
Dynamic Graph Summarization: Optimal and
Scalable

Mahdi Hajiabadi
University of Victoria
Victoria, BC, Canada
mhajiabadi@uvic.ca

Venkatesh Srinivasan
University of Victoria
Victoria, BC, Canada

srinivas@uvic.ca

Alex Thomo
University of Victoria
Victoria, BC, Canada

thomo@uvic.ca

Abstract—Dynamic graph summarization is the task of ob-
taining and updating a summary of the current snapshot of a
dynamic graph when changes (edge insertions/deletions) occur
in the graph. As real graphs are massive and undergoing lots of
changes, we need dynamic summarization algorithms that scale
and are able to respond rapidly to changes in the graph. In this
paper, we present two algorithms for lossless summarization of
dynamic graphs. We first give an algorithm (Optimal) that is able
to obtain and dynamically update the smallest-possible-anytime
lossless summary in terms of node reduction. We achieve up
to 8 orders of magnitude running time improvement over batch
counterparts, and up to 12x improvement over the state-of-art in
dynamic graph summarization, while at the same time offering
up to 6x improvement in node reduction. We then present an
even faster lossless summarization algorithm (Scalable), which
goes further into speeding up dynamic updates by offering an
additional order of magnitude improvement over Optimal at the
cost of having lesser node reduction. Extensive experiments show
that Scalable offers node reduction rates that are close to those
of Optimal for many datasets. As such, Scalable is a preferred
choice when speed of change is very high.

I. INTRODUCTION

We tackle the problem of summarizing massive dynamic
graphs that come as a fast stream of edge insertions and
deletions [1], [2], [3]. The problem is of paramount impor-
tance. Real graphs are massive (e.g. web and social networks)
spanning billions of nodes and edges, thus, summarizing them
is imperative in order to make graph processing feasible in
practice. Real graphs are also highly dynamic, for example,
more than 250,000 new web pages and 500,000 new Facebook
users are added every day1 and many millions of links and
connections are created every minute. Therefore, we need
dynamic graph summarization algorithms that can scale and
rapidly respond to changes in the graph.

Graph summarization takes as input a graph and it produces
a more compact graph as output [4], [5], [6]. There are many
summarization methods, such as graph compression to reduce
the volume of input graph [7], graph sparsification to remove
less important nodes or edges [8], and group-based graph
summarization (GGS) to group similar nodes and edges
into supernodes and superedges [9], [10], [11], [12], [13].
GGS is by far the most popular family of methods and our
work also belongs in GGS. However, most of the works in

1https://siteefy.com/how-many-websites-are-there
https://backlinko.com/facebook-users

GGS consider static graphs, thus ignoring the highly dynamic
nature of real graphs. While there are some works on dynamic
graph summarization [14], [1], [15], [16], they produce lossy
summaries, i.e., salient information in the original graph can
be irrecoverably lost.

Recently, Ko et al. in [2] proposed MoSSo, the first lossless
dynamic GGS algorithm, which builds on the framework
of SWeG [9] for static graphs. However, the summaries of
MoSSo and SWeG can only be used via neighborhood queries,
i.e., given a node, return its neighbors. This amounts to slowly
and incrementally reconstructing the original graph, one node
at a time, often multiple times for the same node if the node is
requested repeatedly. As such, while these summaries achieve
high compression, their utility as data structures to speed up
graph analytics is quite limited.

In contrast, the G-SCIS framework, introduced by Hajiabadi
et al. in [17], has the advantage of producing summaries that
can be used as-is to speed up important classes of graph
analytics, such as graphlet enumeration, centrality computa-
tion, and shortest paths. Hence, this framework achieves the
right tradeoff between compression and utility of the summary.
However, the G-SCIS algorithm given in [17] works only for
static graphs leading us to ask the following questions: For a
dynamic graph stream, is it possible to maintain and update a
summary efficiently in the G-SCIS framework? Furthermore,
can such summaries be lossless and optimal size or close to
optimal size in the G-SCIS framework?

We propose an optimal dynamic lossless summarization
algorithm (Optimal) that works in near constant time for
each change. Optimal obtains and dynamically updates the
smallest-possible-anytime lossless summary in terms of node
reduction. We achieve up to 8 orders of magnitude running
time improvement over batch counterparts, and up to 12x
improvement over MoSSo, while at the same time offering
up to 6x improvement in node reduction compared to MoSSo.
We then present a second algorithm, Scalable, which offers
an additional order of magnitude speed improvement at the
cost of having less node reduction than Optimal. Nevertheless,
our extensive experiments show that node reduction rates of
Scalable are close to those of Optimal and still better than
those of MoSSo. As such, Scalable is a good choice when
the speed of change is very high. In contrast to MoSSo,
which is a randomized algorithm, our Optimal and Scalable

https://siteefy.com/how-many-websites-are-there
https://backlinko.com/facebook-users

algorithms are deterministic and rooted in number theory, i.e.,
they produce always the same output for a given input.

More specifically, Optimal uses a sort-insensitive hashing
scheme to bucketize nodes using their neighbor sets; nodes
in same bucket are candidates for merge. Sort-insensitivity
allows quick update of the hash value of a node upon an edge
change that changes its neighbor set. Typical hash schemes for
sets or strings assume a sort order before applying hashing.
However, resorting a neighbor set each time a change occurs is
impractical for a high rate of changes. We also pay special care
to properly identify the set of nodes that need a new supernode
home. This is important because the relocation of a node can
cause other nodes to relocate too. Nevertheless, we show that
the number of affected nodes is never more than four, thus
keeping several computations at constant complexity.

The main cost that Optimal incurs is neighbor set equality
checks it performs between nodes in the same bucket. Our
next algorithm, Scalable, addresses this problem by introduc-
ing a hash signature of K sort-insensitive functions, where
K is a user-specified integer. Using elementary symmetric
polynomials and Newton’s identity, we show that our hash
signature is such that, for every node of degree less or equal
to K, we obtain exactly the same grouping result as Optimal.
Nodes with degree greater than K are left alone in singleton
supernodes, not merged with other nodes. The bigger the value
of K, the more node reduction we obtain, but the slower
the algorithm becomes. For K equal to maximum degree in
the graph, Scalable produces the same summary as Optimal.
However, we do not need to increase K too much to see good
summaries. A small value of 20, is sufficient for most datasets
to see node reduction rates very close to Optimal. This is
because most of group merges happen among nodes of small
degree. Finding similar nodes among nodes of higher degree
is quite rare. As such, Scalable performs excellently both in
term of speed and quality for small values of K.

In summary, we make the following contributions.
• We present Optimal, a fully dynamic algorithm in the

G-SCIS framework that provides the smallest-any-time
lossless summary of a graph that arrives as a stream
of edges. It comes with a complete guarantee of always
producing the same summary as the batch counterpart.

• We present Scalable, another fully dynamic algorithm,
which is an order of magnitude faster than Optimal at
the cost of less node reduction. Scalable still produces
lossless summaries, and its node compression rate is close
to that of Optimal.

• We conduct an extensive experimental analysis that shows
the superiority of our algorithms compared to the batch
and dynamic state-of-the-art.

• We present Directed-Scalable, which is an adaption of
Scalable for directed graphs. We show that Directed-
Scalable exhibits similar characteristics as Scalable with
excellent scalability and node reduction ratio.

The rest of the paper is organised as follows. In Section II,
we describe the G-SCIS framework of graph summarization.
In Section III, we present our Optimal algorithm. Next, in

Section IV, we give our Scalable algorithm and formally char-
acterize it in terms of guarantees it offers. Then, in Section V
we present our experimental analysis. Finally, Section VI
discusses related work and Section VII concludes the paper.

II. PRELIMINARIES: G-SCIS FRAMEWORK

Let G = (V,E) be an undirected graph, where V is the
set of vertices and E is the set of edges. A G-SCIS summary
[17] is also an undirected graph and is denoted by G = (V, E),
where V = {S1, S2, . . . , Sk} for k ≤ |V |, V =

⋃k
i=1 Si and

∀i ̸= j, Si ∩ Sj = ∅. We refer to V as the set of supernodes
and E as the set of superedges.
Reconstruction. Given a summary, we reconstruct (as a
thought process) the original graph as follows. For each
superedge (Si, Sj) ∈ E , we construct edges (u, v), for each
u ∈ Si and v ∈ Sj . That is, for i ̸= j, we build a complete
bipartite graph with Si and Sj and for i = j (a self-loop
superedge), we build a clique among the vertices of Si. If the
reconstructed graph (Ĝ) is exactly the same as the original
graph Ĝ = G, the summary is called lossless. Otherwise, it is
lossy.
Fully Dynamic Graphs They can be viewed as a sequence
of modifications, where at each time step t, t ≥ 0, a new edge
et = (u, v) is either added to or removed from the graph. We
denote the graph at time t by Gt = (Vt, Et) and assume that
G0 is empty.
Problem Formulation. Our objective is to maintain a lossless
summary Gt = (Vt, Et) of a fully dynamic graph Gt =
(Vt, Et) such that the number of supernodes in the summary
is the minimum possible after each time step t. Formally, for
all t, t ≥ 0, we seek to

minimize |Vt| subject to Ĝt = Gt. (1)

Optimal Lossless Summary (OLS) in Static Graphs: Let
N(u) denote the set of neighbors of a vertex u and let
N+(u) = N(u)∪{u}. A set of nodes I is an independent set
in G if for all u, v ∈ I , N(u) = N(v). A set of nodes C is
a clique in G if for all u, v ∈ C, N+(u) = N+(v). In other
words, our definition of an independent set I must satisfy two
conditions: (1) no two vertices in I are connected by an edge,
and (2) every vertex in I must be connected to the same set
of vertices outside I . Similar conditions hold for a clique C.

The following result is shown in [17].

Proposition II.1. (1) In an OLS, each node is in a supernode
of size one, or in a supernode that is a clique in G, or in a
supernode that is an independent set in G. (2) Furthermore,
a node v cannot be in a clique supernode C in one OLS and
in an independent set supernode I in another.

Using this proposition, Algorithm 1 below from [17] com-
putes an OLS as follows. For each node u, it greedily finds
the largest independent set or clique supernode that u can be
a part of.

Algorithm 1 checks whether vertices u and v can be a part
of a clique or an independent set (Line 6) supernode. If so,
u and v are merged. Note that by Proposition II.1, the two

Algorithm 1 Finding the best summary
1: Input: G = (V,E)
2: Initialization: Status[∀v ∈ V]← False, S ← []
3: for u ∈ V ∧ Status[u] = False do
4: S(u)← {u}, Status[u]← True
5: for v ∈ V ∧ Status[v] = False do
6: if (N(u) = N(v)) ∨ (N+(u) = N+(v)) then
7: S(u)← S(u) ∪ {v}, Status[v]← True
8: S.add(S(u))
9: BUILDSUPEREDGES(S)

conditions in line 6 are mutually exclusive. If such a set is
not found, node u becomes a supernode of size one. After
constructing the supernodes, the algorithm calls the function
BUILDSUPEREDGES(S), which builds superedges as follows.
An edge is added between supernodes S and S′ iff u ∈ S and
v ∈ S′ and (u, v) ∈ E.

III. OPTIMAL LOSSLESS ALGORITHM

Algorithm 1 has O(|V |2dmax) time complexity, making it
impractical for large datasets. An idea is to hash nodes based
on their neighborhood set. Nodes that hash to the same bucket
are candidates to be grouped together. However, hashing sets
in a dynamic setting needs special care. This is because as
new neighbors are gained or current neighbors are lost, we
want to recompute the hash value of the set quickly in order
to rapidly respond to each change.

In this section, we propose a hashing framework which is
able to (1) update the hash value of a node u in constant time
after some change in the u’s neighborhood, (2) only compare
u’s neighborhood with the neighborhoods of a small set of
nodes in order to determine any possible merge (3) guarantee
the optimality of the summary graph in each step.

One of the important properties desirable for hashing nodes
in dynamic setting is sort insensitivity which avoids sorting
the set of neighbors of a node before applying hashing on
the list. The hash function we propose is a sum of the k’th
powers of neighbors of a node modulo P , where k is a small
integer, e.g. 1, 2 or 3, and P is a large prime number. Using
Equation 2, we can update the hash value of a node u using its
previous value and the recent neighbor (v) it was connected to
or disconnected from. In practice, we found that k = 2 gives
fewer collisions.

Ik[u] = Ik[u] + vk mod P ⟨u, v⟩ insertion

Ck[u] = Ck[u] + vk mod P ⟨u, v⟩ insertion

Ik[u] = Ik[u]− vk mod P ⟨u, v⟩ deletion (2)

Ck[u] = Ck[u]− vk mod P ⟨u, v⟩ deletion

After updating the hash value of node u, we lookup for
supernodes with the same hash value as u. We call these
supernodes, candidate supernodes. Now, we need to evaluate
each candidate supernode S whether it is a correct supernode

for u or a false positive (i.e. hash collision). In order to deal
with this, we perform a neighborhood equality check for u
and a representative node (u′) of S. If there is a match, i.e.,
N(u) = N(u′) when S is an independent set supernode, or
N+(u) = N+(u′) when S is a clique supernode, we add u
to S, otherwise we make u a singleton supernode.

Algorithm 2 shows the steps of our optimal algorithm.
It uses two arrays I and C for storing hash values of each
node. I[u] is the independent set hash value of node u based
on N(u) and C[u] is the clique hash value of node u based
on N+(u). After an edge change ⟨u, v⟩, I[u] and C[u] are
incrementally updated based on (2).

Supernodes are represented by two static arrays n and p
where n[u] points to the next node in the supernode of node
u and p[u] points to the previous node in the supernode of
node u. If node u is in a singleton supernode then n[u] =
u, p[u] = u.

We also use two hash data structures HI and HC, where
each entry in HI and HC is keyed by an independent set
or a clique hash value respectively and the value for each
key is a set of single nodes with the same hash value but
different neighborhoods. In other words, each pair of key value
⟨h, {u1, . . . , uk}⟩ in HI has the following characteristics. For
any pair of nodes (ui, uj) ∈ {u1, . . . , uk}, i ̸= j, I[ui] =
I[uj] = h and N(ui) ̸= N(uj), and for each pair of key
value ⟨h′, {u′

1, . . . , u
′
k}⟩ in HC, C[u′

i] = C[u′
j] = h′ and

i ̸= j,N+(u′
i) ̸= N+(u′

j). For each supernode there is just
one node from that supernode in HI or HC (depending on
its type) which we call it the representative of that supernode.

After each change (⟨u, v⟩ insertion or deletion) the
algorithm calls function FindNodes (Algorithm 3) to find
all nodes whose supernodes need to be updated. FindNodes
returns a set of 2, 3, or 4 nodes. Nodes u and v are always
in this set. If u is in the same supernode of size 2 as u, then
u is added in the returned set. Same logic is applied for
v. The reason for this choice is that if u is removed from

a supernode of size 2, then the other node in that supernode,
u, may be able to join another supernode of size greater

than one (recall Proposition II.1). So in order to keep the
number of supernodes minimum, we also need to update
the supernodes of u and v. Let nodes be the set of nodes
whose supernodes need to be updated. For each a in nodes
(line 3 of Algorithm 2) we update the representation of its
supernode Sa in HI and HC as described in Algorithm 4.

In line 6 of Algorithm 2, for each a ∈ {u, v}, we update I[a]
and C[a] based on their current values and the recent change
using Equation 2. Next, we lookup I[a] in HI . If I[a] exists
in HI , we iterate over all nodes a′ in value set HI(I[a]) and
perform a neighborhood equality check for nodes a and a′. If
there is a match of a and a′, a is inserted to the supernode
of a′ by calling function merge and the process for node a is
terminated (lines 7-11 of Algorithm 2). Otherwise, a similar
process is performed for C[a] and HC (lines 12-16). If neither
of the lookups succeed, we call Algorithm 5 in line 17 to put
node a into a singleton supernode and add both (I[a], {a})
and (C[a], {a}) to HI and HC respectively.

Algorithm 2 Optimal Algorithm (Optimal)
1: Input: e = ⟨u, v⟩,+/−
2: nodes = findNodes(u, v)
3: for a ∈ nodes do
4: updateH(a)
5: if a == u ∨ a == v then
6: I[a], C[a]← incremental(a, I[a], C[a]) ▷

Eq. (2)
7: if (I[a] ∈ HI) then
8: for a′ ∈ HI(I[a]) do
9: if N(a′) == N(a) then

10: merge(a, a′)
11: continue
12: if C[a] ∈ HC then
13: for a′ ∈ HC(C[a]) do
14: if N+(a′) == N+(a) then
15: merge(a, a′))
16: continue
17: singleton(I[a], C[a], a)

Algorithm 3 findNodes(u, v)
1: r ← {u, v}
2: if Su exists and |Su| == 2 then
3: Let u be the other node in Su

4: Add u to r
5: if Sv exists and |Sv| == 2 then
6: Let v be the other node in Sv

7: Add v to r
8: Return r

Algorithm 4 updateH(a)
1: if a serves as a representative of Sa in HI then
2: replace a by some other node b ∈ Sa in HI .
3: if a serves as a representative Sa in HC then
4: replace a by some other node b ∈ Su in HC.

Algorithm 5 singleton(hI[u], hC[u], u)
1: Add I[u] to HI and u to HI(I[u])
2: Add C[u] to HC and u to HC(C[u])
3: Create a singleton supernode ▷ n[u] = u, p[u] = u

Algorithm 6 merge(u, u)
1: n[u]← u, p[u]← p[u]
2: n[p[u]]← u, p[u]← u

1
2

3

4

5

(a) initial graph

1
2

3

4

5

(b) ⟨1, 5⟩ added

1
2

3

4

5

(c) ⟨4, 5⟩ added

1
2

3

4

5

(d) ⟨1, 4⟩ added

Figure 1. Evolution of supernodes as new edges come in. Nodes with the
same color are in the same supernode.

step edge I C HI HC
a – – ⟨5, {1, 2}⟩ ⟨6, {1}⟩

b ⟨1, 5⟩
hI[1] = 10 hC[1] = 11 ⟨5, {4, 2}⟩, ⟨10, {1}⟩ ⟨11, {1}⟩
hI[5] = 1 hC[5] = 6 ⟨5, {4, 2}⟩, ⟨10, {1}⟩, ⟨1, {5}⟩ ⟨11, {1}⟩, ⟨6, {5}⟩
hI[4] = 5 hC[4] = 9 ⟨5, {4, 2}⟩, ⟨10, {1}⟩, ⟨1, {5}⟩ ⟨11, {1}⟩, ⟨6, {5}⟩, ⟨9, {4}⟩

c ⟨4, 5⟩ hI[4] = 10 hC[4] = 14 ⟨5, {2}⟩, ⟨10, {1}⟩, ⟨1, {5}⟩ ⟨11, {1}⟩, ⟨6, {5}⟩
hI[5] = 5 hC[5] = 10 ⟨5, {2}⟩, ⟨10, {1}⟩ ⟨11, {1}⟩

d ⟨1, 4⟩ hI[1] = 14 hC[1] = 15 ⟨5, {2}⟩, ⟨10, {4}⟩, ⟨14, {1}⟩ ⟨15, {1}⟩
hI[4] = 11 hC[4] = 15 ⟨5, {2}⟩, ⟨14, {1}⟩ ⟨15, {1}⟩

Table I
VALUES OF I[u], C[u], HI AND HC AFTER EACH CHANGE.

Figure 1 shows an example of a graph going through
changes from step a to step d. Nodes with the same color are in
the same supernode. Table I shows detailed values of our data
structures. Equation 2 with k = 1 is used for incrementally
updating hash values. In step (a), HI(5) has two values, 1 and
2, because I[1] = I[2] = 5 and N(1) ̸= N(2). Other entries
are computed similarly.
Correctness of Optimal. We show that after each step t,
Algorithm 2 computes the lossless summary of Gt with min-
imum number of supernodes. We begin with an observation.

Proposition III.1. The hash function in Eq. 2 is order inde-
pendent.

That is, two nodes with the same neighbours which arrived
in a different order (e.g., ⟨u1, u2, u3⟩ and ⟨u2, u1, u3⟩), are
hashed to the same bucket for any choice of k in Equation 2.

In Algorithm 2, each supernode has a representative in the
data structures HI or HC depending on its type.

Proposition III.2. An independent set (clique) supernode has
one of its nodes u as its representative in HI (HC). That is,
the entry ⟨I[u], u⟩ in HI (⟨C[u], u⟩ in HC) is non-empty,.

Recall that Algorithm 2 after updating a hash value for a
node u does a neighborhood equality check to ensure that the
neighborhood set of node u is the same as the neighborhood
set of the representative node of that supernode under either
independent set or clique requirements. Hence, we have

Proposition III.3. At the end of step t, Algorithm 2 always
computes a lossless summary of Gt.

We now state and prove our main result.

Theorem III.4. At the end of step t, Algorithm 2 computes
the lossless summary of Gt with the minimum number of
supernodes.

Proof. We use induction on time t. Consider the case t = 1
when an edge ⟨u, v⟩ is added to an empty graph. Algorithm 2
places both nodes u and v inside a clique supernode because
C[u] = C[v] = uk + vk for any k. Hence, the number
of supernodes is 1 and minimum. Let us suppose that the
statement is true after t − 1 steps. Suppose that a new edge

⟨u′, v′⟩ arrives and the number of supernodes created by
Algorithm 2 after processing this step t is more than the
number of supernodes in the optimal summary. According
to Proposition III.3, Algorithm 2 always generates a lossless
summary. So, there must be one supernode s, at the end of
step t, with size greater than one in optimal solution that is
split into two or more supernodes in the summary constructed
by Algorithm 2. We consider three possible cases: (1) Neither
u′ nor v′ are in s; (2) Either node u′ ∈ s or v′ ∈ s; (3) Both
nodes u′ and v′ are in s.

Case 1: To show that this is not possible, we note that no
change occurred to the neighborhood of nodes in s, |s| ≥ 2.
So, all the nodes in s must have been in the same supernode
of the optimal solution before step t and hence in the same
supernode of the summary produced by Algorithm 2 before
step t. Therefore, these nodes would stay together in the same
supernode of the summary at the end of step t also and will
not be split by the algorithm.

Case 2: Now let us assume either node u′ or v′ is in s.
There are two possible scenarios: 1) supernode s existed before
⟨u′, v′⟩ was inserted or deleted in step t and one of u′ or v′

joined s after the change or 2) s was created in step t. In
the former case, the only possibility is that the node u′ and
the rest of the nodes of s are in different supernodes of the
summary constructed by the algorithm (see the discussion in
Case 1). However, based on Proposition III.2, supernode s has
one representative node u in HI or HC (in both if it is of
size 1) which enables Algorithm 2 to add u′ to supernode s.
In the latter case, the size of s cannot be greater than one
in the optimal solution because if it was greater than one the
supernode s existed before the change. On the other hand, if it
is of size one, it cannot be split further in the summary output
by Algorithm 2.

Case 3: This is similar to case 2. Nodes u′ and v′ are
in the same supernode s in the optimal solution. If s existed
before step t, it has one representative node in HI or HC and
Algorithm 2 will add both u′ and v′ to s as they will hash to
the same value by Proposition III.1. If s is a new supernode
created in step t, then the nodes u′ and v′ will be added to
that supernode in summary constructed by Algorithm 2 and
hence will be in the same supernode.

Therefore, in all cases the summary output by Algorithm 2
is the same as the optimal summary.

Complexity analysis. Algorithms 3, 4, 5, and 6 take constant
time to find nodes whose supernodes need to be updated,
to update HI and HC, to place a node into a singleton
supernode, and to add a node to a supernode.

The quality of the hash function affects the number of
neighborhood equality checks between node u and other nodes
in HI(I[u]) or HC(C[u]) in Algorithm 2 and consequently
affects the total update time. If the hash function is perfect,
each entry of HI and HC has at most one value and thus
each step takes either constant time if node u ends up with
a singleton supernode or O(|N(u)|) time if u ends up with
a supernode of size greater than one (it needs to perform

one neighborhood equality check between node u and the
representative node of supernode of node u).

IV. SCALABLE LOSSLESS ALGORITHM

Intuitively, as the degree of a node increases, the node
becomes less likely to find a set of nodes in the graph that share
the same neighborhood under either clique or independent set
conditions. In other words, it is more likely that higher degree
nodes reside in singleton supernodes and lower degree nodes
reside in crowded supernodes. Therefore, if we summarize
the nodes with low degree (less than a threshold K) we are
able to 1) achieve high reduction in nodes that remains close
to the optimal point, 2) generate a perfect hashing scheme
to eliminate the neighborhood equality check which was a
computational bottleneck in Algorithm 2.

If Vt
K represents the set of supernodes in Gt containing

nodes of degree less or equal to K, our objective in this section
is as follows. For all t, t ≥ 0,

minimize |Vt
K | subject to Ĝt = Gt. (3)

We propose a new hashing scheme which 1) updates K
different hash values of a node u in constant time 2) guarantees
a perfect hashing which is significant as it enables us to avoid
the expensive process of the neighborhood equality check
while maintaining losslessness, 3) guarantees the optimality
of summary for all nodes with degrees less or equal to K.

We assume each independent set supernode is represented
by a tuple of size K + 1 (⟨I1, I2, . . . , IK , d⟩) and each
clique supernode is represented by a tuple of size K + 2
(⟨C1, C2, . . . , Ck, , Ck+1, d⟩) where the last element d repre-
sents the degree of nodes in graph and others represent the
hash values of using different (K for independent set and
K + 1 for clique) hash functions. For example, I1(u) is a
hash function of linear sum of neighbors of node u, I2(u)
is sum of squares of neighbors of node u and etc. C1(u) is
similar to I1(u) but it also includes node u in the computation.
The hashing scheme we propose is shown by Equation 2.
Ik(u) for 1 ≤ k ≤ K and Ck(u) for 1 ≤ k ≤ K + 1 are
updated based on their previous values and the recent change
to the neighborhood of node u (i.e ⟨u, v⟩ insertion or ⟨u, v⟩
deletion). The last element d capturing the degree of node u is
incremented or decremented depending on the edge insertion
or deletion. Each Ik(u) is initialized by 0 and each Ck(u) is
initialized by uk mod P .

We note that K is a user specified threshold that allows
the algorithm to summarize only the nodes with degrees less
or equal to K, while others with degree greater than K are
placed into singleton supernodes. When there is a change in
the neighborhood of node u and its total degree so far is less
and equal than K, the algorithm incrementally updates 1 ≤
k ≤ K, Ik(u) and 1 ≤ k ≤ K+1, Ck(u) based on Equation 2.
It then searches updated tuple of node u in supernodes set. If
there exists a supernode with the same tuple, node u is added
to that supernode without requiring the neighborhood equality
check, otherwise node u will be in a singleton supernode as
there is no match for the tuple of node u.

Algorithm 7 shows the main steps. As in Algorithm 2,
supernodes are represented by two static arrays n and p. It
uses two data structures HI and HC which each entry in HI
is keyed by a tuple of size K + 1 and each entry in HC is
keyed by a tuple of size K+2. As the hashing scheme used in
Algorithm 7 is perfect (proven by Theorem IV.1), each entry
in HI or HC has exactly one value.

For each change ⟨u, v⟩, as in Algorithm 2, it first calls
findNodes function (Algorithm 3) to find all nodes whose
supernodes may need to be updated. For each node a ∈ nodes
it checks the degree of node a. If it is greater than K then
node a will be in a singleton supernode and the process is
terminated for node a (line 5-7 of Algorithm 7). Otherwise,
it calls updateH function (Algorithm 4) to update HI and
HC. Algorithm 4 checks whether node a is one of the
representatives in HI or HC (i.e. either I(a) or C(a) is
non-empty and node a is the value). If so, it is replaced by
another node in that supernode. Then Algorithm 8 is called
to update the tuple of hash values for node a. Incremental
function updates I(u) and C(u) based on the Equation 2. The
last element in I(u) or C(u) is incremented or decremented
depending on insertion or deletion.

Line 10 of Algorithm 7 searches I(a) through HI , if there
is an entry in HI (HI(I(a) has a value a′) it adds a to the
supernode of a′ by calling Algorithm 6 and terminates the
process for node a, otherwise it goes ahead and searches C(a)
through HC to see if there is a non-empty entry of HC(C(a)),
if there is, a is added to the supernode of a′ and the process
is terminated. Finally, if the Algorithm 7 found no match in
HI or HC, it adds I(a) to HI and node a to HI(I(a)) and
C(a) to HC and adds node a to HC(C(a)) and places node
a into a singleton supernode (n[a] = a, p[a] = a).
Correctness of scalable algorithm. Suppose that for two
nodes u and v, d(u) = d(v) = d and N(u) ̸= N(v). The
system of Equations 4 describes the false positive error of the
proposed hashing scheme while checking if N(u) = N(v) or
not. We will show that if K ≥ d, (4) cannot be satisfied.

∑
ui∈N(u)

ui mod P =
∑

vi∈N(v)

vi mod P

∑
ui∈N(u)

u2
i mod P =

∑
vi∈N(v)

v2i mod P

... (4)∑
ui∈N(u)

uK
i mod P =

∑
vi∈N(v)

vKi mod P

Theorem IV.1. Suppose that u and v are two vertices in G
such that d(u) = d(v) = d and let K ≥ d. Then the system
of equations (4) holds if and only if N(u) = N(v).

Proof. One direction is clear: if N(u) = N(v), all the equali-
ties in the system of equations 4 hold. We now show the other
direction using two key lemmas. Let N(u) = {u1, . . . , ud}
and N(v) = {v1, . . . , vd}. We begin with a definition.

Algorithm 7 Scalable Algorithm (Scalable)
1: Input: e = ⟨u, v⟩,+/−,K
2: nodes = findNodes(u, v)
3: for a ∈ nodes do
4: if a == u ∨ a == v then
5: if I(a)(K+1) ≥ K then▷ Degree greater than K
6: Create a singleton supernode ▷

n[a] = a, p[a] = a
7: continue
8: updateH(a)
9: I(a), C(a)← Incremental(I(a), C(a), u, v) ▷

Eq. 2
10: if I(a) ∈ HI then
11: a′ ← HI(I(a))
12: merge(a, a′)
13: continue
14: if C(a) ∈ HC then
15: a′ ← HC(C(a))
16: merge(a, a′)
17: continue
18: Add I(a) to HI and a to HI(I(u))
19: Add C(u(to HC and u to HC(C(u))
20: Create a singleton supernode ▷ n[a] = a, p[a] = a

Algorithm 8 Incremental
1: Input: I(u), C(u), u, v,
2: Update degree, IK+1(u), CK+2(u)
3: Update Ik(u) and Ck(u), based on Eq 2
4: return C(u), I(u)

The elementary symmetric polynomials on d variables
are defined as follows: e1(X1, X2, . . . , Xd) =

∑
1≤j≤d Xj ,

e2(X1, X2, . . . , Xd)
=

∏
1≤i≤j≤d XiXj , . . . , ed(X1, X2, . . . , Xd) =

X1X2 . . . Xd.

The following lemma states that if Eqn. (4) holds, then the
d elementary symmetric polynomials are all equal modulo P .

Lemma IV.2. Suppose that
∑

ui∈N(u) u
j
i =

∑
vi∈N(v) v

j
i

mod P for all j = {1, 2, . . . ,K}. Then ek(u1, u2, . . . , ud) =
ek(v1, v2, . . . , vd) mod P , for all k = {1, 2, . . . , d}.

Proof. We prove the lemma by induction on k. Clearly,
the claim is true for k = 1 as e1(u1, u2, . . . , ud) =
e1(v1, v2, . . . , vd) mod P is an equation in (4). Let us assume
that the induction hypothesis holds for all k ≤ t and prove it
for k = t+ 1. For this, we make use of Newton’s identity.

Proposition IV.3. For all d ≥ 1 and d ≥ k ≥ 1,

kek(x1, .., xd) =

k∑
i=1

(−1)i−1ek−i(x1, .., xd)Pi(x1, .., xd) mod P

where Pi(x1, . . . , xd) =
∑d

j=1 x
i
j and e0(x1, . . . , xd) = 1.

Using the facts,
∑

ui mod P =
∑

vi mod P,
∑

u2
i

mod P =
∑

v2i mod P, . . . ,
∑

ut+1
i mod P =

∑
vt+1
i

mod P , and ek(u1, u2, . . . , ud) mod P = ek(v1, v2, . . . , vd)
mod P , for all k ∈ {1, 2, . . . , t}. and combining them with
Newton’s identity, we get et+1(u1, u2, . . . , ud) mod P =
et+1(v1, v2, . . . , vd) mod P .

The following lemma shows that if the d elementary sym-
metric polynomials are equal modulo P for two vertices of
degree d, their neighbourhoods are the same.

Lemma IV.4. Suppose d(u) = d(v) = d and
ek(u1, u2, . . . , ud) = ek(v1, v2, . . . , vd) mod P , for all k ∈
[1, d]. Then N(u) = N(v).

Proof. To show this, we use the following equation:

d∏
i=1

(x+ui) = xd+e1(u1, . . . , ud)x
d−1+ · · ·+ed(u1, . . . , ud)

From the above expression and the assumption that
ek(u1, u2, . . . , ud) = ek(v1, v2, . . . , vd) mod P , for all k =
{1, 2, . . . , d}, we can conclude that

∏d
i=1(x+ui) =

∏d
i=1(x+

vi) mod P . Using this identity and the well known fact that
if a prime P divides a1a2 . . . an, then it must divide ai for
some i, we can show that {u1, u2, . . . , ud} = {v1, v2, . . . , vd}.
To prove this, substitute x = −u1 in the identity above. As
the LHS of the equation is 0, it implies that u1 = vi for
some i using the fact above. Repeating this reasoning helps
us conclude that N(u) = N(v).

The two lemmas together prove Theorem IV.1.

A similar result holds for clique supernodes with N+(u)
instead of N(u) and K ≥ d+ 1 equations instead of K ≥ d.
Thus, we obtain

Corollary 1. At the end of step t, Algorithm 7 computes a
lossless summary that is optimal for nodes of degree at most
K.

Complexity analysis. As in Algorithm 2, findNodes, updateH
take constant time and we need O(K) time to update hash
values of nodes where K is user specified threshold (between
10-50). Updating supernodes takes constant time as we do not
need to perform neighborhood equality check. Hence, the time
for each update is O(K) if the degree of node u is less than
K; otherwise it takes constant time to place u in a singleton
supernode.

A. Summarizing Directed Graphs

In this section, we extend the proposed scalable algorithm
to summarize dynamic directed graphs. We begin with the
definition of independent sets and cliques in this setting.

Definition IV.1. (1) A set of nodes I is an independent set in
a directed graph

−→
G if and only if their in-neighbor and out-

neighbor sets are the same. That is, for all u, v ∈ I , Nin(u) =
Nin(v) & Nout(u) = Nout(v) (2) A set of nodes C is a

clique in a directed graph
−→
G if and only if: Nin(u) ∪ {u} =

Nin(v) ∪ {v} & Nout(u) ∪ {u} = Nout(v) ∪ {v}

To adapt the scalable approach for directed graphs,
we use the threshold K to bound the in-degree and
the out-degree of the vertices to be processed. In
particular, we use K/2 as an upper bound for the
in-degree and the out-degree. Therefore, each I su-
pernode a tuple ⟨I1, . . . , IK/2, din, IK/2+1, . . . , IK , dout⟩
of size K + 2 and each C supernode is a tu-
ple ⟨C1, . . . , CK/2, CK/2+1, din, CK/2+2, . . . , CK+3, dout⟩ of
size K + 4 where K is an even number. The first K/2 (or
K/2 + 1 in C) elements are hash values of in-neighbors of
node u for I (for C), followed by the in-degree of node u;
the next K/2 (or K/2 + 1 in C) elements are hash values
of out-neighbors of node u, followed by the out-degree of
node u. It also uses Equation 2 for updating hash values.
Algorithm 9 shows the main steps of directed dynamic graph
summarization. It receives an edge change ⟨−→u, v⟩ and the
number of hash functions K. It needs to update the hash
values of the out-neighbors of node u and hash values of
the in-neighbors of node v. If the degree of in-neighbors or
out-neighbors of nodes u or v exceeds the threshold K/2,
it puts that node into a singleton supernode. The other steps
are similar to scalable algorithm; after updating hash values it
searches through HI or HC to see is there a match or not.
Finally if there is not a match in HI or HC, it puts that node
into a singleton supernode and adds both I and C to HI and
HC.

Algorithm 9 Directed-Scalable Algorithm
1: Input: ⟨−→u, v⟩,+/−,K
2: ▷ Updating out neighbors hashes for u and in-neighbors

for v
3: for a ∈ {u, v} do
4: if I(a)(K + 2) ∨ I(a)(K/2 + 1) ≥ K/2 then
5: Create a singleton supernode ▷ n[a] = a, p[a] = a
6: continue
7: updateH(a)
8: if a == u then
9: Update I(a)(K + 2) and C(a)(K + 4)

10: if a == v then
11: Update I(a)(K/2 + 1) and C(a)(K/2 + 2)

12: I(a), C(a)← Incremental(I(a), C(a), u, v) ▷ Eq. 2
13: if I(a) ∈ HI then
14: a′ ← HI(I(a))
15: merge(a, a′)
16: continue
17: if C(a) ∈ HC then
18: a′ ← HC(C(a))
19: merge(a, a′)
20: continue
21: Add I(a) to HI and a to HI(I(u))
22: Add C(u) to HC and u to HC(C(u))
23: Create a singleton supernode ▷ n[a] = a, p[a] = a

Graph Abbr Nodes Edges
cnr-2000 CN 325,557 5,565,380
Eu-2005 EU 862644 19,235,140

hollywood-2009 H1 1,139,905 113,891,327
hollywood-2011 H2 2,180,759 228,985,632
indochina-2004 IC 7,414,866 150,984,819

uk-2002 U1 18,520,486 261,787,258
arabic-2005 AR 22,744,080 553,903,073

uk-2005 U2 39,459,925 1,581,073,454
Table II

SUMMARY OF DATASETS

V. EXPERIMENTS

Implementation: We implemented the proposed algo-
rithms in Java 14 on a machine with dual 6 core
2.10 GHz Intel Xeon CPUs, 64 GB RAM and run-
ning Ubuntu 18.04.2 LTS (https://anonymous.4open.science/r/
GraphSumDynamic-359C/README.md). Other state-of-the-
art algorithms were also implemented in Java and they are
publicly available. All the dynamic algorithms are evaluated
in a fully dynamic scenario; each time an edge is added to or
removed from graph, the summary is updated dynamically.
Datasets: We choose different graphs varying from moderate
to large (see Table II for details). All graphs have been
symmetrized. We also perfomed experiments with the unsym-
metrized versions of several graphs (directed case). Due to
space constraints we mostly show results for symmetrized
graphs (undirected case).
Baseline algorithms: We use state-of-the-art lossless algo-
rithms including batch [17], [18] and dynamic [2]. Although
the objective function of [2] is different, it is the only state-of-
the-art dynamic lossless algorithm that scales to large graphs.
Source codes of all state-of-the-art lossless algorithms are
publicly available and they were all implemented in Java.
G-SCIS [17] does not require any input parameters. For
LDME [18] we use k=20 as the size of DOPH signature. There
are 4 different versions of MoSSo (MoSSo-Greedy, MoSSo-
MCMC, MoSSo-Simple and MoSSo-MoSSo) in [2]. We use
MoSSo-MoSSo (MoSSo) as it is orders of magnitude faster
than the other variants and we use the same configuration as in
[2], e = 0.3 and c = 120, where e is the escape probability and
c is the sample size of each trial (see [2]). SWeG [9] is another
state-of-the-art algorithm but we decided to not include it in
our experiments because first the source code is not publicly
available and also because it was improved by LDME [18],
which we use in our experiments.
Evaluation: Reduction in nodes (RN) [17], [11] is a met-
ric used to evaluate the degree of summarization for each
algorithm. It is defined as RN = (|V | − |V|)/|V |. Regarding
MoSSo, since it produces also correction graphs C+, C−, we
need to consider them in order to reconstruct the original
graph. Thus, RN for MoSSo is more precisely computed as
RN = (|V | − (|V ∪ V (C+) ∪ V (C−)|))/|V |.
Average processing time per change: We compare the aver-
age processing time per edge change of different algorithms.
The averages are obtained by inserting or deleting 100 random
edges each time and performing 10 experiments. Since batch

CN EU H1 H2
100

102

104

106

108

A
ve

ra
ge

Ti
m

e
(m

ic
ro

se
c)

Scalable
Optimal
MoSSo
G-SCIS
LDME

Figure 2. Average processing time per edge for Optimal and Scalable vs.
MoSSo, G-SCIS, LDME. Scalable is up to 8 and 7 orders of magnitude faster
than LDME and G-SCIS, resp., and around 30 times faster than MoSSo.

algorithms are not able to incrementally update the summary,
they need to obtain the summary from scratch for each change
to the graph. Figure 2 shows the results of our comparison in
microseconds. We can see for instance that Scalable is up to
8 and 7 orders of magnitude faster than LDME and G-SCIS,
respectively, and also around 30 times faster than MoSSo. It is
interesting to note that, if 1 million changes occur in a graph
(take H2 for example), Scalable is 2 orders of magnitude faster
than running just once a batch algorithm at the end of the 1
million-edge sequence. Also as the size of graph increases,
both Optimal and Scalable have a higher chance for grouping
nodes and consequently their average processing time for each
change decreases. MoSSo also exhibits a similar behavior as
the graph sizes become larger. We observed in our experiments
that the average processing time per edge was constant for each
dataset, namely that the running time as the graph gets more
insertions grows linearly. However, this constant is different
for different graphs, not related to their size.
Accumulative running time and reduction in nodes: We
compute the accumulative running time and reduction in nodes
of MoSSo and proposed methods after |E| steps of edge
insertion. The results are shown in Figures 3 and 5. Optimal is
faster than MoSSo and provides far better reduction in nodes.
Scalable is up to 40x faster than MoSSo and also up to 10x
faster than the optimal algorithm (see for instance CN and
U2). We also provide a more refined analysis of accumulated
time in Figure 4. We see that all three dynamic algorithms,
Optimal, Scalable, and MoSSo, scale linearly with |E|, with
Optimal and Scalable being significantly better than MoSSo.
In terms of RN, Figure 5, we can see that both Optimal and
Scalable outperform MoSSo.
Sensitivity analysis to input parameters: Next we show the
performance of Scalable with respect to the number of hash
functions. Figure 6 shows these results and we can see that
Scalable behaves similarly for different datasets as k varies.
Running time does not increase much and the RN value only
changes slightly after some point, k value of 20 or 30, so that
is a sweet spot for k.
Performance on Directed Graphs: Since other state-of-the-
art lossless algorithms are not able to summarize directed
graphs, we can only show the performance of our Directed-
Scalable algorithm in a fully dynamic scenario in Figure 7.
Figure 7, for instance, shows that Directed-Scalable is able to

https://anonymous.4open.science/r/GraphSumDynamic-359C/README.md
https://anonymous.4open.science/r/GraphSumDynamic-359C/README.md

CN EU H1 H2 IC U1 AR U2
101

102

103

104
A

cc
um

ul
at

ed
Ti

m
e

(s
ec

)

Scalable
Optimal
MoSSo

Figure 3. Accumulated running time for Scalable, Optimal, and MoSSo after
E changes to each graph. Scalable is up to 40x faster than MoSSo and also
up to 10x faster than the optimal algorithm (see for instance U2 and CN).

221 222 223
22

24

26

28

210

Number of changes

MoSSo
Optimal
Scalable

(a) EU

223 224 225
24

26

28

210

212

Number of changes

MoSSo
Optimal
Scalable

(b) H1

Figure 4. Accumulated running time in seconds (vertical axis) for Scalable vs
Optimal vs MoSSo with respect to number of changes (horizontal axis). (a)
Time measured for EU every 2M changes, (b) Time measured for H1 every
8M changes. As seen, the scalability of all three algorithms is quite linear in
|E|, with Optimal and Scalable being significantly better than MoSSo.

CN EU H1 H2 IC U1 AR U2

10

20

30

40

50

60

R
N

(%
)

Optimal
Scalable
MoSSo

Figure 5. Reduction in nodes for Optimal, Scalable, and MoSSo. Both
Optimal and Scalable outperform MoSSo. For CN, EU, IC, U1, AR, U2
Scalable is quite close to Optimal.

10 20 30 40 50

101

102

103

number of hashes

(a) running time

10 20 30 40 50

10

20

30

40

50

number of hashes

R
N

(%
)

CN
EU
IC
U1
U2
AR

(b) RN

Figure 6. Effects of number of hashes on the performance of Scalable.
Running time in (a) is in seconds.

CN IC U1 AR
101

102

103

A
cc

um
ul

at
ed

Ti
m

e
(s

ec
)

(a) running time

CN IC U1 AR

26

28

30

32

34

36

R
N

(%
)

Directed-Scalable

(b) RN

Figure 7. Performance of Directed-Scalable on different directed graphs in a
fully dynamic scenario.

achieve a 35% reduction in nodes for CN and in most cases the
RN is more than 25%. The figure also shows a running time
performance similar to that of Scalable on undirected graphs.

VI. RELATED WORK

Graph summarization has been studied extensively in the
recent years (see [5], [4] for an overview). The algorithms
are generally classified as grouping and non-grouping methods
and our work belongs to the former category. The grouping
based methods can be either lossless or lossy and can address
static or dynamic graphs. Table III categorizes the existing
grouping-based approaches on static/dynamic graphs.

In the first row, we show the works that propose correction
set-based approaches. In this framework [18], [9], [10], [19],
two sets of side information (C+, C−) are stored along
with the summary graph and are used for correction during
reconstruction. The framework was introduced by [10], then
refined in [19] and made scalable by [9]. The latter addresses
both the lossless and lossy cases for static graphs. Work [18]
improves on the approach of [9] in terms of scalability and
[20] offers interpretability of the supernodes in the summary.
Ko et al. in [2] proposed the first dynamic lossless algorithm,
MoSSo, in this framework. MoSSo is able to update the
summary in near-constant time. [21] proposed a parameter-free
incremental lossless algorithm in the correction set framework,
based on exploring the subgraph influenced by the insertion of
an edge. However, achieving parameter-freeness comes at the
cost of being up to an order of magnitude slower than MoSSo.

In the second row, we show the works that propose utility-
based approaches. The pioneering work in this category is
[11] where the goal is minimize the number of supernodes
while ensuring the utility of the summary does not drop below
a threshold. This work produces lossy summaries for static
graphs. Work [17] proposes a lossless summarization approach
for static graphs as well as scales up the lossy summarization,
again for static graphs. Our proposed approach in this present
paper is the first to address dynamic lossless summarization
in the utility based framework.

In the third row, we show the works that produce lossy
summaries which contain superedges weighted by a fraction
representing the number of edges between vertices in two
supernodes over the maximum number of possible edges

Name
Style Lossless(Static) Lossy(Static) Lossless(Dynamic) Lossy(Dynamic)

Correction-set [9], [10], [18], [19], [20] [9], [10] [2], [21]
Utility-Based [17] [17], [11] Proposed

Weighted Adjacency-Based [12], [13], [22] [23], [1]
Decomposition-Based [24], [25] [26], [25], [27] [16] [15], [28], [29], [30], [14], [31]

Table III
AN OVERVIEW OF THE GROUPING-BASED ALGORITHMS ON PLAIN (STATIC/DYNAMIC) GRAPHS

between them. Given such a summary, the goal is the minimize
the error between the original and the reconstructed graph,
referred to as the reconstruction error. All these works address
the lossy case. [12], [13], [22] deal with the static case,
whereas [23], [1] the dynamic case.

Finally, works listed in the fourth row fall under the
decomposition-based approach which aims at producing sum-
maries tailored to answering certain types of graph queries
[24], [26] or compressing the graph based on certain types of
graphlets such as triangles, higher order cliques and quasi-
cliques, chains. [25], [27]. All these works address static
graphs. Dynamic graph summarization has also received con-
siderable attention in this category. [16] addresses the lossless
case using a minimum description length (MDL) technique to
minimize the number of required bits for describing the graph.
However, the algorithm of [16] does not scale to large graphs.
Works [15], [28], [29], [30], [14], [31] address the lossy case.
All these algorithms are sketching-based approaches using
approximation techniques not applicable to the lossless case.

VII. CONCLUSIONS

In this work, we focused on lossless summarization of
dynamic graphs where the objective is to minimize the number
of supernodes in the summary after each change. We presented
two lossless summarization algorithms, Optimal and Scalable,
for summarizing fully dynamic graphs. Our results are in the
G-SCIS framework [17] which produces summaries that can
used as-is in several graph analytics tasks while also achieving
strong compression. While G-SCIS is a batch algorithm, our
algorithms are fully dynamic and can respond rapidly to each
change in the graph. Not only are our algorithms able to
outperform G-SCIS and other batch algorithms by several or-
ders of magnitude, they also significantly outperform MoSSo,
the state-of-the-art in lossless dynamic graph summarization.
While our first algorithm, Optimal, produces always the most
optimal summary, our second algorithm, Scalable is able to
trade the amount of node reduction for extra scalability. For
reasonable values of the parameter K, Scalable is able to
outperform Optimal by an order of magnitude in speed, while
keeping the rate of node reduction close to that of Optimal.

REFERENCES

[1] I. Tsalouchidou, F. Bonchi, G. D. F. Morales, and R. Baeza-Yates,
“Scalable dynamic graph summarization,” IEEE TKDE, vol. 32, no. 2,
pp. 360–373, 2018.

[2] J. Ko, Y. Kook, and K. Shin, “Incremental lossless graph summariza-
tion,” in SIGKDD, 2020, pp. 317–327.

[3] K. Hanauer, M. Henzinger, and C. Schulz, “Recent advances in fully
dynamic graph algorithms,” arXiv preprint arXiv:2102.11169, 2021.

[4] A. Khan, S. S. Bhowmick, and F. Bonchi, “Summarizing static and
dynamic big graphs,” PVLDB, vol. 10, no. 12, pp. 1981–1984, 2017.

[5] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” CSUR, vol. 51(3), pp. 1–34, 2018.

[6] A. Bonifati, S. Dumbrava, and H. Kodylakis, “Graph summarization,”
arXiv preprint arXiv:2004.14794, 2020.

[7] P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in WWW, 2004, pp. 595–602.

[8] A. Maccioni and D. J. Abadi, “Scalable pattern matching over com-
pressed graphs via dedensification,” in SIGKDD, 2016, pp. 1755–1764.

[9] K. Shin, A. Ghoting, M. Kim, and H. Raghavan, “Sweg: Lossless and
lossy summarization of web-scale graphs,” in WWW, 2019, pp. 1679–
1690.

[10] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with
bounded error,” in SIGMOD, 2008, pp. 419–432.

[11] K. A. Kumar and P. Efstathopoulos, “Utility-driven graph summariza-
tion,” PVLDB, pp. 335–347, 2018.

[12] K. Lee, H. Jo, J. Ko, S. Lim, and K. Shin, “Ssumm: Sparse summariza-
tion of massive graphs,” in SIGKDD, 2020, pp. 144–154.

[13] M. Riondato, D. Garcı́a-Soriano, and F. Bonchi, “Graph summarization
with quality guarantees,” DMKD, pp. 314–349, 2017.

[14] P. Zhao, C. C. Aggarwal, and M. Wang, “gsketch: On query estimation
in graph streams,” PVLDB, vol. 5, no. 3, 2011.

[15] X. Gou, L. Zou, C. Zhao, and T. Yang, “Fast and accurate graph stream
summarization,” in ICDE, 2019, pp. 1118–1129.

[16] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “Time-
crunch: Interpretable dynamic graph summarization,” in SIGKDD, 2015,
pp. 1055–1064.

[17] M. Hajiabadi, J. Singh, V. Srinivasan, and A. Thomo, “Graph summa-
rization with controlled utility loss,” in SIGKDD, 2021, pp. 536–546.

[18] Q. Yong, M. Hajiabadi, V. Srinivasan, and A. Thomo, “Efficient graph
summarization using weighted lsh at billion-scale,” in SIGMOD, 2021,
pp. 2357–2365.

[19] K. U. Khan, W. Nawaz, and Y.-K. Lee, “Set-based approximate approach
for lossless graph summarization,” Computing, pp. 1185–1207, 2015.

[20] K. Lee, J. Ko, and K. Shin, “Slugger: Lossless hierarchical summariza-
tion of massive graphs,” arXiv preprint arXiv:2112.05374, 2021.

[21] Z. Ma, J. Yang, K. Li, Y. Liu, X. Zhou, and Y. Hu, “A parameter-
free approach for lossless streaming graph summarization,” in DASFAA.
Springer, 2021, pp. 385–393.

[22] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian,
“Fast influence-based coarsening for large networks,” in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014, pp. 1296–1305.

[23] S. Fernandes, H. Fanaee-T, and J. Gama, “Dynamic graph summariza-
tion: a tensor decomposition approach,” DMKD, pp. 1397–1420, 2018.

[24] W. Fan, Y. Li, M. Liu, and C. Lu, “Making graphs compact by lossless
contraction,” The VLDB Journal, pp. 1–25, 2022.

[25] L. Wang, Y. Lu, B. Jiang, K. T. Gao, and T. H. Zhou, “Dense subgraphs
summarization: An efficient way to summarize large scale graphs by
super nodes,” in International Conference on Intelligent Computing.
Springer, 2020, pp. 520–530.

[26] S. Kang, K. Lee, and K. Shin, “Personalized graph summarization:
formulation, scalable algorithms, and applications,” arXiv preprint
arXiv:2203.14755, 2022.

[27] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Vog: Summarizing
and understanding large graphs,” in Proceedings of the 2014 SIAM
international conference on data mining. SIAM, 2014, pp. 91–99.

[28] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: sparsification,
spanners, and subgraphs,” in PODS, 2012, pp. 5–14.

[29] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From
big bang to big crunch,” in SIGMOD, 2016, pp. 1481–1496.

[30] A. Khan and C. Aggarwal, “Toward query-friendly compression of rapid
graph streams,” SNAM, pp. 1–19, 2017.

[31] T. Blume, D. Richerby, and A. Scherp, “Incremental and parallel
computation of structural graph summaries for evolving graphs,” in
CIKM, 2020, pp. 75–84.

	Introduction
	Preliminaries: G-SCIS Framework
	Optimal Lossless Algorithm
	Scalable lossless algorithm
	Summarizing Directed Graphs

	Experiments
	Related Work
	Conclusions
	References

