
Towards Practically Feasible Answering of
Regular Path Queries in LAV Data Integration

Manuel Tamashiro
University of Victoria

British Columbia, Canada
manuelt@cs.uvic.ca

Alex Thomo
University of Victoria

British Columbia, Canada
thomo@cs.uvic.ca

Srinivasan Venkatesh
University of Victoria

British Columbia, Canada
venkat@cs.uvic.ca

ABSTRACT

Regular path queries (RPQ’s) are given by means of reg-
ular expressions and ask for matching patterns on labeled
graphs. RPQ’s have received great attention in the context
of semistructured data, which are data whose structure is
irregular, partially known, or subject to frequent changes.
One of the most important problems in databases today is
the integration of semistructured data from multiple sources
modeled as views. The well-know paradigm of computing
first a view-based rewriting of the query, and then evaluat-
ing the rewriting on the view extensions is indeed possible
for RPQ’s. However, computing the rewriting is computa-
tionally hard as it can only be done (in the worst case) in
not less than 2EXPTIME. In this paper, we provide prac-
tical evidence that computing the rewriting is hard on the
average as well. On the positive side, we propose automata-
theoretic techniques, which efficiently compute and utilize
instead the complement of the rewriting. Notably using the
latter, it is possible to answer a query, and this makes the
view-based answering of RPQ’s fairly feasible in practice.

1. INTRODUCTION

Regular path queries (RPQ’s) are in essence regular expres-
sions over a fixed database alphabet. They have received a
great deal of attention in the recent years due to the well-
known semistructured data model. Semistructured data is
data whose structure is irregular, partially known, or subject
to frequent changes [1]. They are commonly found in a mul-
titude of applications in areas such as communication and
traffic networks, web information systems, digital libraries,
biological data management, etc.

Semistructured data are formalized as edge labeled graphs,
and there is an inherent need to navigate these graphs by
means of a recursive query language. As pointed out by
seminal works in the field (cf. [7, 15, 4, 3, 6]), regular path
queries (RPQ’s) are the “winner” when it comes expressing
navigational recursion over graph data. These queries are in
essence regular expressions over the database edge symbols,
and in general, one is interested in finding query-matching
database paths, which spell words in the (regular) query
language. For example, the RPQ

Q = AirCanada∗ · (Lufthansa + ǫ)

asks for all the pairs of cities connected by (possibly mul-
tihop) Air Canada routes, followed by a last optional seg-
ment serviced by the partner company Lufthansa. We can
observe that evaluating RPQ’s on semistructured databases
amounts to [regular expression] pattern matching on graphs
as opposed to strings.

Now, suppose that we do not have a database available.
Rather, what we have is a set of views on the possible
data. These views represent partial information about the
database and are expressed by regular expressions as well.
For example, we could be given two views with definitions
V1 = AirCanada · AirCanada and V2 = Lufthansa. No-
tably, the view definitions are nothing else but regular path
queries. Additionally, for each view, we are given a set of
pairs that represent the answer to these views (considering
them as RPQ’s).

This is the classical scenario in LAV (“local-as-view”) data
integration (cf. [8, 4, 3, 13, 6, 2, 11]). The basic problem
in this setting is to be able to answer a given query using
only the available view information. This is a very impor-
tant problem which emerges in a variety of situations both
commercial (when two similar companies provide partial ac-
cess to their data) and scientific (combining research results
from different bioinformatics repositories). Data integration
appears with increasing frequency as the volume and the
need to share existing data explodes.

Answering queries using views is typically achieved by re-
formulating the query in terms of the view definitions and
then evaluating it on the provided view data. For example,
the above query Q can be reformulated (or rewritten) as
Q′ = V ∗

1 · (V2 + ǫ). Then, if there are pairs (a, b) and (b, c)
associated with views V1 and V2 respectively, we produce
(a, c) as an answer to Q. Of course, had we a database in
the classical sense, we would be able to also produce pairs of
nodes connected by paths with an odd number of Air Canada
segments followed by an optional Lufthansa segment. How-
ever, for the given views (recall V1 = AirCanada·AirCanada)
this is not possible.

There are two lines of research for answering RPQ’s in LAV
data integration. Works in the first line of research study the
computation of rewritings, which are regular path queries
over the view names (cf. [3, 9]). Having such rewritings is
desirable because they enable query answering in polynomial
time with respect to the size of the data. On the other hand,

works in the second line of research study the perfect (or
certain) answering of RPQ’s, which asks for all the answer
tuples obtainable on every possible database consistent with
the views (cf. [4, 5, 11]). However, obtaining all the certain
answer is much more computationally expensive. As it has
been shown in [4], to decide whether a tuple belongs in the
certain answer is coNP-complete with respect to the size of
data. Notably, the answer obtained by using a rewriting is a
subset (sometimes strict) of the certain answer, and thus, by
using a rewriting we get a lower approximation, which might
be an acceptable compromise given the data complexity of
computing the full certain answer (see [6] for a discussion).

The most important cornerstone in the rewriting of RPQ’s
using views is the work by Calvanese, De Giacomo, Lenz-
erini, and Vardi [3], which shows that the rewriting is indeed
possible by giving an algorithm for computing it. The com-
plexity of computing the (maximal) view-based rewriting of
a regular path query Q is shown to be in 2EXPTIME (in
the size of the query) and this bound is also shown to be
tight ([3]). Also, in [3] it is shown that the size of the au-
tomaton for the rewriting can be doubly exponential in the
size of the query Q as measured by the size of a simple NFA
for Q.

It should be clear what the inherent problem complexity of
22n

(tight) faces us with in practice. If n, the query size, is
just 6 for example, then only printing a doubly exponential

rewriting would need about 226

≈ 18 · 1018 instructions that
is 18 · 1018/(30, 000 · 106 · 60 · 60 · 24 · 365) ≈ 19 years for a
modern Intel processor working at about 30, 000 millions of
instructions per second.

This illustrates that obtaining a view-based rewriting is com-
putationally hard except for very small query instances. How-
ever, it is possible to argue that the analysis in [3] is worst-
case and hence it might take only reasonable amount of time
to compute rewritings on the average. Unfortunately, our
experimental results indicate that this is not the case (see
Section 6). Experimentally, we were unable to compute1

the view-based rewriting, in reasonable time and space, for
about one third of the time while working on “randomly
generated” instances. This gives us evidence that comput-
ing rewritings is indeed hard on the average as well. We
believe that this observation is an important contribution
of our paper given the importance of the database problem
being studied.

In order to make feasible the answering of RPQ’s using
views, we examine each step in the method of [3]. Then,
we show that we can in fact avoid the most expensive step
in the method by evaluating instead the complement of the
rewriting on the view data. The complement is in the form
of an NFA as opposed to a DFA for the rewriting (if the
latter is fully computed). This might suggest that the eval-
uation on the view data would be slower compared to the
evaluation of the DFA for the rewriting. Of course, this is
relevant only for the cases when the rewriting can be com-
puted in reasonable time and space. Nevertheless, we show
that even in such cases, by using a bitvector implementation
of NFA’s, we can achieve similar performance and sometimes

1Using the method of [3]

even better. This is attributed to hardware parallelism and
better hardware cache utilization.

We also found that a seemingly inexpensive polynomial step
in the method of [3] was a serious performance bottleneck.
In order to overcome it, we show a simple optimization which
gives more than six fold speedup.

In short, we show that by partially employing the method
of [3], and using our techniques, the hard problem of an-
swering regular path queries using views becomes practically
(fairly) feasible.

This paper is the first to shed light on the practical feasibility
of the very basic and important problem of answering RPQ’s
in LAV data integration systems and to provide positive
results in this direction.

The rest of the paper is organized as follows. In Section 2,
we formally define semistructured databases, regular path
queries, and their semantics. In Section 3, we discuss the
query answering in LAV information integration systems.
Next, in Section 4, we examine the algorithm of [3] for ob-
taining maximal view-based rewritings. Then, in Section 5
we present our optimization techniques. We show our ex-
perimental evaluations in Section 6. Finally, Section 7 con-
cludes the paper.

2. SEMISTRUCTURED DATABASES AND
REGULAR PATH QUERIES

We consider a database to be an edge labeled graph. This
graph model is typical in semistructured data, where the
nodes of the database graph represent the objects and the
edges represent the attributes of the objects, or relationships
between the objects.

Example 1. We show in Figure 1 a database with informa-
tion about an online store, which sells books and software
products. A book has an author and covers some software
product(s). A software product has a company and possibly
other software subproducts. A company might recommend
some books for its products. The database is semistructured
because the schemas of its objects are not rigid. For exam-
ple, a company can only optionally recommend books, or we
might be missing information about what products a book
might cover.

Formally, let ∆ be a finite alphabet. We shall call ∆ the
database alphabet. Elements of ∆ will be denoted R, S,
As usual, ∆∗ denotes the set of all finite words over ∆.
Words will be denoted by u, w, We also assume that
we have a universe of objects, and objects will be denoted
a, b, c, A database DB over ∆ is a subset of N × ∆ ×
N , where N is a set of objects, that we usually will call
nodes. We view a database as a directed labeled graph, and
interpret a triple (a, R, b) as a directed edge from object
a to object b, labeled with R. If there is a path labeled

R1, R2, . . . , Rk from a to b, we write a
R1R2...Rk−→ b.

A (user) query Q is a regular language over ∆. For the
ease of notation, we will blur the distinction between regular

author

book book softwaresoftware software

Online Store

recommends

covers
company

MS Office Plain & Simple

software

Excel

MS Office

Microsoft
software

Data Analysis Toolpack

Excel Step−by−Step

covers

recommends

Curtis Frye

wrotewrote

author

Figure 1: A graph database.

languages and regular expressions that represent them. Let
Q be a query and DB a database. Then, the answer to Q
on DB is defined as

ans(Q,DB) = {(a, b) : a
w

−→ b in DB for some w ∈ Q}.

Example 2. Consider again the database in Figure 1. Sup-
pose that the user would like to know for each software prod-
uct, all the books that might have some useful information
about the product. For this, the user can give the regular
path query Q = covers · software∗ . This query, on the
database DB in Figure 1, will have as answer

ans(Q,DB) =

{(MS Office Plain & Simple, MS Office),

(MS Office Plain & Simple, Excel),

(MS Office Plain & Simple, Data Analysis Toolpack),

(Excel Step-by-Step, Excel),

(Excel Step-by-Step, Data Analysis Toolpack)}

The well-known method for answering RPQ’s on a given
database (cf. [1]) is as follows. In essence, we create state-
object pairs from the query automaton and the database.
For this, let A be an NFA that accepts an RPQ Q. Starting
from an object a of a database DB , we first create the pair
(p0, a), where p0 is the initial state in A. Then, we create all
the pairs (p, b) such that there exist a transition from p0 to
p in A, and an edge from a to b in DB , and furthermore the
labels of the transition and the edge match. In the same way,
we continue to create new pairs from existing ones, until we
are not anymore able to do so. In essence, what is happening
is a lazy construction of a Cartesian product graph of the
query automaton with the database graph. Of course, only
a small (hopefully) part of the Cartesian product is really
constructed depending on the selectivity of the query.

After obtaining the above Cartesian product graph, produc-
ing query answers becomes a question of computing reach-
ability of nodes (p, b), where p is a final state, from (p0, a),
where p0 is the initial state. Namely, if (p, b) is reachable

from (p0, a), then (a, b) is a tuple in the query answer.

3. VIEWS IN INFORMATION INTEGRATION
SYSTEMS

Let V1, . . . , Vn be languages (queries) on alphabet ∆. We
will call them views and associate with each Vi a view name
vi.

We call the set Ω = {v1, . . . , vn} the outer alphabet, or view
alphabet. For each vi ∈ Ω, we set def(vi) = Vi. The sub-
stitution def associates with each view name vi in the Ω
alphabet the language Vi. The substitution def is applied to
words, languages, and regular expressions in the usual way
(see e.g. [19]).

A view graph is database V over Ω. In other words, a view
graph is a database where the edges are labeled with symbols
from Ω. View graphs can also be queried by regular path
queries over Ω. However, as explained below these are not
queries given by the user, but rather rewritings computed
by the system.

In a LAV (“local-as-view”) information integration system
[13], we have the “global schema” ∆, the “source schema”

Ω, and the “assertion” def : Ω → 2∆∗

. The only extensional
data available is a view graph V over Ω (see also [4, 5, 6,
11]).

The user queries are expressed on the global schema ∆, and
the system has to answer based solely on the information
provided by the views. In order to do this, the system has
to reason with respect to the set of possible databases over ∆
that V could represent. Under the sound view assumption,
a view graph V defines a set poss(V) of databases as follows:

poss(V) =

{DB : V ⊆
⋃

i∈{1,...,n}

{(a, vi, b) : (a, b) ∈ ans(Vi,DB)}}.

(Recall that Vi = def(vi).) The above definition reflects the
intuition about the connection between an edge (a, vi, b) in
V with some path from a to b in the possible DB ’s, labeled
by some word in Vi.

b1

2v3v

v1

��
��
��
��

��
��
��

��
��
��

�
�
�
�

a

c

v

S

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
���

��
��

��
��
��

a

b

c

R
S

RS

S

R

d

e
f

�
�
�
�

Figure 2: A view graph and a possible database.

Example 3. Consider the view graph in Figure 2 [left], and
view definitions V1 = def(v1) = RS∗, V2 = def(v2) = S∗R,
and V3 = def(v3) = S+. Then, a possible database is shown
in the same figure [right]. Observe that the views are sound
only. They are not required to be complete. For example,
we do not have a v2-edge from f to b in the view graph.
In fact, we do not even have an f object in the view graph.
We remark that view soundness is usually the only “luxury”
that we have in information integration systems, where the
information is often incomplete.

The meaning of querying a view graph through the global
schema ∆ is defined as follows. Let Q be a query over ∆.
Then

ans(Q,V) =
⋂

DB∈poss(V)

ans(Q,DB).

There are two approaches for computing ans(Q,V). The
first one is to use an exponential procedure in the size of
the data (i.e. V) in order to completely compute ans(Q,V)
(see [4]). There is little that one can better hope for, since
in the same paper it has been proven that to decide whether
a tuple belongs to ans(Q,V) is co-NP complete with respect
to the size of data.

The second approach is to compute first a view-based rewrit-
ing Q′ for Q, as in [3]. Such rewritings are regular path
queries on Ω. Then, we can approximate ans(Q,V) by
ans(Q′,V), which can be computed in polynomial time with
respect to the size of data (V). In general, for a view-based
rewriting Q′ computed by the algorithm of [3], we have that

ans(Q′,V) ⊆ ans(Q,V),

with equality when the rewriting is exact ([4]). In the rest of
the paper, we will assume that the data-integration system
follows the second approach.

4. MAXIMAL VIEW -BASED REWRITINGS
Our proposed techniques enhance the computation and use
of maximal view-based rewritings given in [3]. Thus, we
first examine these maximal view-based rewritings and the
method of [3] for their computation.

Formally, for a given query Q, the maximal view-based rewrit-
ing Q′, is the set of all words on Ω such that their substi-
tution through def is contained in the query language Q,

S

R R

S

S

R,S

R

2

3

v3v3

v2

v1 2,v ,v3

v1 2,v v1 2,v,vv1

v

3

1 v1 2,v

v

v v3 3

v

Figure 3: Automata A [top], B [middle], and C [bot-
tom].

i.e.

Q′ = {w : w ∈ Ω∗ and def(w) ⊆ Q}.

Interestingly, as shown in [3], the above set is a regular lan-
guage on Ω and the algorithm of [3] for computing an au-
tomaton for this language is as follows.

Algorithm 1.

1. Construct a DFA A = (∆, S, s0, τA, F) such that
Q = L(A).

2. Construct automaton B = (Ω, S, s0, τB, S − F), where
(si, vx, sj) ∈ τB iff there exists w ∈ Vx such that
(si, w, sj) ∈ τ∗

A.

3. The rewriting Q′ is the Ω language accepted by an au-
tomaton C obtained by complementing automaton B.

Step 2 can also be expressed equivalently as: Consider each
pair of states (si, sj). If in A there is a path from si to sj ,
which spells a word in some view language Vx, then insert a
corresponding vx-transition from si to sj in B.

Example 4. Let query be Q = (RS∗)2 + S+ and the view
definitions be as in Example 3, i.e. V1 = def(v1) = RS∗,
V2 = def(v2) = S∗R, and V3 = def(v3) = S+. The DFA
A for the query Q is shown in Figure 3 [top] and the cor-
responding automaton B is shown in in Figure 3 [middle].

The resulting complement automaton C is shown in Figure 3
[bottom]. Note that the “trap” and unreachable states have
been removed for clarity.

Observe that, if B accepts an Ω-word v1 · · · vm, then there
exist m ∆-words w1, . . . , wm such that wi ∈ Vi for i =
1, . . . , m and such that the ∆-word w1 . . . wm is rejected by
A. On the other hand, if there exists a ∆-word w1 . . . wm

that is rejected by A such that wi ∈ Vi for i = 1, . . . , m,
then the Ω-word v1 · · · vm is accepted by B. That is, B
accepts an Ω-word v1 · · · vm if and only if there is a ∆-word
in def(v1 · · · vm) that is rejected by A. Hence, C being the
complement of B accepts an Ω-word if and only if all ∆-
words w = w1 . . . wm such that wi ∈ Vi for i = 1, . . . , m, are
accepted by A.

As mentioned in the previous section, the view-based rewrit-
ing Q′ represented by automaton C is evaluated on a view
graph V obtaining ans(Q′,V) which is an approximation of
ans(Q,V).

Example 5. Consider the rewriting Q′ represented by
the automaton C in Figure 3 [bottom], and the view graph
V in Figure 2 [left]. It is easy to see that ans(Q′,V) =
{(a, b), (a, c), (c, b)}.

Assuming that the user query is given by means of a regular
expression, [3] showed, using the algorithm above, that the
complexity of computing the maximal view-based rewriting
is in 2EXPTIME. Moreover, this bound was shown to be
tight by constructing a query instance Q, whose rewriting
has a doubly exponential size compared to the size of a sim-
ple NFA for Q.

5. OUR OPTIMIZATION TECHNIQUES
The above 2EXPTIME bound tells us that to obtain a view-
based rewriting is computationally hard except for very small
query instances. While the first determinization [for obtain-
ing automaton A] is in practice quite tolerable for typical
user queries, the second determinization [for obtaining au-
tomaton C by complementing B] is often prohibitively ex-
pensive. However, it is possible to argue that the analysis
in [3] is worst-case and hence Algorithm 1 might take only
reasonable amount of time on “typical” instances (or on the
average). Our experimental results indicate that this is not
the case (see Section 6). Experimentally, we were unable
to compute automaton C, in reasonable time and space, for
about one third of the time while working on “randomly
generated” instances.

In this section, we first describe how to optimize the con-
struction of automaton B in step 2, which is a significant
bottleneck when the number of views is considerable. Then,
we deal with step 3 of the algorithm, and propose a tech-
nique which essentially eliminates this step.

5.1 Computing AutomatonB Efficiently
We present an optimization technique for the step 2 of the
above algorithm for computing automaton B. In our exper-
iments we observed that this step, although a polynomial
one, is very time consuming if implemented in the straight-
forward manner.

Taking a closer look at step 2, let si and sj be two arbitrary
states in automaton A. Now consider automaton Aij , which
is obtained by keeping all the states and transitions in A,
but making state si and sj initial and final respectively. All
the other states in Aij are neither initial nor final.

In step 2 of the algorithm, we want to determine whether
there should be transition vx between states si and sj in B.
It is easy to see that this is in fact achieved by testing for the
emptiness of the intersection L(Aij)∩Vx. Namely, we insert
a transition (si, vx, sj) in B iff L(Aij) ∩ Vx 6= ∅. Recall that
the intersection L(Aij)∩Vx is obtained by constructing the
Cartesian product Aij × AVx , where AVx is an automaton
for Vx.

However, the automata Aij for different i’s and j’s have the
same states and transitions [namely those of automaton A].
Only their initial and final states are different. Thus, we
construct only one Cartesian product A × AVx for a given
view Vx. Then, we test emptiness on this Cartesian prod-
uct automaton for |A|2 different combinations of [one] initial
and [one] final states. Although asymptotically there is no
gain in doing this, experimentally, we found that for typical
queries and views, the speedup achieved by this optimiza-
tion is often more than 6-fold. This is explained by a better
utilization of the CPU cache because there is only one Carte-
sian product automaton to be constructed and examined.

5.2 Answer Computation Using AutomatonB

In this subsection, we describe how to essentially eliminate
step 3 of the algorithm of [3].

Recall that the “riskier penalty” in the algorithm of [3] is
the computation of automaton C in step 3 by complementing
the automaton B obtained in step 2. C might be doubly
exponential in the size of the query. Once C is computed,
the final step is to compute ans(Q′,V) by constructing the
Cartesian product of the automaton C and a viewgraph V.
We ask if it still possible to compute ans(Q′,V) directly
without first computing the DFA for L(B)? We achieve
this by merging the underlying determinization procedure
of step 3 and the subsequent computation of the Cartesian
product graph into a single step. We illustrate this using an
example.

Example 6. Consider the NFA B and the viewgraph V
shown in Figure 4 [top–left] and [top–right] respectively. To
compute the set of all objects reachable, say from a in V and
following paths spelling words rejected by B, we will build
a lazy Cartesian product graph, whose nodes are object–
bitvector pairs and edges are labeled with Ω symbols.

We start with the pair (a, 100), where 100 is an abbreviation
for (1, 0, 0). This bitvector says that automaton B is now in
state s0. Next, we construct the pair (b, 110) and put a v1–
edge from (a, 100) to (b, 110). This is because when reading
symbol v1, we hop to object b in V, and in states s0 and
s1 in B. Continuing in this way, we obtain the Cartesian
product graph shown in Figure 4 [bottom].

Building of the above bitvectors is reminiscent of the classi-
cal subset construction for converting an NFA into a DFA.

v 2v,1v

1v 2v,

s0 1s s2
1

b1

2v

v1

��
��
��
��

��
��
��

��
��
��

�
�
�
�

a

c

v

,100a ,110b ,a 110,c 101
1v v2 1v1v

v2

,b 111

Figure 4: Automaton B [top–left], viewgraph V [top–right], and Cartesian product graph [bottom].

In fact, each bitvector corresponds to a state in a DFA for B.
However, we only build those bitvectors, which are asked for
by the input viewgraph. Thus, observe that in this example
only 4 bitvectors are needed, namely 100, 110, 101, and 111.
On the other hand, the minimum size DFA corresponding
to B has 23 = 8 states (cf. [12] for this family of automata).

Now, once the Cartesian product graph is constructed, it is
easily seen that b is reachable from a using a string not in
L(B) but c is not.

In general, for a B automaton with set S of states, we use
bitvectors of size |S| to keep track of the states that B can be
when reaching some object of the viewgraph. As illustrated
by the above example, the nodes of the (lazy) Cartesian
product graph are of the form (a, u) where a is an object
in the viewgraph and u is a bitvector of size |S|. Since
the input is a graph as opposed to a string, there can be
different bitvectors associated with the same given object
(for instance with objects a and b in the example).

We want to stress that we build the Cartesian product graph
starting from all the viewgraph objects. In the above exam-
ple, for clarity we showed the Cartesian product constructed
starting from one object only. However, these Cartesian
products overlap, and thus, in order to not generate the
same object–bitvector pair twice, we maintain a hashtable
of the pairs generated so far. In fact, even for a single Carte-
sian product, the same pair might be needed more than once,
and the hashtable is necessary for this case as well in order
for the method to terminate.

The edge labels in the Cartesian product graph are of no
importance when it comes to generating the query answers.
The only thing that matters in this graph is pure reachabil-
ity. Namely, we produce a pair (a, b) as an answer, if there
exists a path [in the Cartesian product graph] from (a, u0)
to (b, w), where u0 is the initial bitvector 10 . . . 0, and w is
a bitvector having no bit set to 1 for any final state in B.

Formally, our algorithm is as follows.

Algorithm 2.

Input: Automaton B and a viewgraph V.

Output: ans(Q′,V), where Q′ = L(B).

Method:

1. Denote by u0 the bitvector 10 . . . 0 corresponding
to the initial state s0 in B.

2. Initialize

(a) A processing queue P = {(a, u0) : a object in V}.

(b) A hashtable H = ∅.

(c) A Cartesian product graph G = ∅.

3. Repeat (a), (b), and (c) until queue P becomes
empty.

(a) Dequeue a pair (a, u) from P .
Lookup (a, u) in H.
If (a, u) is not yet in H, then insert it in H
and G.
Otherwise, discard (a, u) as we have already
dealt with it.

(b) For each outgoing edge from a to b in V, la-
beled by some symbol, say vab, compute the
“next” bitvector w by procedure

w = Next(u, vab).

[We discuss this procedure soon.]

(c) If w is different from the all zero’s vector, then
insert (b, w) in P .
Also, insert edge ((a, u), vab, (b, w)) in G

4. Finally, set

ans(Q′,V) =

{(a, b) : there exists a path in G

from (a, u0) to (b, w) such that

w has no bit set to 1 for any final state in B}.

Implementation of Next(u, v).

We optimize the amount of time taken to compute adjacent
bitvectors as follows.

Normally, each entry in the transition table of B is just a list
of next possible states of the NFA given the current state
and input symbol. Instead of storing this list, we store a
bitvector α of |S| bits, that is the characteristic vector of this
list of states. Using the various values of α in the transition
table, given an object-vector pair of the form (a, u) and an
input symbol v, we can compute Next(u, v) in only O(n)
time using a sequence of bitwise-OR operations [compared
to the naive method of updating vectors that takes O(n2)
in the worst case]. In particular, without loss of generality,
suppose the set of indices in u which have a 1 is exactly
{i1, i2. . . . , ik}. Then it is easy to see that

Next(u, v) = αi1,v ∨ αi2,v ∨ . . . ∨ αik,v

where αij ,v is the bitvector α in the transition table corre-
sponding to the state qij

and the input symbol v.

In the next section, we show that our ideas give substantial
improvement in running time making it possible to solve the
problem of view-based answering on much larger instances
compared to the naive implementation.

6. EXPERIMENTAL RESULTS

We conducted experiments in order to assess the improve-
ments offered by answering the query using automaton B
over answering using automaton C.

First, we give some details on how we generated queries,
views, and viewgraphs. For this we used a simple DataGuide
(cf. [1]). DataGuides are essentially finite state automata
capturing all the words spelled out by the database paths. In
general, DataGuides are compact representations of graph
databases. They are small automata presented to the user
in order to guide her in writing queries. Each word in a
DataGuide could possibly represent many paths that spell
that word in a database. For example a DataGuide, captur-
ing databases such as the one shown in Figure 1, contains
a word software·company·recommends. Certainly, there are
many such paths in databases about online stores.

In our experiments, we used the DataGuide given in Figure 5
[top], where all the states are both initial and final.

For generating view language definitions, we obtained a right
linear grammar from the DataGuide of Figure 5 [top]. The
rules of this grammar are given in the same figure [bottom],
where A, B, C, D, and E are the non terminal symbols
corresponding to the DataGuide states.

Then, we randomly generated partial derivations using the
above grammar. Such a partial derivation is for example
B → company · recommends · D. By randomly selecting
such partial derivations, we created new right linear gram-
mars. We kept only those grammars generating non-empty
languages. Clearly, the grammars generated in this way cap-
ture sublanguages of the DataGuide. By this random pro-
cedure, we created 50 test sets of 40 view definitions each.

C

software

software

company

recommendscovers

book

author

wrote

A

B

D E

A → software · B | book · D | ǫ
B → software · B | company · C | ǫ
C → recommends · D | ǫ
D → covers · B | author · E | ǫ
E → wrote · D | ǫ

Figure 5: [Top] DataGuide corresponding to the
database in Figure 1. [Bottom] Grammar for the
given DataGuide.

For each set of views, we created random queries as follows.
Let V = {V1, . . . , V40} be a view set. Then, the outer-
alphabet is Ω = {v1, . . . , v40}. First, we randomly created
a regular expression on Ω of length not more than 10. For
instance such a regular expression could be re = v1 ·v

∗
13+v40.

Next, we set Q = def(re), which is a language on ∆, and
computed its view-based rewriting using set V of views.

We could certainly generate queries in a similar fashion as for
generating view languages i.e. directly from the DataGuide.
However, doing so generates many cases when the rewriting
is empty, and the experiments would be uninteresting. On
the other hand, generating queries as above guarantees that
the rewritings will not be empty.

Regarding the generation of view graphs, we first randomly
generated databases from the Data-Guide, and then eval-
uated on these databases each of the generated views. In
this way, we obtained an “answer” for each view. For in-
stance, we could have {(a, b), (b, c), . . .} as the answer for V1

in some randomly generated database. Then, we inserted
edges (a, v1, b), (b, v1, c), . . . in the the corresponding view-
graph. For each of the 50 sets of views, we randomly gener-
ated as above a viewgraph of more than 10,000 nodes.

Then, we computed automaton B for each set of views, and
evaluated it [as described in Section 5] on the corresponding
viewgraph. Also, we tried to compute automaton C accept-
ing L(B). We used GRAIL+ (see [17]), which is a well-
engineered automata package written in C++. As already
mentioned, computing C was not always possible. Out of
our 50 cases, computing C timed out in 15 of them. We
used a big timeout of 4 hours. Whenever we were able to
obtain a DFA C, we evaluated it on the corresponding view-
graph. For these cases, we compared the times of evaluating
B versus evaluating C on the viewgraphs.

In all the test cases, we computed automaton B using the

ID B-NFA Size C-DFA-size C-DFA-time C-DFA-V-time C-DFA-V TTime B-BitNFA-V-time B-BitNFA-V-size Ratio

1 11 35 2 317 319 348 27887 1.1
2 9 16 1 396 397 390 23967 1
3 12 67 7 330 337 396 31875 1.2
4 11 34 3 410 413 417 29003 1
5 9 40 1 407 409 419 26172 1
6 12 74 5 489 494 530 31766 1.1
7 13 57 7 573 580 651 32501 1.1
8 15 83 11 630 641 678 35332 1.1
9 23 462 393 454 847 773 40899 0.9

10 12 69 8 805 813 887 37850 1.1
11 14 114 8 703 711 901 39252 1.3
12 17 166 29 540 569 911 44261 1.6
13 13 72 9 905 914 1037 38095 1.1
14 13 221 19 642 661 1159 50413 1.8
15 16 513 87 609 696 1180 48698 1.7
16 20 319 153 743 896 1247 47582 1.4
17 12 82 8 1067 1074 1457 47051 1.4
18 35 1442 2148 824 2972 1505 52686 0.5
19 33 3316 4126 592 4718 1593 61860 0.3
20 16 266 61 1058 1119 1867 56361 1.7
21 21 552 296 859 1154 1879 58879 1.6
22 35 723 710 1106 1816 2074 55939 1.1
23 31 831 461 913 1374 2113 61329 1.5
24 21 1316 526 867 1392 2121 66651 1.5
25 20 1098 379 1046 1425 2206 65004 1.5
26 18 238 60 1372 1432 2846 63561 2
27 18 523 104 1056 1160 3061 74273 2.6
28 20 550 177 1083 1260 3403 83515 2.7
29 26 2001 855 1245 2099 3512 80085 1.7
30 33 3578 2197 1106 3303 3599 83338 1.1
31 38 3492 2937 1628 4565 3666 76546 0.8
32 35 1720 1210 959 2169 3674 84318 1.7
33 28 2894 2515 1330 3845 4477 102625 1.2

1.3
34 49 N/P N/P N/A N/A 697 103251

35 42 N/P N/P N/A N/A 820 101291

36 44 N/P N/P N/A N/A 892 92852

37 53 N/P N/P N/A N/A 1224 50903

38 41 N/P N/P N/A N/A 1554 56048

39 52 N/P N/P N/A N/A 1754 44805

40 48 N/P N/P N/A N/A 2033 66406

41 53 N/P N/P N/A N/A 2239 66052

42 43 N/P N/P N/A N/A 2270 76941

43 42 N/P N/P N/A N/A 2549 85026

44 48 N/P N/P N/A N/A 3358 80330

45 44 N/P N/P N/A N/A 3468 83515

46 30 N/P N/P N/A N/A 3542 86632

47 42 N/P N/P N/A N/A 3816 81133

48 40 N/P N/P N/A N/A 3890 84563

49 45 N/P N/P N/A N/A 4872 103183

50 47 N/P N/P N/A N/A 5985 123831

Figure 6: Table of results.

0

5

10

15

20

25

30

0
 -
 1

5
0
0

1
5
0
1
 -
 3

0
0
0

3
0
0
1
 -
 4

5
0
0

4
5
0
1
 -
 6

0
0
0

N
o
t
P
o
ss

ib
le

C-DFA-time

F
re
q
u
e
n
c
y

0

5

10

15

20

25

30

0
 -
 1

5
0
0

1
5
0
1
 -
 3

0
0
0

3
0
0
1
 -
 4

5
0
0

4
5
0
1
 -
 6

0
0
0

N
o
t
P
o
ss

ib
le

C-DFA-V TTime

F
re

q
u

e
n

c
y

0

5

10

15

20

25

30

0
 -
 1

5
0
0

1
5
0
1
 -
 3

0
0
0

3
0
0
1
 -
 4

5
0
0

4
5
0
1
 -
 6

0
0
0

B-BitNFA-V-time

F
re

q
u

e
n

c
y

Figure 7: Number of instances for different time ranges of C-DFA-V-time, C-DFA-V-TTime, and B-BitNFA-
V-time. The darker bars for C-DFA-V-time and C-DFA-V-TTime show the fraction of instances for which
the computation of automaton C was not possible.

technique described in Subsection 5.1. It was this technique
that made possible the computation of B in a reasonable
amount of time for each test case (of 40 views each). As
mentioned in Subsection 5.1, using our technique we were
able to achieve a speedup of more that six-fold in computing
B. Our times for computing the B automata range between
10 to 15 minutes.

We have tabulated our time and size results in Figure 6.
The results were obtained using a modern Sun-Blade-1000
machine with 1GB of RAM. In the following, we describe
the column headers of our result table.

ID: ID of test set.

B-NFA-size: Size of automaton (NFA) B.

C-DFA-size: Size of automaton (DFA) C.

C-DFA-time: Time (in secs) to compute automaton (DFA) C.

C-DFA-V-time: Time (in secs) to evaluate automaton (DFA)
C on the corresponding viewgraph.

C-DFA-V-TTime: Total time (in secs) to compute and
then evaluate automaton (DFA) C on the correspond-
ing viewgraph. [This is the sum of the above two
times.]

B-BitNFA-V-time: Time (in secs) to bitwise evaluate au-
tomaton (NFA) B on the corresponding viewgraph.

B-BitNFA-V-size: Size of the input-aware Cartesian prod-
uct of automaton (NFA) B with the corresponding
viewgraph.

Ratio: Ratio of the time to obtain the answers using bit-
wise evaluation of automaton (NFA) B to the time to
obtain the answers using automaton (DFA) C when-
ever possible. The last number of 1.3 in this column
is the average of the column.

We have sorted the results in ascending order of the B-
BitNFA-V-time. The first part of the table contains the
results for the cases when the computation of automaton C
succeeded. The second part of the table contains the results

for the cases when the computation of automaton C failed.
As such, the second part of the table has results which relate
to the use of automaton B only. The shaded area of this part
of the table is marked by N/P (Not Possible) or (N/A) (Not
Applicable) as appropriate.

Also, we have graphed columns C-DFA-V-time, C-DFA-
V-TTime, and B-BitNFA-V-time in Figure 7 in order to
more clearly show the fractions of instances corresponding
to different time ranges, as well as the fraction of instances
for which the computation of rewritings is impossible in rea-
sonable time and space.

Based on the table of results, we are able to draw the fol-
lowing natural conclusions.

1. Computing in full the view-based rewriting represented
by automaton C is hard and fails in a considerable
number of cases (30% of them). Hence, one should
not pursue this route for producing view-based query
answers.

2. Even when constructing C is possible, the performance
advantage offered by the determinism of C over au-
tomaton B is small. In average, bitwise evaluation of
B is only 1.3 times slower on the average, while in some
cases it can be even faster. This is due to the smaller
footprint of B having so a better hardware cache uti-
lization.

3. For all the test cases, the size of the input-aware bit-
wise Cartesian product of automaton B with the corre-
sponding viewgraph V is very far from the worst case
of 2|B| · |V|.

From all the above, one can see that by employing our tech-
niques, the view-based answering of RPQ’s becomes (fairly)
feasible in practice.

7. CONCLUSIONS
In this paper, we examined the well-known problem of an-
swering regular path queries (RPQ) using views in LAV in-
formation integration. This problem is particularly impor-
tant because RPQ’s are part of virtually all the languages

for semistructured data, which are very prevalent in infor-
mation integration.

This paper makes two useful contributions towards a better
understanding of this important problem. Firstly, it shows
experimental evidence that the problem, known to have a
worst-case lower bound of 2EXPTIME, also takes lot of time
to be solved on the average. Secondly, it proposes automata-
theoretic techniques, which make it fairly feasible to obtain
the answer for large query instances. In particular, we would
like to emphasize the usefulness of the “answering through
rewriting complement” that we have used in this paper. We
hope that this paper will lead to further study of this very
important problem.

8. REFERENCES

[1] Abiteboul S., P. Buneman, and D. Suciu. Data on the
Web : From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers. San Francisco,
CA., 1999.

[2] Bravo L., and L. Bertossi. Disjunctive Deductive
Databases for Computing Certain and Consistent
Answers to Queries from Mediated Data Integration
Systems. Journal of Applied Logic 3 (1): 329–367,
2005.

[3] Calvanese D., G. Giacomo, M. Lenzerini and M. Y.
Vardi. Rewriting of Regular Expressions and Regular
Path Queries. J. Comput. Syst. Sci. 64 (3): 443–465,
2002.

[4] Calvanese D., G. Giacomo, M. Lenzerini and M. Y.
Vardi. Answering Regular Path Queries Using Views.
Proc. of ICDE ’00.

[5] Calvanese D., G. Giacomo, M. Lenzerini, and M. Y.
Vardi. View-Based Query Processing and Constraint
Satisfaction. Proc. of LICS ’00.

[6] Calvanese D., G. Giacomo, M. Lenzerini, and
M. Y. Vardi. View-based query processing: On the
relationship between rewriting, answering and
losslessness. Theor. Comput. Sci., 371 (3): 169–182,
2007.

[7] Consens M. P, A. O. Mendelzon. GraphLog: A Visual
Formalism for Real Life Recursion. Proc of PODS’90.

[8] Grahne G., and A. O. Mendelzon Tableau Techniques
for Querying Information Sources through Global
Schemas. Proc. ICDT ’99.

[9] Grahne G., and A. Thomo. An Optimization
Technique for Answering Regular Path Queries. Proc.
of WebDB ’00.

[10] Grahne G., and A. Thomo. Algebraic Rewritings for
Optimizing Regular Path Queries. Proc. ICDT ’01.

[11] Grahne G., A. Thomo, and W. Wadge. Preferentially
Annotated Regular Path Queries. Proc. of ICDT’07.

[12] Hopcroft J. E., and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley. Reading MA, 1979.

[13] Lenzerini M. Data Integration: A Theoretical
Perspective. Proc. of PODS’02.

[14] Levy A. Y., Mendelzon A. O., Sagiv Y., Srivastava D.
Answering Queries Using Views. Proc. PODS ’95.

[15] Mendelzon A. O., and P. T. Wood, Finding Regular
Simple Paths in Graph Databases. SIAM J. Comp.

24 (6): 1235–1258, 1995.

[16] Mendelzon A. O. G. A. Mihaila and T. Milo.
Querying the World Wide Web. Int. J. Dig. Lib. 1 (1):
57–67, 1997.

[17] Raymond R. D., and D. Wood. Grail: A C++ Library
for Automata and Expressions. J. Symb. Comput.
17 (4): 341–350, 1994.

[18] Ullman J. D. Information Integration Using Logical
Views. Proc. ICDT ’97.

[19] S. Yu. Regular Languages. In: Handbook of Formal
Languages, pp. 41–110. G. Rozenberg and A. Salomaa
(Eds.). Springer Verlag 1997.

