardize her/his
privacy. ZKP provides this guarantee by sanitizing the query
answers such that the information that the adversary could
extract from the output (sanitized answer) is computationally
indistinguishable from the information that could be computed
using sampling-based aggregates calculated on the network
data that misses the individual of interests’s sensitive informa-
tion. That is, the adversary is not better off than some simulator
even though he has access to the output of mechanism San
computed on the whole database.

Definition 3: (Zero-Knowledge Privacy [14]) The mecha-
nism San is ϵ-zero-knowledge private with respect to agg
if there exists a T ∈ agg such that for every adversary Adv,
there exists a simulator Sim such that for every G, every
z ∈ {0, 1}∗, and every W ⊆ {0, 1}∗, the following hold:

Pr[Adv(San(G), z) ∈ W ] ≤ eϵ · Pr[Sim(T (G−∗), z) ∈ W ]

Pr[Sim(T (G−∗), z) ∈ W ] ≤ eϵ · Pr[Adv(San(G), z) ∈ W ]

where probabilities are taken over the randomness of San and
Adv, and T and Sim.

By this definition, ZKP guarantees that any additional
information that an adversary can obtain about an individual
by having access to the output of the mechanism is virtually
not more than what can be computed by a simulator using
some sampling-based (approximate) aggregates even without
access to the mechanism and the sensitive data.

Note that the selection of k – the number of random
samples – in agg algorithms is very important and it should
be chosen so that with high probability very few of the nodes
connected with the node whose information has to be private
will be chosen. We will often index agg by k as aggk to
stress the importance of k. To satisfy the ZKP definition, a
mechanism should use k = o(n), say k =

√
n or k =

3
√
n2,

where n, the number of nodes in the database, is sufficiently
large (see [14]). DP is a special case of ZKP where k = n.

As it will be illustrated in the upcoming sections, the
specifications of algorithm T ∈ agg, e.g. sample size, are
only used to compute the level of privacy needed in the ZKP
mechanism. We stress that the ZKP mechanism is the only
algorithm applied on the data. The simulator is only an abstract
notion.

Achieving ZKP. Let f : G → Rm be a function that
produces a vector of length m from a graph database. For
example, given GG,S , f produces the results of the S-GS
functions, i.e. w on edges.

We consider the L1-Sensitivity to be defined as follows.

Definition 4: (L1-Sensitivity) For f : G → Rm, the L1-
sensitivity of f is

∆(f) = max
G′,G′′

||f(G′)− f(G′′)||1

for all neighboring graphs G′ and G′′.

Another essential definition is that of “sample complexity”.

Definition 5: (Sample Complexity [14]) A function f :
Dom → Rm is said to have (δ, β)-sample complexity with
respect to agg if there exists an algorithm T ∈ agg such that
for every D ∈ Dom we have

Pr[||T (D)− f(D)||1 ≤ δ] ≥ 1− β.

T is said to be a (δ, β)-sampler for f with respect to agg.

This definition bounds the probability of error between the
randomized computation (approximation) of function f and
the expected output of f . Basically, functions with low sample
complexity (smaller δ and β) can be computed more accurately
using random samples from the input data.

When the released information, as typical, is real numbers,
the ZKP mechanism San achieves the privacy by adding noise
to each of the numbers independently.

Let Lap(λ) be the zero-mean Laplace distribution with
scale λ, and variance 2λ2. The scale of Laplace noise in ZKP is
properly calibrated to the sample complexity of the function
that is to be privately computed. The following proposition
expresses the relationship between the sample complexity of a



function and the level of zero knowledge privacy achieved by
adding Laplace noise to the outputs of the function.

Proposition 1: ([14]) Suppose f : G → [a, b]m has (δ, β)-
sample complexity with respect to agg. Then, mechanism

San(G) = f(G) + (X1, . . . , Xm),

where G ∈ G, and Xj v Lap(λ) for j = 1, · · · ,m
independently, is

ln
(
(1− β)e

∆(f)+δ
λ + βe

(b−a)m
λ

)
–ZKP with respect to agg.

V. ZKP MECHANISM FOR GRAPH SUMMARIZATION

In this section we design a ZKP mechanism to release a
graph summarization. Let GG,S = (S, ES) be the S-graph for a
graph G. Let f be a function that takes a graph GG,S as input
and produces c = |S|+3 · |ES | numbers, or differently said, a
c-dimensional vector corresponding to w1 and w2 aggregates
for the groups and the connecting edges.

Let f = [f1, . . . , ft] be the vector (or subvector) that is
to be privately released. We apply a separate Sani (ZKP)
mechanism, for i ∈ [1, t], to each of the elements of f . Let us
assume that each Sani provides ϵi-ZKP for fi with respect to
aggki , where ki = k(n)/t and n = |V |. Then, based on the
following proposition, f will be (

∑t
i=1 ϵi)-ZKP with respect

to aggk(n), where k(n) =
∑t

i=1 ki.

Proposition 2: (Sequential Composition [14]) Suppose
Sani, for i ∈ [1, n], is an ϵi-ZKP mechanism with respect to
aggki . Then, the mechanism resulting from composing1 Sani’s
is (
∑n

i=1 ϵi)-ZKP with respect to agg(
∑

ki).

In this paper, we consider edge (connection) privacy. We
note that node privacy will not be considered in this work,
since, as it is widely considered (cf. [16], [19]), it results in
too noisy output with practically no utility.

A. Edge (Connection) Privacy

Consider GG,S and GG−e,S , where GG−e,S is a neighboring
graph of G obtained from G by removing edge e. In the edge
privacy scenario, the total number of nodes (groups) and the
size of each group are identical in GG,S and GG−e,S . Therefore,
the sensitivity of any w1 function, including the ones in f , is
zero, that is, ∆(w1) = 0.

On the other hand, removing an edge in G can change by
at most 1 the numerator of each element x, y, and z in w2

measures of GG−e,S . Note that this change affects only one w2

measure in the whole graph GG−e,S . Therefore, the sensitivities
of the elements of any w2 function, including the ones in f ,
are

∆(w2[x]) =
1
r ∆(w2[y]) =

1
r2 ∆(w2[z]) =

1
r

where r is the minimum group size in S.

In the following sections, the ZKP mechanisms are sepa-
rately designed for w1 and w2 functions in f .

1A set of computations that are separately applied on one database and each
provides ZKP in isolation, also provides ZKP for the set.

1) ZKP Mechanism for w1: Suppose w1(g) is an element
of f , where g is a group in GG,S . Let San = w1(g)+Lap(λ)
be a ZKP mechanism which adds random noise selected from
Lap(λ) distribution to the output of w1(g) in order to achieve
ZKP. Our goal here is to come up with the right λ to achieve
a predefined level of ZKP.

Based on the definition of ZKP, one should first know the
sample complexity of the w1 function. For this, without change
in semantics, we will express w1 so that it computes an average
rather than a fraction of two counts. Then, using the Hoeffding
inequality (cf. [24]) we compute the sample complexity of w1.

Expressing w1. We assume that in addition to the regular node
attributes (if any), we have |S| new boolean attributes, one for
each possible group. We denote these new attributes by upper-
case B’s indexed by the group id. A node v in graph G will
have Bg(v) = 1 if v belongs to group g, and Bg(v) = 0,
otherwise. We have that,

Proposition 3:

w1(g) =

∑
v∈V Bg(v)

|V |
.

Therefore, w1(g) can be viewed as the average value of
attribute Bg over all nodes in G.

ZKP Mechanism. Let G = (V,E) be a graph enriched
with boolean attributes as explained above. We would like to
determine the value of λ > 0 for Lap(λ) distribution which is
to be used to add random noise to a w1(g) measure included
in f . For this, first we compute the sample complexity of w1

to be able to use Proposition 1 and establish an appropriate
value for λ.

Let T be a randomized algorithm in aggk, the class of
randomized algorithms that operates on an input graph G. To
randomly sample a graph G, algorithm T uniformly selects
k = k(n)/t random nodes from V , reads their attributes, and
retrieves all the edges2 incident to these k sample nodes.3 From
the sampled nodes and their incident edges with other sampled
nodes we consider GG′,S′ = (S ′, E ′

S). Then, T approximates
the value of w1(g) using GG′,S′ . Since we have expressed
w1(g) for a group g as an average, based on the Hoeffding
inequality we have

Pr[|T (g)− w1(g)| ≤ δ] ≥ 1− 2e−2kδ2 .

From this and Definition 5, we have that w1 has(
δ, 2e−2kδ2

)
-sample complexity with respect to aggk.

Now we make the following substitutions in the formula
of Proposition 1: β = 2e−2kδ2 , ∆(w1(g)) = 0, b−a = 1, and
m = 1 and obtain that mechanism San is

ln
(
e

δ
λ + 2e

1
λ−2kδ2

)
-ZKP

with respect to aggk.

2Clearly, only non-dangling incident edges, whose both end nodes have
been sampled, will be retrieved.

3For other possible methods of graph sampling see for example [14].



Similarly to DP, one can set λ, the Laplace noise scale,
to be proportional to “the error” as measured by the sum of
the sensitivity and sampling error, and inversely proportional
to the ZKP privacy level

λ =
∆(w1) + δ

ϵ
=

1

ϵ
· 1

3
√
k
.

Regarding δ, we can consider for instance a sample size
k =

3
√
n2, and have δ = 1

3√
k
.

From all the above, the privacy level obtained will be

ln
(
e

δ
λ + 2e

1
λ−2kδ2

)
= ln

(
eϵ + 2eϵ

3√
k−2

3√
k
)

≤ ln
(
eϵ + 2e−

3√
k
)

≤ ϵ+ 2e−
3√
k.

Thus, we have that by adding Lap
(

1

ϵ· 3√
k

)
noise, mechanism

San will be
(
ϵ+ 2e−

3√
k
)

-ZKP with respect to aggk. Of
course, the privacy achieved is in fact better than this be-
cause of the above inequalities. We address finding of the
exact λ given a ZKP privacy level and sample complexity in
Section VII.

Example 2: Let graph G be a social graph with one
hundred million participants/nodes (|V | = n = 100, 000, 000),
and g′, g′′ be two groups. Suppose the requested output vector
is

f = ⟨w1(g
′), w2(g

′, g′′)[x], w2(g
′, g′′)[y], w2(g

′, g′′)[z], w1(g
′′)⟩.

and suppose that the minimum group size in S is r = 5000.
Assume we would like to have for f a ZKP mechanism
expressed with respect to an acceptable aggk, where

k(n) = 3
√
100, 000, 0002 = 215, 443.

To privately release the first output in f , a randomized algo-
rithm T can uniformly select

k1 = 215, 443/5 = 43, 089.

nodes and approximate the value of w1(g
′) using these sam-

ples. Let (δ1, β1) be the sample complexity of w1(g
′) where

δ1 =
1

3
√
k1

=
1

3
√
43, 089

= 0.0285

β1 = 2e−2k1δ
2
1 = 2e−2∗43089∗(0.0285)2 = 7.97 ∗ 10−31.

The sensitivity of f is

∆(f) =
1

r
+

1

r2
+

1

r
= 0.0004.

Now, if we would like to use a mechanism which is 0.1-ZKP,
we add random noise selected from a Laplace distribution with
scale

λ1 =
∆(f) + δ1

ϵ
=

0.0004 + 0.0285

0.1
= 0.289

to the actual value of w1(g
′). With this noise scale, the ZKP

privacy level of the mecahnism is precisely

ϵ1 ≤
(
ϵ+ 2e−

3√k1

)
=
(
0.1 + 2e−35.06

)
≈ 0.1

with respect to aggk.

2) ZKP Mechanism for w2: Suppose the function
w2(g, g

′)[.] is an element of f , where g and g′ are groups in
GG,S . Let San = w2(g, g

′)[.] + Lap(λ) be a ZKP mechanism
that adds random noise selected from Lap(λ) distribution to
w2(g, g

′)[.]. To come up with the right λ first we compute the
sample complexity of the w2 function.

Expressing w2[x] and w2[z]. To express the x or z elements of
the w2 function, we introduce |S| new boolean node attributes,
each corresponding to a group. We denote these new attributes
by B′ indexed by the group id. A node v will have B′

g(v) = 1
if v has an edge with some node in group g, and B′

g(v) = 0,
otherwise. Now for each pair of groups g and g′ we can show
the following proposition.

Proposition 4:

w2(g, g
′)[x] =

∑
v∈g B

′
g′(v)

|g|

w2(g, g
′)[z] =

∑
v∈g′ B′

g(v)

|g′|

Hence, the x (or z) elements of w2(g, g
′) can be viewed

as the average value of attribute B′
g′ (or B′

g) over the subset
of nodes in G that are in g′ (or g).

Expressing w2[y]. To express y in w2, we introduce |S| new
node attributes, each corresponding to a group. We denote
these new attributes by B′′ indexed by the group id. Each
attribute B′′

g is a boolean vector of dimension |g|, where each
dimension corresponds to a node in g. A node v will have
B′′

g (v)[u] = 1, where u ∈ g, if (v, u) is an edge in graph G,
and B′′

g (v)[u] = 0, otherwise. For each pair of groups g and
g′ we can show that

Proposition 5:

w2(g, g
′)[y] =

∑
v∈g,u∈g′ B′′

g′(v)[u]

|g| · |g′|

=

∑
v∈g′,u∈g B

′′
g (v)[u]

|g| · |g′|

Therefore, the y measure in w2(g, g
′) can be viewed as the

average of B′′
g′(v)[u]’s or B′′

g (v)[u]’s.

ZKP Mechanism. Let G = (V,E) be a graph enriched
with boolean attributes as explained above. We would like to
determine the value of λ > 0 for the Lap(λ) distribution which
will add random noise to w2(g, g

′)[.].

Let T be a randomized algorithm in aggk. Algorithm T
randomly samples graph G by uniformly selecting k = k(n)/t
random nodes from V and retrieving all the incident edges.
With this sampling, the nodes in the groups of GG,S and the
edges between them are randomly sampled as well. We call this
sampled S-graph G′

G,S = (S ′, E ′
S). Let us assume that we have

a sample of each group and edges between groups and the size
of a sample group g is kg . Then, algorithm T approximates w2

using the data from group samples. For the sample complexity



of the elements of w2, since we expressed them as averages,
we can use the Hoeffding inequality as follows.

Pr[|T (g, g′)[x]− w2(g, g
′)[x]| ≤ δ] ≥ 1− 2e−2kgδ

2

Pr[|T (g, g′)[z]− w2(g, g
′)[z]| ≤ δ] ≥ 1− 2e−2kg′δ

2

Pr[|T (g, g′)[y]− w2(g, g
′)[y]| ≤ δ] ≥ 1− 2e−2(kg×kg′ )δ

2

.

Let us focus first on w2[x] (w2[z] is similar). Now we make
the following substitutions in the formula of Proposition 1:
β = 2e−2kgδ

2

, ∆(w2(g, g
′)[x]) = 1/r, b− a = 1, and m = 1.

From this, we have that mechanism San is

ln
(
e

1/r+δ
λ + 2e

1
λ−2kgδ

2
)

-ZKP

with respect to aggk.

Again, one can set λ, the Laplace noise scale, to be
proportional to “the error” as measured by the sum of the
sensitivity and sampling error, and inversely proportional to ϵ

λ =
∆(w2)[x] + δ

ϵ
=

1

ϵ

(
1

r
+

1
3
√
kg

)

Regarding δ, we can consider for instance a sample size
k =

3
√
n2, and have δ = 1

3
√

kg

.

From all the above, the privacy level obtained will be

ln
(
e

1/r+δ
λ + 2e

1
λ−2kgδ

2
)

= ln

(
eϵ + 2e

ϵ

1/r+1/ 3
√

kg
−2 3

√
kg

)
≤ ln

(
eϵ + 2e−

3
√

kg

)
≤ ϵ+ 2e−

3
√

kg .

Thus, we have that by adding noise randomly selected from

the Lap

(
1
ϵ

(
1
r + 1

3
√

kg

))
distribution to w2[x], San will be(

ϵ+ 2e−
3
√

kg

)
-ZKP with respect to aggk.

By substituting for the proper sensitivity and sample com-
plexity, similar computations can be carried out for a San
mechanism for w2[y].

Example 3: Let us consider Example 2 again with the
output vector

f = ⟨w1(g
′), w2(g

′, g′′)[x], w2(g
′, g′′)[y], w2(g

′, g′′)[z], w1(g
′′)⟩.

To privately release the second output in f , a randomized
algorithm T can again uniformly select

k2 = k(n)/5 = 3
√
100, 000, 0002/5 = 43, 089

nodes and approximate the value of w2(g
′, g′′)[x]. The actual

value of function w2(g
′, g′′)[x] is computed on G. Suppose

that the minimum group size in S is r = 5000 and the size of
the sample group corresponding to g′ in G′

G,S is kg′ = 50000.
Let (δ2, β2) be the sample complexity of w2(g

′, g′′)[x] where

δ2 =
1

3
√
kg′

=
1

3
√
50000

= 0.0271.

β2 = 2e−2kg′δ
2
2 = 2e−2∗50000∗(0.0271)2 = 2.54 ∗ 10−32.

The sensitivity of f is

∆(f) =
1

r
+

1

r2
+

1

r
= 0.0004.

Now, if we would like to use a mechanism which is
0.1-ZKP, we can add random noise selected from a Laplace
distribution with scale

λ2 =
∆(f) + δ2

ϵ
=

0.0004 + 0.0271

0.1
= 0.275

to the actual value of w2(g
′, g′′)[x].

With this noise scale, the ZKP privacy level of the mecah-
nism is precisely

ϵ2 ≤
(
ϵ+ 2e−

3
√

kg′
)
=
(
0.1 + 2e−36.84

)
≈ 0.1

with respect to aggk.

VI. EVALUATION

We focus on a single output w1(g) to evaluate our approach
(the evaluation based on w2 is similar). In our methods, the
amount of noise added to the output is independent of the
database, and it only depends on the aggregates we compute
and their sensitivities. Therefore, the following analysis is valid
for any database.

A. Parameters Affecting Noise Scale

Considering the formula of noise scale λ = ∆(f)+δ
ϵ , the

sampling error δ is an important factor specifying λ. The error
in turn has reverse connection with the sample size and the
size of the database graph. Recall that throughout the paper
we considered the error to be δ = 1

3√
k

, where k is the sample

size with values for example k =
3
√
n2.

Fig. 2 illustrates the relationship between the noise scale λ
and the sample size k and the database size n. In this figure
we assumed that the output vector f has five elements and the
ZKP-level ϵ is 0.1. Each curve in the figure corresponds to
a sample size, namely, k =

3
√
n2 and k =

4
√
n3. The figure

shows that as the graph size decreases from one billion to one
million the noise scale increases non-linearly to the amounts
that are not practical in our setting. Therefore, we conclude
that ZKP mechanisms are more practical in very big databases
with sufficiently large sample size.

B. The Noise

The analysis in this section provides a better understanding
of the amount of noise which is added to the output. We
consider w1 function.

We first compute the cumulative distribution function of
Laplace distribution in an interval [−z, z] as follows,

Pr(−z ≤ x ≤ z) =

∫ z

−z

1
2λe

−|x|
λ dx = 1− e

−z
λ .

Therefore, Pr(|x| ≥ z) = e
−z
λ .
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Let pr = Pr(|x| ≥ z). Value z for a specified cumulative
probability pr can be calculated using the above equation as

z = −λ · ln(pr) = −δ

ϵ
· ln(pr).

Figure 3 illustrates the minimum absolute noise z as a function
of cumulative probability pr for three different values of δ
when ϵ = 0.1. Each point (pr, z) on the curve for a given δ
means that

pr percent of the time the random noise has an
absolute value of at least z.

For example, for δ = 0.02, we have that 50% of the time the
absolute value of noise is at least 0.14, and 30% of the time it
is at least 0.24. These values of δ are practical as our outputs
are fractions.

VII. FROM PRIVACY LEVEL TO NOISE SCALE

In this section we address the problem of computing
the noise scale based on the required privacy. For a given
privacy level ϵ, the right value for λ can be computed using
Proposition 1, and the sample complexity of the function. For
this, we need to solve the following equation with respect to
λ.

ln
(
(1− β) · e

∆(f)+δ
λ + β · e

(b−a)m
λ

)
= ϵ.

The sample complexity (δ, β) of the function and the sensi-
tivity ∆(f) are computed as described in Section V. Suppose

b − a and m are both equal to 1 (as in Section V). Thus, by
assigning δ a value (which depends on k), λ is the only variable
in this equation. By setting x = e

1
λ , we have the polynomial

equation
(1− β)x∆(f)+δ + βx− eϵ = 0

which can be solved for x using various methods (cf. [18],
[15]), and finally, we have λ = 1

lnx .

Example 4: Let us consider Example 2 again with the
output vector

f = ⟨w1(g
′), w2(g

′, g′′)[x], w2(g
′, g′′)[y], w2(g

′, g′′)[z], w1(g
′′)⟩.

Suppose that we would like to design a (0.1)-ZKP mechanism
for w1(g

′).

To compute the corresponding noise scale λ1, we use
the above polynomial equation. We assume that the min-
imum group size in S is r = 5000. The sensitivity is
∆(f) = 1

r + 1
r2 + 1

r = 0.0004, and we consider k1 =

k(n)/5 = 3
√
100, 000, 0002/5 = 43, 089 (as in Example 2),

i.e. δ = 1
3√k1

= 1
3√43089

= 0.0285. We have that w1(g
′) has a

sample complexity of

(δ, β) = (δ, 2e−2k1δ
2

)

= (0.0285, 7.08 ∗ 10−31).

Now if we plug all the values in the equation

(1− β)x∆(f)+δ + βx− eϵ = 0

we have

(1− 7.08 ∗ 10−31)x0.0004+0.0285

+ (7.08−31)x− e0.1 = 0

which has root x = 31.731745. This results in a noise scale
λ1 that is very close to (albeit slightly lower than) what we
computed in Example 2. Therefore, setting the noise scale to
be proportional to ∆(f) + δ and inversely proportional to ϵ is
a good enough approximation for achieving ϵ− ZKP .

VIII. PRIVATE PROBABILISTIC A-GS

In this section we consider graphs with probabilistic edges.
Such graphs are very common in modeling influences in social
networks (cf. [17], [7], [21], [5]).

A. Probabilistic Graphs

We will denote a probabilistic graph by G = (V,E),
where V is the set of nodes, E ⊆ V × V is the set of
edges, and additionally, assigned to each edge e ∈ E, there
is an existence probability p(e) ∈ [0, 1]. A probabilistic graph
defines a probability distribution over a set of deterministic
(regular) graphs called possible instances (PIs). Let PI(G)
(or simply PI when G is clear from the context) be the set
of all PIs of a probabilistic graph G and PIi(G) (or simply
PIi) denote one single PI. The existence probability of each
PI is computed as

p(PI) =
∏

e∈E(PI)

p(e) ·
∏

e/∈E(PI)

(1− p(e)). (1)



B. Probabilistic Graph Summarization

We define the summarization of a probabilistic graph G
in a similar way as for deterministic graphs. We have a set
of disjoint groups of nodes, and any two groups g and g′ are
connected in the summary graph if at least one edge connects
a node from g to some node in g′. We denote the probabilistic
summary graph corresponding to G as S-GS.

Computing the w1 measure does not change in the prob-
abilistic case as it is based on the existence of nodes and
their attribute values which none is probabilistic. However,
due to probabilistic edges the numerators of x, y, and z of
the w2 measure are computed differently. That is, instead of
computing the exact value, their expected values over the set
of possible instances will need to be computed.

For this, let X , Y , and Z be random variables representing
the x, y, and z measures, respectively. To compute E[X] or
E[Z] we have the following theorem.

Theorem 1: Let g and g′ be two groups in a probabilistic
summary graph, and let Evj = {e1, . . . , enj} be the set of
edges connecting a node vj ∈ g to the nodes of g′. We have
that

E[X(g, g′)] = E[X] =

∑
vj∈g

(
1−

∏
e∈Evj

(1− p(e))
)

|g|
.

For E[Y ], it can be verified that,

Theorem 2: Let Vg be the set of nodes in a group g and
Egg′ = Vg × Vg′ be the set of all possible edges between two
groups g and g′ in a probabilistic summary graph. We have
that

E[Y (g, g′)] = E[Y ] =

∑
ei∈Egg′

p(ei)

|g| · |g′|
.

C. Zero-Knowledge Private Probabilistic A-GS

We focus on edge (connection) privacy in this section.
Let GG,S = (S, ES) be the probabilistic summary graph
corresponding to a graph G. Let f be a subvector that is to be
privately released.

As stated before, the w1 elements in f are computed and
privatized as illustrated in Section V-A1. For the elements of
the E[w2] functions in f , we need to view them as averages
to be able to use the Hoeffding inequality in the process of
privatization. We do this by defining new synthetic attributes.

Expressing E[Y ]. For each node v ∈ V , we assume to have
|S| new attributes called P ′′, each indexed by a group id. Each
attribute P ′′

g is a vector of dimension |g|, where each dimension
corresponds to a node in g. For a node v we have P ′′

g (v)[u] =
p(evu), where u is a node in g, and p(evu) is the probability
of the edge between v and u. Clearly, P ′′

g (v)[u] = 0 if there
is no edge between v and u in G.

For each pair of groups g and g′ we have the following
proposition.

Proposition 6:

E[Y (g, g′)] =

∑
v∈g,u∈g′ P ′′

g′(v)[u]

|g| · |g′|

=

∑
v∈g′,u∈g P

′′
g (v)[u]

|g| · |g′|

Note that, with this expression, E[Y ] is the average of the
elements of attribute P ′′

g′ over the nodes of g, or vice versa.

Expressing E[X] or E[Z]. To be able to view E[X] or E[z]
functions in f as averages, for each node v ∈ V , we consider
S new synthetic attributes called P ′, each indexed by a group
id. For each attribute P ′

g, we compute the attribute value as

P ′
g(v) = 1−

∏
u∈g

(1− P ′′
g (v)[u]) = 1−

∏
u∈g

(1− p(evu)).

Now for each pair of groups g and g′ we have the following
proposition.

Proposition 7:

E[X(g, g′)] =

∑
v∈g P

′
g′(v)

|g|

E[Z(g, g′)] =

∑
v∈g′ P ′

g(v)

|g′|

Clearly, E[X(g, g′)] (E[Z(g, g′)]) is now the average of
P ′
g′ (P ′

g) attribute over the nodes of g (g′).

ZKP Mechanism. Let G = (V,E) be a probabilistic graph
augmented with synthetic attributes P ′s and P ′′s. To compute
the sample complexity, a randomized algorithm T , in aggk,
samples graph G by uniformly selecting k = k(n)/t random
nodes from V and all their incident edges. Then, T approxi-
mates E[w2[.]] using the data from sample groups. Since we
redefined the elements of E[w2[.]] as averages, we have the
following inequalities for their sample complexities using the
Hoeffding inequality.

Pr[|T (g, g′)[x]− E[w2(g, g
′)[X]]| ≤ δ] ≥ 1− 2e−2kgδ

2

Pr[|T (g, g′)[z]− E[w2(g, g
′)[Z]]| ≤ δ] ≥ 1− 2e−2kg′δ

2

Pr[|T (g, g′)[y]− E[w2(g, g
′)[Y ]]| ≤ δ] ≥ 1− 2e−2(kg×kg′ )δ

2

It can be verified that the sensitivities of E[w2[.]] functions
are similar to the regular case. Thus, by plugging the above
parameters in Proposition 1, we have the following for the
San mechanism of E[X], where r is the minimum group size
in S, and kg is the size of a sample group g.

Proposition 8: By adding noise randomly selected from

the Lap

(
1
ϵ

(
1
r + 1

3
√

kg

))
distribution to the output of E[X],

San will be
(
ϵ+ 2e−

3
√

kg

)
-ZKP with respect to aggk.

A similar San mechanism can be proposed for E[Y ] by
substituting for the sensitivity and sample complexity.



IX. CONCLUSIONS

We addressed zero-knowledge privacy for graph summa-
rization. We focused on group connection measures that are
supported by virtually all the social-graph software products.
Our techniques are crucial to be applied on summary graphs
before public release of the information. To the best of our
knowledge, this is the first work to use the ZKP framework
for graph summarization. We focused on ZKP mechanisms
for edge privacy and introduced methods to compute the ZKP
parameters. Furthemore, we presented an approach to achieve
ZKP for the release of graph-summarization for probabilistic
data. The upshot is that ZKP is quite useful for protecting not
only the participation of a connection, but also the evidence of
its participation. However, from a utility point of view, ZKP
can only be applied meaningfully on big social graphs.
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